Dissertations / Theses on the topic 'Elliptic Curves over Finite Fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Elliptic Curves over Finite Fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Thuen, Øystein Øvreås. "Constructing elliptic curves over finite fields using complex multiplication." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9434.
Full textWe study and improve the CM-method for the creation of elliptic curves with specified group order over finite fields. We include a thorough review of the mathematical theory needed to understand this method. The ability to construct elliptic curves with very special group order is important in pairing-based cryptography.
Kirlar, Baris Bulent. "Isomorphism Classes Of Elliptic Curves Over Finite Fields Of Characteristic Two." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606489/index.pdf.
Full textIdrees, Zunera. "Elliptic Curves Cryptography." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17544.
Full textCai, Zhi, and 蔡植. "A study on parameters generation of elliptic curve cryptosystem over finite fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225639.
Full textFuselier, Jenny G. "Hypergeometric functions over finite fields and relations to modular forms and elliptic curves." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1547.
Full textLester, Jeremy W. "The Elliptic Curve Group Over Finite Fields: Applications in Cryptography." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1348847698.
Full textSze, Christopher. "Certain diagonal equations over finite fields." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003018.
Full textAbu-Mahfouz, Adnan Mohammed. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.
Full textDissertation (MEng (Computer Engineering))--University of Pretoria, 2006.
Electrical, Electronic and Computer Engineering
unrestricted
Kultinov, Kirill. "Software Implementations and Applications of Elliptic Curve Cryptography." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559232475298514.
Full textFluder, Anna [Verfasser]. "Elliptic curves over function fields of elliptic curves / Anna Fluder." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645183/34.
Full textVoloch, J. F. "Curves over finite fields." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.
Full textRovi, Carmen. "Algebraic Curves over Finite Fields." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.
Full textThis thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.
At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
Jones, Andrew. "Modular elliptic curves over quartic CM fields." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8791/.
Full textDjabri, Zafer M. "P-descent on elliptic curves over number fields." Thesis, University of Kent, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310161.
Full textRoberts, David. "Explicit decent on elliptic curves over function fields." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518685.
Full textLingham, Mark Peter. "Modular forms and elliptic curves over imaginary quadratic fields." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10138/.
Full textLe, hung Bao Viet. "Modularity of some elliptic curves over totally real fields." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11464.
Full textMathematics
Bygott, Jeremy S. "Modular forms and modular symbols over imaginary quadratic fields." Thesis, University of Exeter, 1998. http://hdl.handle.net/10871/8322.
Full textThongjunthug, Thotsaphon. "Heights on elliptic curves over number fields, period lattices, and complex elliptic logarithms." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/35646/.
Full textWhitley, Elise. "Modular forms and elliptic curves over imaginary quadratic number fields." Thesis, University of Exeter, 1990. http://hdl.handle.net/10871/8427.
Full textMcConnell, Gary. "On the Iwasawa theory of elliptic curves over cyclotomic fields." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307064.
Full textSechi, Gianluigi. "GL₂ Iwasawa theory of elliptic curves over global funtion fields." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613046.
Full textWang, Jian. "On the torsion structure of elliptic curves over cubic number fields." Thesis, University of Southern California, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3722897.
Full textLet E be an elliptic curve defined over a number field K. Then its Mordell-Weil group E(K) is finitely generated: E(K) ≅ E(K)tor × Zr. In this thesis, I will discuss the cyclic torsion subgroup of elliptic curves over cubic number fields. I obtained complete results in the prime power case and partial results in the composite case.
Young, Michael Alexander. "K₂ and L-series of elliptic curves over real quadratic fields." Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5114/.
Full textPrickett, Martin. "Saturation of Mordell-Weil groups of elliptic curves over number fields." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/10052/.
Full textVanAmeron, Tracy. "Implementing efficient 384-bit NIST elliptic curves over prime fields on an ARM946E /." Online version of thesis, 2008. http://hdl.handle.net/1850/6209.
Full textTypescript. Supplemental CD-ROM includes a Word document copy of the thesis and PDF copies of some of the references used. Includes bibliographical references (leaves 41-42).
Chen, Cangxiong, and 陈仓雄. "Height functions on elliptic curves over function fields: a differential-geometric approach." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47048414.
Full textLemelin, Dominic. "Mazur-Tate type conjectures for elliptic curves defined over quadratic imaginary fields." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38217.
Full textFor elliptic curves over Q , Mazur and Tate have formulated some refined conjectures of Birch and Swinnerton-Dyer type. They define an element theta belonging to a group ring Z[G] where G is the Galois group of a finite abelian extension of Q , and conjecture that it belongs to a power of the augmentation ideal I ⊆ Z[G] that is at least the rank of E( Q ). The behavior of theta is similar to the order of vanishing at 1 of p-adic L-functions: for example, primes of split multiplicative reduction for the curve appear in the conjectures.
In this thesis, we use modular symbols computed on some hyperbolic upper-half space to construct theta elements associated to elliptic curves defined over quadratic imaginary fields of class number 1. We state conjectures similar to those of Mazur and Tate for such curves and experimentally test many cases of the conjectures. The tests include situations in which we use prime ideals of OK where the elliptic curves have split multiplicative reduction.
Cam, Vural. "Drinfeld Modular Curves With Many Rational Points Over Finite Fields." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613118/index.pdf.
Full textMcGee, John J. "René Schoof's Algorithm for Determining the Order of the Group of Points on an Elliptic Curve over a Finite Field." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/31911.
Full textMaster of Science
Garefalakis, Theodoulos. "On the discrete logarithm problem in the finite fields and on elliptic curves." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0030/NQ53692.pdf.
Full textKarakoyunlu, Deniz. "Efficient Side-Channel Aware Elliptic Curve Cryptosystems over Prime Fields." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-dissertations/338.
Full textDucet, Virgile. "Construction of algebraic curves with many rational points over finite fields." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4043/document.
Full textThe study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points
Baktir, Selcuk. "Efficient algorithms for finite fields, with applications in elliptic curve cryptography." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0501103-132249.
Full textKeywords: multiplication; OTF; optimal extension fields; finite fields; optimal tower fields; cryptography; OEF; inversion; finite field arithmetic; elliptic curve cryptography. Includes bibliographical references (p. 50-52).
Arslanian, Samuel Thomas. "An implementation of the El Gamal elliptic curve cryptosystem over a finite field of characteristic P." Fogler Library, University of Maine, 1998. http://www.library.umaine.edu/theses/pdf/ArslanianST1998.pdf.
Full textLonghi, Ignazio. "Non-archimedean integration and special values of L-functions for elliptic curves over function fields." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36821.
Full textRiquelme, Faúndez Edgardo. "Algorithms for l-sections on genus two curves over finite fields and applications." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/393881.
Full textEn esta tesis se estudian algoritmos de \ell-división para Jacobianas de curvas de género 2. Se presentan algoritmos de trisección (división por \ell=3) para Jacobianas de curvas de género 2 definidas sobre cuerpos finitos \F_q de característica par o impar indistintamente. En característica impar se obtiene explícitamente un polinomio de trisección, cuyas raíces se corresponden biyectivamente con el conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo se proporciona otro polinomio a partir de cuyas raíces se calcula el conjunto de los divisores de orden 3. Se muestra la relación entre el rango del subgrupo de 3-torsión y la factorización del polinomio de la 3- torsión, y se describe la factorización del polinomio de trisección en términos de las órbitas galoisianas de la 3- torsión. Se generalizan estas ideas para otros valores de \ell y se determina el cuerpo de definición de una \ell-sección para \ell=3,5,7. Para curvas no-supersingulares en característica par también se da una caracterización de la 3-torsión y se proporciona un polinomio de trisección para un divisor cualquiera. Se da una generalización, para \ell arbitraria, de los algoritmos conocidos para el cómputo explícito del subgrupo de 2-Sylow, y se detalla explícitamente el algoritmo para el cómputo del subgrupo de 3-Sylow. Finalmente, se dan ejemplos de cómo obtener los valores de la reducción módulo 3 de los coeficientes centrales del polinomio característico del endomorfismo de Frobenius mediante los generadores proporcionados por el algoritmo de cálculo del 3-Sylow.
En aquesta tesi s'estudien algoritmes de \ell-divisió per a grups de punts de Jacobianes de corbes de gènere 2. Es presenten algoritmes de trisecció (divisió per \ell=3) per a Jacobianes de corbes de gènere 2 definides sobre cossos finits \F_q de característica parell o senar indistintament. En característica parell s'obté explícitament un polinomi de trisecció, les arrels del qual estan en bijecció amb el conjunt de triseccions d'un divisor de la Jacobiana qualsevol. De manera semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el conjunt dels divisors d'ordre 3. Es mostra la relació entre el rang del subgrup de 3-torsió i la factorització del polinomi de la 3-torsió, i es descriu la factorització del polinomi de trisecció en termes de les òrbites galoisianes de la 3-torsió. Es generalitzen aquestes idees a altres valors de \ell i es determina el cos de definició d'una \ell-secció per a \ell=3,5,7. Per a corbes nosupersingulars en característica 2 també es proporciona una caracterització de la 3-torsió i un polinomi de trisecció per a un divisor qualsevol. Es dóna una generalització, per a \ell arbitrària, dels algoritmes coneguts per al càlcul explícit del subgrup de 2-Sylow, i es detalla explícitament en el cas del 3-Sylow. Finalment es mostren exemples de com obtenir els valors de la reducció mòdul 3 dels coeficients centrals del polinomi característic de l'endomorfisme de Frobenius fent servir els generadors proporcionats per l'algoritme de càlcul del 3-Sylow.
Hoshi, Yuichiro. "Absolute anabelian cuspidalizations of configuration spaces of proper hyperbolic curves over finite fields." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/126568.
Full text0048
新制・論文博士
博士(理学)
乙第12377号
論理博第1509号
新制||理||1507(附属図書館)
27312
UT51-2009-K686
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 望月 新一, 教授 玉川 安騎男, 教授 向井 茂
学位規則第4条第2項該当
baktir, selcuk. "Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography." Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-dissertations/272.
Full textLindner, Niels. "Hypersurfaces with defect and their densities over finite fields." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17704.
Full textThe first topic of this dissertation is the defect of projective hypersurfaces. It is indicated that hypersurfaces with defect have a rather large singular locus. In the first chapter of this thesis, this will be made precise and proven for hypersurfaces with arbitrary isolated singularities over a field of characteristic zero, and for certain classes of hypersurfaces in positive characteristic. Moreover, over a finite field, an estimate on the density of hypersurfaces without defect is given. Finally, it is shown that a non-factorial threefold hypersurface with isolated singularities always has defect. The second chapter of this dissertation deals with Bertini theorems over finite fields building upon Poonen’s formula for the density of smooth hypersurface sections in a smooth ambient variety. This will be extended to quasismooth hypersurfaces in simplicial toric varieties. The main application is to show that hypersurfaces admitting a large singular locus compared to their degree have density zero. Furthermore, the chapter contains a Bertini irreducibility theorem for simplicial toric varieties generalizing work of Charles and Poonen. The third chapter continues with density questions over finite fields. In the beginning, certain fibrations over smooth projective bases living in a weighted projective space are considered. The first result is a Bertini-type theorem for smooth fibrations, giving back Poonen’s formula on smooth hypersurfaces. The final section deals with elliptic curves over a function field of a variety of dimension at least two. The techniques developed in the first two sections allow to produce a lower bound on the density of such curves with Mordell-Weil rank zero, improving an estimate of Kloosterman.
Woodbury, Adam D. "Efficient algorithms for elliptic curve cryptosystems on embedded systems." Link to electronic version, 2001. http://www.wpi.edu/Pubs/ETD/Available/etd-1001101-195321/.
Full textDaneshbeh, Amir. "Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2m)." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/776.
Full textAngulo, Rigo Julian Osorio. "Criptografia de curvas elípticas." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6976.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-21T12:06:48Z (GMT) No. of bitstreams: 2 Dissertação - Rigo Julian Osorio Angulo - 2017.pdf: 1795543 bytes, checksum: 4342f624ff7c02485e9e888135bcbc18 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-21T12:06:48Z (GMT). No. of bitstreams: 2 Dissertação - Rigo Julian Osorio Angulo - 2017.pdf: 1795543 bytes, checksum: 4342f624ff7c02485e9e888135bcbc18 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
According to history, the main objective of cryptography was always to provide security in communications, to keep them out of the reach of unauthorized entities. However, with the advent of the era of computing and telecommunications, applications of encryption expanded to offer security, to the ability to: verify if a message was not altered by a third party, to be able to verify if a user is who claims to be, among others. In this sense, the cryptography of elliptic curves, offers certain advantages over their analog systems, referring to the size of the keys used, which results in the storage capacity of the devices with certain memory limitations. Thus, the objective of this work is to offer the necessary mathematical tools for the understanding of how elliptic curves are used in public key cryptography.
Segundo a história, o objetivo principal da criptografia sempre foi oferecer segurança nas comunicações, para mantê-las fora do alcance de entidades não autorizadas. No entanto, com o advento da era da computação e as telecomunicações, as aplicações da criptografia se expandiram para oferecer além de segurança, a capacidade de: verificar que uma mensagem não tenha sido alterada por um terceiro, poder verificar que um usuário é quem diz ser, entre outras. Neste sentido, a criptografia de curvas elípticas, oferece certas ventagens sobre seu sistemas análogos, referentes ao tamanho das chaves usadas, redundando isso na capacidade de armazenamento dos dispositivos com certas limitações de memória. Assim, o objetivo deste trabalho é fornecer ao leitor as ferramentas matemáticas necessá- rias para a compreensão de como as curvas elípticas são usadas na criptografia de chave pública.
Keller, Timo [Verfasser], Uwe [Akademischer Betreuer] Jannsen, and Walter [Akademischer Betreuer] Gubler. "The conjecture of Birch and Swinnerton-Dyer for Jacobians of constant curves over higher dimensional bases over finite fields / Timo Keller. Betreuer: Uwe Jannsen ; Walter Gubler." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1059569612/34.
Full textSmith, Benjamin Andrew. "Explicit endomorphisms and correspondences." University of Sydney, 2006. http://hdl.handle.net/2123/1066.
Full textIn this work, we investigate methods for computing explicitly with homomorphisms (and particularly endomorphisms) of Jacobian varieties of algebraic curves. Our principal tool is the theory of correspondences, in which homomorphisms of Jacobians are represented by divisors on products of curves. We give families of hyperelliptic curves of genus three, five, six, seven, ten and fifteen whose Jacobians have explicit isogenies (given in terms of correspondences) to other hyperelliptic Jacobians. We describe several families of hyperelliptic curves whose Jacobians have complex or real multiplication; we use correspondences to make the complex and real multiplication explicit, in the form of efficiently computable maps on ideal class representatives. These explicit endomorphisms may be used for efficient integer multiplication on hyperelliptic Jacobians, extending Gallant--Lambert--Vanstone fast multiplication techniques from elliptic curves to higher dimensional Jacobians. We then describe Richelot isogenies for curves of genus two; in contrast to classical treatments of these isogenies, we consider all the Richelot isogenies from a given Jacobian simultaneously. The inter-relationship of Richelot isogenies may be used to deduce information about the endomorphism ring structure of Jacobian surfaces; we conclude with a brief exploration of these techniques.
Cornelie, Marie-Angela. "Implantations et protections de mécanismes cryptographiques logiciels et matériels." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM029/document.
Full textThe protection of cryptographic mechanisms is an important challenge while developing a system of information because they allow to ensure the security of processed data. Since both hardware and software supports are used, the protection techniques have to be adapted depending on the context.For a software target, legal means can be used to limit the exploitation or the use. Nevertheless, it is in general difficult to assert the rights of the owner and prove that an unlawful act had occurred. Another alternative consists in using technical means, such as code obfuscation, which make the reverse engineering strategies more complex, modifying directly the parts that need to be protected.Concerning hardware implementations, the attacks can be passive (observation of physical properties) or active (which are destructive). It is possible to implement mathematical or hardware countermeasures in order to reduce the information leakage during the execution of the code, and thus protect the module against some side channel attacks.In this thesis, we present our contributions on theses subjects. We study and present the software and hardware implementations realised for supporting elliptic curves given in Jacobi Quartic form. Then, we discuss issues linked to the generation of curves which can be used in cryptography, and we propose an adaptation to the Jacobi Quartic form and its implementation. In a second part, we address the notion of code obfuscation. We detail the techniques that we have implemented in order to complete an existing tool, and the complexity module which has been developed
Fujdiak, Radek. "Analýza a optimalizace datové komunikace pro telemetrické systémy v energetice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-358408.
Full textHuang, Po-Yi, and 黃柏嶧. "Rational Points on Elliptic Curves over Finite Fields." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/98169219778754450228.
Full text國立臺灣大學
數學研究所
87
We study the theory on rational points on elliptic curves over finite field and the theory on complex multiplication through which we construct an elliptic curve such that its order of the group of rational points is a given number.
Baig, Salman Hameed. "L-functions of twisted elliptic curves over function fields." 2009. http://hdl.handle.net/2152/6527.
Full texttext
Hsu, Jen-Chieh, and 許仁傑. "An Improved Multiplication on Elliptic Curves over Finite Fields." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/79212112798081597142.
Full text國立清華大學
數學系
102
In 1999,L ́opez and Dahab suggest an algorithm for non-supersingular elliptic curves y2 + xy = x3 + ax2 + b over GF(2m), and is based on an idea of Montgomery.Their algorithm is easy to implement in both hard- ware and software, works for any elliptic curved over GF(2m), requires no precomputed multiples of a point and faster on average than the tra- dition addition method. This paper describe an algorithm for computing elliptic scalar multiplications on non-supersingular elliptic curves defined over GF(p), and is based on an idea of algorithm of L ́opez and Dahab.