Academic literature on the topic 'Elliptic/parabolic problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elliptic/parabolic problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Elliptic/parabolic problems"
Kim, Inwon C., and Norbert Požár. "Nonlinear Elliptic–Parabolic Problems." Archive for Rational Mechanics and Analysis 210, no. 3 (September 13, 2013): 975–1020. http://dx.doi.org/10.1007/s00205-013-0663-3.
Full textMannucci, Paola, and Juan Luis Vazquez. "Viscosity solutions for elliptic-parabolic problems." Nonlinear Differential Equations and Applications NoDEA 14, no. 1-2 (October 2007): 75–90. http://dx.doi.org/10.1007/s00030-007-4044-1.
Full textGoldstein, C. I. "Preconditioning Singularity Perturbed Elliptic and Parabolic Problems." SIAM Journal on Numerical Analysis 28, no. 5 (October 1991): 1386–418. http://dx.doi.org/10.1137/0728072.
Full textGuidotti, Patrick. "Elliptic and parabolic problems in unbounded domains." Mathematische Nachrichten 272, no. 1 (August 2004): 32–45. http://dx.doi.org/10.1002/mana.200310187.
Full textKenmochi, Nobuyuki, and Masahiro Kubo. "Periodic solutions of parabolic-elliptic obstacle problems." Journal of Differential Equations 88, no. 2 (December 1990): 213–37. http://dx.doi.org/10.1016/0022-0396(90)90096-8.
Full textLee, Ki-ahm, and J. L. Vázquez. "Parabolic approach to nonlinear elliptic eigenvalue problems." Advances in Mathematics 219, no. 6 (December 2008): 2006–28. http://dx.doi.org/10.1016/j.aim.2008.07.012.
Full textJiang, Daijun, Hui Feng, and Jun Zou. "Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (May 2018): 1085–107. http://dx.doi.org/10.1051/m2an/2018016.
Full textDancer, E. N., and Yihong Du. "The generalized Conley index and multiple solutions of semilinear elliptic problems." Abstract and Applied Analysis 1, no. 1 (1996): 103–35. http://dx.doi.org/10.1155/s108533759600005x.
Full textSHAKHMUROV, VELI B., and AIDA SAHMUROVA. "Mixed problems for degenerate abstract parabolic equations and applications." Carpathian Journal of Mathematics 34, no. 2 (2018): 247–54. http://dx.doi.org/10.37193/cjm.2018.02.13.
Full textAiki, Toyohiko. "Two-phase Stefan problems for parabolic-elliptic equations." Proceedings of the Japan Academy, Series A, Mathematical Sciences 64, no. 10 (1988): 377–80. http://dx.doi.org/10.3792/pjaa.64.377.
Full textDissertations / Theses on the topic "Elliptic/parabolic problems"
Kulieva, Gulchehra. "Some special problems in elliptic and parabolic variational inequalities." Licentiate thesis, Luleå : Department of Mathematics, Luleå University of Technology, 2006. http://epubl.ltu.se/1402-1757/2006/77/.
Full textRand, Peter. "Asymptotic analysis of solutions to elliptic and parabolic problems." Doctoral thesis, Linköping : Matematiska institutionen, Linköpings universitet, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1044s.pdf.
Full textSimms, Gavin. "Finite element approximation of some nonlinear elliptic and parabolic problems." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362883.
Full textDyer, Luke Oliver. "Parabolic boundary value problems with rough coefficients." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33276.
Full textGuo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.
Full textSerra, Montolí Joaquim. "Elliptic and parabolic PDEs : regularity for nonlocal diffusion equations and two isoperimetric problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279290.
Full textLa tesi està dividida en dues parts. La primera part es centra principalment en questions de regularitat per equacions integro - iferencials (o no locals) el·líptiques i parbòliques. De la mateixa manera que les densitats de partícules amb un moviment Brownià resolen equacions el·líptiques o parbòliques de segon ordre, les densitats de partícules amb una difusió de tipus Lévy resolen aquestes equacions no locals més generals. En aquest context, les equacions completament no lineals sorgeixen de problemes de control estocàstic o "differential games''. L'exemple típic d'operador el·liptic no local és el laplacià fraccionari, el qual és l'únic d'aquests operadors que és invariant per translacions, rotacions, i reescalament. Hi ha molts resultats clàssics de regularitat per el laplacià fraccionari --- "l'invers'' del qual és el potencial de Riesz. Per exemple, el nucli de Poisson (explícit) per la bola és un resultat "vell'', així com la teoria de resolubilitat en espais L^p. No obstant això, se sabia ben poc sobre la regularitat a la vora per a aquests problemes. Un tema principal d'aquesta tesi és l'estudi d'aquesta regularitat a la vora, que és qualitativament molt diferent de la de les equacions de segon ordre . A la tesi s'estableix una nova teoria regularitat a la vora per completament no lineals ( i lineals ) equacions integro - diferencials el·líptiques . Les nostres demostracions requeixen una combinació de tècniques originals i versions apropiades de les clàssiques equacions de segon ordre ( com ara el mètode de Krylov ). També obtenim nous resultats de regularitat interior per equacions parabòliques no locals completament no lineals i amb "rough kernels''. A tal efecte, desenvolupem un mètode de blow-up i compacitat per a equacions completament no lineals que en permet provar regularitat a partir de teoremes de tipus Liouville. Aquest mètode és una contribució principal de la tesi. Els nous resultats de regularitat a la vora esmentats anteriorment són essencials en la prova d'un altre resultat principal de la tesi: la identitat Pohozaev per al Laplacià fraccionari. Aquesta identitat recorda a una fórmula d'integració per parts, però amb el Laplacià fraccionari. La novetat important és que apareix un terme de vora locals (això era inusual amb equacions no locals) . A la segona part de la tesi que donem dos exemples d'interacció entre isoperimetria i Equacions en Derivades Parcials. En el primer, s'utilitza el mètode d'Alexandrov- Bakelman-Pucci per a EDP el·líptiques a fi d'obtenir noves desigualtats isoperimètriques en cons convexos amb densitats, generalitzant una prova de la desigualtat isoperimètric clàssica de X. Cabré. Els nostres nous resultats contenen com a casos particularsla desigualtat clàssica de Wulff i la desigualtat isoperimètrica en cons de Lions-Pacella. En el segon exemple s'utilitza la desigualtat isoperimètrica i la identitat Pohozaev clàssica per establir un resultat de simetria radial per equacions de reacció-difusió de segon ordre. La novetat en aquest cas és que s'inclouen no-linealitats discontínues. Per a provar aquest resultat, estenem un argument en dues dimensions de P.-L. Lions de 1981 i podem obtenir ara resultass en dimensions superiors.
Chikohora, Sevelyn. "Parallel algorithms for the solution of elliptic and parabolic problems on transputer networks." Thesis, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/32386.
Full textMavinga, Nsoki. "Nonlinear second order parabolic and elliptic equations with nonlinear boundary conditions." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/mavinga.pdf.
Full textTitle from PDF title page (viewed Sept. 23, 2009). Additional advisors: Inmaculada Aban, Alexander Frenkel, Wenzhang Huang, Yanni Zeng. Includes bibliographical references.
Zhao, Yangzhang. "Multilevel sparse grid kernels collocation with radial basis functions for elliptic and parabolic problems." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/39148.
Full textBanz, Lothar [Verfasser]. "hp-finite element and boundary element methods for elliptic, elliptic stochastic, parabolic and hyperbolic obstacle and contact problems / Lothar Banz." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1022752340/34.
Full textBooks on the topic "Elliptic/parabolic problems"
Bandle, Catherine, Henri Berestycki, Bernard Brighi, Alain Brillard, Michel Chipot, Jean-Michel Coron, Carlo Sbordone, Itai Shafrir, Vanda Valente, and Giorgio Vergara Caffarelli, eds. Elliptic and Parabolic Problems. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7384-9.
Full textBrezis, Haim, Michel Chipot, and Joachim Escher, eds. Nonlinear Elliptic and Parabolic Problems. Basel: Birkhäuser-Verlag, 2005. http://dx.doi.org/10.1007/3-7643-7385-7.
Full textRecent Advances in Elliptic and Parabolic Problems. Singapore: World Scientific Publishing, 2005.
Find full textLewis, John, Peter Lindqvist, Juan J. Manfredi, and Sandro Salsa. Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27145-8.
Full textPeter, Rand. Asymptotic analysis of solutions to elliptic and parabolic problems. Linköping: Matematiska institutionen, Linköpings universitet, 2006.
Find full textPopivanov, Peter R. The degenerate oblique derivative problem for elliptic and parabolic equations. Berlin: Akademie Verlag, 1997.
Find full textestivo, Centro internazionale matematico, ed. Regularity estimates for nonlinear elliptic and parabolic problems: Cetraro, Italy, 2009. Heidelberg: Springer, 2012.
Find full textCancès, Clément, and Pascal Omnes, eds. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57394-6.
Full textFuhrmann, Jürgen, Mario Ohlberger, and Christian Rohde, eds. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6.
Full textQuittner, P. Superlinear parabolic problems: Blow-up, global existence and steady states. Basel: Birkhäuser, 2007.
Find full textBook chapters on the topic "Elliptic/parabolic problems"
Quittner, Prof Dr Pavol, and Prof Dr Philippe Souplet. "Model Elliptic Problems." In Superlinear Parabolic Problems, 7–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18222-9_1.
Full textGuidetti, Davide. "On Linear Elliptic and Parabolic Problems in Nikol’skij Spaces." In Parabolic Problems, 275–300. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_15.
Full textPrüss, Jan, and Gieri Simonett. "Elliptic and Parabolic Problems." In Moving Interfaces and Quasilinear Parabolic Evolution Equations, 233–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27698-4_6.
Full textLaidoune, Karima, Giorgio Metafune, Diego Pallara, and Abdelaziz Rhandi. "Global Properties of Transition Kernels Associated with Second-order Elliptic Operators." In Parabolic Problems, 415–32. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_21.
Full textda Beirão Veiga, H. "On some Boundary Value Problems for Incompressible Viscous Flows with Shear Dependent Viscosity." In Elliptic and Parabolic Problems, 23–32. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7384-9_3.
Full textPao, C. V. "Elliptic Boundary-Value Problems." In Nonlinear Parabolic and Elliptic Equations, 93–138. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3034-3_3.
Full textPao, C. V. "Parabolic Boundary-Value Problems." In Nonlinear Parabolic and Elliptic Equations, 47–92. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3034-3_2.
Full textWaterstraat, Nils. "On Bifurcation for Semilinear Elliptic Dirichlet Problems on Shrinking Domains." In Elliptic and Parabolic Equations, 273–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12547-3_12.
Full textKrainer, Thomas, and Gerardo A. Mendoza. "Boundary Value Problems for Elliptic Wedge Operators: The First-Order Case." In Elliptic and Parabolic Equations, 209–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12547-3_9.
Full textPao, C. V. "Applications of Coupled Systems to Model Problems." In Nonlinear Parabolic and Elliptic Equations, 621–746. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3034-3_12.
Full textConference papers on the topic "Elliptic/parabolic problems"
Sylwestrzak, Ewa. "Iterations for nonlocal elliptic problems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-23.
Full textArkeryd, Leif. "On stationary kinetic systems of Boltzmann type and their fluid limits." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-1.
Full textGriepentrog, Jens A. "On the unique solvability of a nonlocal phase separation problem for multicomponent systems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-10.
Full textGuerra, Ignacio. "Asymptotic self-similar blow-up for a model of aggregation." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-11.
Full textNikolopoulos, C. V., and D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-12.
Full textKuto, Kousuke, and Yoshio Yamada. "Multiple existence and stability of steady-states for a prey-predator system with cross-diffusion." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-13.
Full textLaurençot, Philippe. "Steady states for a fragmentation equation with size diffusion." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-14.
Full textMiyasita, Tosiya, and Takashi Suzuki. "Non-local Gel'fand problem in higher dimensions." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-15.
Full textNikolopoulos, C. V., and D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-16.
Full textOrpel, Aleksandra. "On the existence of multiple positive solutions for a certain class of elliptic problems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-17.
Full textReports on the topic "Elliptic/parabolic problems"
Adjerid, Slimane, Mohammed Aiffa, and Joseph E. Flaherty. High-Order Finite Element Methods for Singularly-Perturbed Elliptic and Parabolic Problems. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada290410.
Full text