Academic literature on the topic 'Elliptic/parabolic problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elliptic/parabolic problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Elliptic/parabolic problems"

1

Kim, Inwon C., and Norbert Požár. "Nonlinear Elliptic–Parabolic Problems." Archive for Rational Mechanics and Analysis 210, no. 3 (September 13, 2013): 975–1020. http://dx.doi.org/10.1007/s00205-013-0663-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mannucci, Paola, and Juan Luis Vazquez. "Viscosity solutions for elliptic-parabolic problems." Nonlinear Differential Equations and Applications NoDEA 14, no. 1-2 (October 2007): 75–90. http://dx.doi.org/10.1007/s00030-007-4044-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goldstein, C. I. "Preconditioning Singularity Perturbed Elliptic and Parabolic Problems." SIAM Journal on Numerical Analysis 28, no. 5 (October 1991): 1386–418. http://dx.doi.org/10.1137/0728072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guidotti, Patrick. "Elliptic and parabolic problems in unbounded domains." Mathematische Nachrichten 272, no. 1 (August 2004): 32–45. http://dx.doi.org/10.1002/mana.200310187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kenmochi, Nobuyuki, and Masahiro Kubo. "Periodic solutions of parabolic-elliptic obstacle problems." Journal of Differential Equations 88, no. 2 (December 1990): 213–37. http://dx.doi.org/10.1016/0022-0396(90)90096-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Ki-ahm, and J. L. Vázquez. "Parabolic approach to nonlinear elliptic eigenvalue problems." Advances in Mathematics 219, no. 6 (December 2008): 2006–28. http://dx.doi.org/10.1016/j.aim.2008.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jiang, Daijun, Hui Feng, and Jun Zou. "Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (May 2018): 1085–107. http://dx.doi.org/10.1051/m2an/2018016.

Full text
Abstract:
We study the Levenberg-Marquardt (L-M) method for solving the highly nonlinear and ill-posed inverse problem of identifying the Robin coefficients in elliptic and parabolic systems. The L-M method transforms the Tikhonov regularized nonlinear non-convex minimizations into convex minimizations. And the quadratic convergence of the L-M method is rigorously established for the nonlinear elliptic and parabolic inverse problems for the first time, under a simple novel adaptive strategy for selecting regularization parameters during the L-M iteration. Then the surrogate functional approach is adopted to solve the strongly ill-conditioned convex minimizations, resulting in an explicit solution of the minimisation at each L-M iteration for both the elliptic and parabolic cases. Numerical experiments are provided to demonstrate the accuracy, efficiency and quadratic convergence of the methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Dancer, E. N., and Yihong Du. "The generalized Conley index and multiple solutions of semilinear elliptic problems." Abstract and Applied Analysis 1, no. 1 (1996): 103–35. http://dx.doi.org/10.1155/s108533759600005x.

Full text
Abstract:
We establish some framework so that the generalized Conley index can be easily used to study the multiple solution problem of semilinear elliptic boundary value problems. Both the parabolic flow and the gradient flow are used. Some examples are given to compare our approach here with other well-known methods. Our abstract results with parabolic flows may have applications to parabolic problems as well.
APA, Harvard, Vancouver, ISO, and other styles
9

SHAKHMUROV, VELI B., and AIDA SAHMUROVA. "Mixed problems for degenerate abstract parabolic equations and applications." Carpathian Journal of Mathematics 34, no. 2 (2018): 247–54. http://dx.doi.org/10.37193/cjm.2018.02.13.

Full text
Abstract:
Degenerate abstract parabolic equations with variable coefficients are studied. Here the boundary conditions are nonlocal. The maximal regularity properties of solutions for elliptic and parabolic problems and Strichartz type estimates in mixed Lebesgue spaces are obtained. Moreover, the existence and uniqueness of optimal regular solution of mixed problem for nonlinear parabolic equation is established. Note that, these problems arise in fluid mechanics and environmental engineering.
APA, Harvard, Vancouver, ISO, and other styles
10

Aiki, Toyohiko. "Two-phase Stefan problems for parabolic-elliptic equations." Proceedings of the Japan Academy, Series A, Mathematical Sciences 64, no. 10 (1988): 377–80. http://dx.doi.org/10.3792/pjaa.64.377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Elliptic/parabolic problems"

1

Kulieva, Gulchehra. "Some special problems in elliptic and parabolic variational inequalities." Licentiate thesis, Luleå : Department of Mathematics, Luleå University of Technology, 2006. http://epubl.ltu.se/1402-1757/2006/77/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rand, Peter. "Asymptotic analysis of solutions to elliptic and parabolic problems." Doctoral thesis, Linköping : Matematiska institutionen, Linköpings universitet, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1044s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simms, Gavin. "Finite element approximation of some nonlinear elliptic and parabolic problems." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dyer, Luke Oliver. "Parabolic boundary value problems with rough coefficients." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33276.

Full text
Abstract:
This thesis is motivated by some of the recent results of the solvability of elliptic PDE in Lipschitz domains and the relationships between the solvability of different boundary value problems. The parabolic setting has received less attention, in part due to the time irreversibility of the equation and difficulties in defining the appropriate analogous time-varying domain. Here we study the solvability of boundary value problems for second order linear parabolic PDE in time-varying domains, prove two main results and clarify the literature on time-varying domains. The first result shows a relationship between the regularity and Dirichlet boundary value problems for parabolic equations of the form Lu = div(A∇u)−ut = 0 in Lip(1, 1/2) time-varying cylinders, where the coefficient matrix A = [aij(X, t)] is uniformly elliptic and bounded. We show that if the Regularity problem (R)p for the equation Lu = 0 is solvable for some 1 < p < then the Dirichlet problem (D*) 1 p, for the adjoint equation L*v = 0 is also solvable, where p' = p/(p − 1). This result is analogous to the one established in the elliptic case. In the second result we prove the solvability of the parabolic Lp Dirichlet boundary value problem for 1 < p ≤ ∞ for a PDE of the form ut = div(A∇u)+B ·∇u on time-varying domains where the coefficients A = [aij(X, t)] and B = [bi(X, t)] satisfy a small Carleson condition. This result brings the state of affairs in the parabolic setting up to the current elliptic standard. Furthermore, we establish that if the coefficients of the operator A and B satisfy a vanishing Carleson condition, and the time-varying domain is of VMO-type then the parabolic Lp Dirichlet boundary value problem is solvable for all 1 < p ≤ ∞. This is related to elliptic results where the normal of the boundary of the domain is in VMO or near VMO implies the invertibility of certain boundary operators in Lp for all 1 < p < ∞. This then (using the method of layer potentials) implies solvability of the Lp boundary value problem in the same range for certain elliptic PDE. We do not use the method of layer potentials, since the coefficients we consider are too rough to use this technique but remarkably we recover Lp solvability in the full range of p's as the elliptic case. Moreover, to achieve this result we give new equivalent and localisable definitions of the appropriate time-varying domains.
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Serra, Montolí Joaquim. "Elliptic and parabolic PDEs : regularity for nonlocal diffusion equations and two isoperimetric problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279290.

Full text
Abstract:
The thesis is divided into two parts. The first part is mainly concerned with regularity issues for integro-differential (or nonlocal) elliptic and parabolic equations. In the same way that densities of particles with Brownian motion solve second order elliptic or parabolic equations, densities of particles with Lévy diffusion satisfy these more general nonlocal equations. In this context, fully nonlinear nonlocal equations arise in Stochastic control problems or differential games. The typical example of elliptic nonlocal operator is the fractional Laplacian, which is the only translation, rotation and scaling invariant nonlocal elliptic operator. There many classical regularity results for the fractional Laplacian ---whose ``inverse'' is the Riesz potential. For instance, the explicit Poisson kernel for a ball is an ``old'' result, as well as the linear solvability theory in L^p spaces. However, very little was known on boundary regularity for these problems. A main topic of this thesis is the study of this boundary regularity, which is qualitatively very different from that for second order equations. We stablish a new boundary regularity theory for fully nonlinear (and linear) elliptic integro-differential equations. Our proofs require a combination of original techniques and appropriate versions of classical ones for second order equations (such as Krylov's method). We also obtain new interior regularity results for fully nonlinear parabolic nonlocal equation with rough kernels. To do it, we develop a blow up and compactness method for viscosity solutions to fully nonlinear equations that allows us to prove regularity from Liouville type theorems.This method is a main contribution of the thesis. The new boundary regularity results mentioned above are crucially used in the proof of another main result of the thesis: the Pohozaev identity for the fractional Laplacian. This identity is has a flavor of integration by parts formula for the fractional Laplacian, with the important novely there appears a local boundary term (this was unusual with nolocal equations). In the second part of the thesis we give two instances of interaction between isoperimetry and Partial Differential Equations. In the first one we use the Alexandrov-Bakelman-Pucci method for elliptic PDE to obtain new sharp isoperimetric inequalities in cones with densities by generalizing a proof of the classical isoperimetric inequality due to Cabré. Our new results contain as particular cases the classical Wulff inequality and the isoperimetric inequality in cones of Lions and Pacella. In the second instance we use the isoperimetric inequality and the classical Pohozaev identity to establish a radial symmetry result for second order reaction-diffusion equations. The novelty here is to include discontinuous nonlinearities. For this, we extend a two-dimensional argument of P.-L. Lions from 1981 to obtain now results in higher dimensions
La tesi està dividida en dues parts. La primera part es centra principalment en questions de regularitat per equacions integro - iferencials (o no locals) el·líptiques i parbòliques. De la mateixa manera que les densitats de partícules amb un moviment Brownià resolen equacions el·líptiques o parbòliques de segon ordre, les densitats de partícules amb una difusió de tipus Lévy resolen aquestes equacions no locals més generals. En aquest context, les equacions completament no lineals sorgeixen de problemes de control estocàstic o "differential games''. L'exemple típic d'operador el·liptic no local és el laplacià fraccionari, el qual és l'únic d'aquests operadors que és invariant per translacions, rotacions, i reescalament. Hi ha molts resultats clàssics de regularitat per el laplacià fraccionari --- "l'invers'' del qual és el potencial de Riesz. Per exemple, el nucli de Poisson (explícit) per la bola és un resultat "vell'', així com la teoria de resolubilitat en espais L^p. No obstant això, se sabia ben poc sobre la regularitat a la vora per a aquests problemes. Un tema principal d'aquesta tesi és l'estudi d'aquesta regularitat a la vora, que és qualitativament molt diferent de la de les equacions de segon ordre . A la tesi s'estableix una nova teoria regularitat a la vora per completament no lineals ( i lineals ) equacions integro - diferencials el·líptiques . Les nostres demostracions requeixen una combinació de tècniques originals i versions apropiades de les clàssiques equacions de segon ordre ( com ara el mètode de Krylov ). També obtenim nous resultats de regularitat interior per equacions parabòliques no locals completament no lineals i amb "rough kernels''. A tal efecte, desenvolupem un mètode de blow-up i compacitat per a equacions completament no lineals que en permet provar regularitat a partir de teoremes de tipus Liouville. Aquest mètode és una contribució principal de la tesi. Els nous resultats de regularitat a la vora esmentats anteriorment són essencials en la prova d'un altre resultat principal de la tesi: la identitat Pohozaev per al Laplacià fraccionari. Aquesta identitat recorda a una fórmula d'integració per parts, però amb el Laplacià fraccionari. La novetat important és que apareix un terme de vora locals (això era inusual amb equacions no locals) . A la segona part de la tesi que donem dos exemples d'interacció entre isoperimetria i Equacions en Derivades Parcials. En el primer, s'utilitza el mètode d'Alexandrov- Bakelman-Pucci per a EDP el·líptiques a fi d'obtenir noves desigualtats isoperimètriques en cons convexos amb densitats, generalitzant una prova de la desigualtat isoperimètric clàssica de X. Cabré. Els nostres nous resultats contenen com a casos particularsla desigualtat clàssica de Wulff i la desigualtat isoperimètrica en cons de Lions-Pacella. En el segon exemple s'utilitza la desigualtat isoperimètrica i la identitat Pohozaev clàssica per establir un resultat de simetria radial per equacions de reacció-difusió de segon ordre. La novetat en aquest cas és que s'inclouen no-linealitats discontínues. Per a provar aquest resultat, estenem un argument en dues dimensions de P.-L. Lions de 1981 i podem obtenir ara resultass en dimensions superiors.
APA, Harvard, Vancouver, ISO, and other styles
7

Chikohora, Sevelyn. "Parallel algorithms for the solution of elliptic and parabolic problems on transputer networks." Thesis, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/32386.

Full text
Abstract:
This thesis is a study of the implementation of parallel algorithms for solving elliptic and parabolic partial differential equations on a network of transputers. The thesis commences with a general introduction to parallel processing. Here a discussion of the various ways of introducing parallelism in computer systems and the classification of parallel architectures is presented. In chapter 2, the transputer architecture and the associated language OCCAM are described. The transputer development system (TDS) is also described as well as a short account of other transputer programming languages. Also, a brief description of the methodologies for programming transputer networks is given. The chapter is concluded by a detailed description of the hardware used for the research.
APA, Harvard, Vancouver, ISO, and other styles
8

Mavinga, Nsoki. "Nonlinear second order parabolic and elliptic equations with nonlinear boundary conditions." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/mavinga.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008.
Title from PDF title page (viewed Sept. 23, 2009). Additional advisors: Inmaculada Aban, Alexander Frenkel, Wenzhang Huang, Yanni Zeng. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Yangzhang. "Multilevel sparse grid kernels collocation with radial basis functions for elliptic and parabolic problems." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/39148.

Full text
Abstract:
Radial basis functions (RBFs) are well-known for the ease implementation as they are the mesh-free method [31, 37, 71, 72]. In this thesis, we modify the multilevel sparse grid kernel interpolation (MuSIK) algorithm proposed in [48] for use in Kansa’s collocation method (referred to as MuSIK-C) to solve elliptic and parabolic problems. The curse of dimensionality is a significant challenge in high dimension approximation. A full grid collocation method requires O(Nd) nodal points to construct an approximation; here N is the number of nodes in one direction and d means the dimension. However, the sparse grid collocation method in this thesis only demand O(N logd-1(N)) nodes. We save much more memory cost using sparse grids and obtain a good performance as using full grids. Moreover, the combination technique [20, 54] allows the sparse grid collocation method to be parallelised. When solving parabolic problems, we follow Myers et al.’s suggestion in [90] to use the space-time method, considering time as one spatial dimension. If we apply sparse grids in the spatial dimensions and use time-stepping, we still need O(N2 logd-1(N)) nodes. However, if we use the space-time method, the total number of nodes is O(N logd(N)). In this thesis, we always compare the performance of multiquadric (MQ) basis function and the Gaussian basis function. In all experiments, we observe that the collocation method using the Gaussian with scaling shape parameters does not converge. Meanwhile, in Chapter 3, there is an experiment to show that the space-time method with MQ has a similar convergence rate as a time-stepping method using MQ in option pricing. From the numerical experiments in Chapter 4, MuSIK-C using MQ and the Gaussian always give more rapid convergence and high accuracy especially in four dimensions (T R3) for PDEs with smooth conditions. Compared to some recently proposed mesh-based methods, MuSIK-C shows similar performance in low dimension situation and better approximation in high dimension. In Chapter 5, we combine the Method of Lines (MOL) and our MuSIK-C to obtain good convergence in pricing one asset European option and the Margrabe option, that have non-smooth initial conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Banz, Lothar [Verfasser]. "hp-finite element and boundary element methods for elliptic, elliptic stochastic, parabolic and hyperbolic obstacle and contact problems / Lothar Banz." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1022752340/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Elliptic/parabolic problems"

1

Bandle, Catherine, Henri Berestycki, Bernard Brighi, Alain Brillard, Michel Chipot, Jean-Michel Coron, Carlo Sbordone, Itai Shafrir, Vanda Valente, and Giorgio Vergara Caffarelli, eds. Elliptic and Parabolic Problems. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7384-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brezis, Haim, Michel Chipot, and Joachim Escher, eds. Nonlinear Elliptic and Parabolic Problems. Basel: Birkhäuser-Verlag, 2005. http://dx.doi.org/10.1007/3-7643-7385-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Recent Advances in Elliptic and Parabolic Problems. Singapore: World Scientific Publishing, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lewis, John, Peter Lindqvist, Juan J. Manfredi, and Sandro Salsa. Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27145-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peter, Rand. Asymptotic analysis of solutions to elliptic and parabolic problems. Linköping: Matematiska institutionen, Linköpings universitet, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popivanov, Peter R. The degenerate oblique derivative problem for elliptic and parabolic equations. Berlin: Akademie Verlag, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

estivo, Centro internazionale matematico, ed. Regularity estimates for nonlinear elliptic and parabolic problems: Cetraro, Italy, 2009. Heidelberg: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cancès, Clément, and Pascal Omnes, eds. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57394-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fuhrmann, Jürgen, Mario Ohlberger, and Christian Rohde, eds. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05591-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Quittner, P. Superlinear parabolic problems: Blow-up, global existence and steady states. Basel: Birkhäuser, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Elliptic/parabolic problems"

1

Quittner, Prof Dr Pavol, and Prof Dr Philippe Souplet. "Model Elliptic Problems." In Superlinear Parabolic Problems, 7–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18222-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guidetti, Davide. "On Linear Elliptic and Parabolic Problems in Nikol’skij Spaces." In Parabolic Problems, 275–300. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prüss, Jan, and Gieri Simonett. "Elliptic and Parabolic Problems." In Moving Interfaces and Quasilinear Parabolic Evolution Equations, 233–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27698-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Laidoune, Karima, Giorgio Metafune, Diego Pallara, and Abdelaziz Rhandi. "Global Properties of Transition Kernels Associated with Second-order Elliptic Operators." In Parabolic Problems, 415–32. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

da Beirão Veiga, H. "On some Boundary Value Problems for Incompressible Viscous Flows with Shear Dependent Viscosity." In Elliptic and Parabolic Problems, 23–32. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7384-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pao, C. V. "Elliptic Boundary-Value Problems." In Nonlinear Parabolic and Elliptic Equations, 93–138. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3034-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pao, C. V. "Parabolic Boundary-Value Problems." In Nonlinear Parabolic and Elliptic Equations, 47–92. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3034-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Waterstraat, Nils. "On Bifurcation for Semilinear Elliptic Dirichlet Problems on Shrinking Domains." In Elliptic and Parabolic Equations, 273–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12547-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krainer, Thomas, and Gerardo A. Mendoza. "Boundary Value Problems for Elliptic Wedge Operators: The First-Order Case." In Elliptic and Parabolic Equations, 209–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12547-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pao, C. V. "Applications of Coupled Systems to Model Problems." In Nonlinear Parabolic and Elliptic Equations, 621–746. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3034-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Elliptic/parabolic problems"

1

Sylwestrzak, Ewa. "Iterations for nonlocal elliptic problems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arkeryd, Leif. "On stationary kinetic systems of Boltzmann type and their fluid limits." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Griepentrog, Jens A. "On the unique solvability of a nonlocal phase separation problem for multicomponent systems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guerra, Ignacio. "Asymptotic self-similar blow-up for a model of aggregation." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nikolopoulos, C. V., and D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuto, Kousuke, and Yoshio Yamada. "Multiple existence and stability of steady-states for a prey-predator system with cross-diffusion." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Laurençot, Philippe. "Steady states for a fragmentation equation with size diffusion." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miyasita, Tosiya, and Takashi Suzuki. "Non-local Gel'fand problem in higher dimensions." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nikolopoulos, C. V., and D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Orpel, Aleksandra. "On the existence of multiple positive solutions for a certain class of elliptic problems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Elliptic/parabolic problems"

1

Adjerid, Slimane, Mohammed Aiffa, and Joseph E. Flaherty. High-Order Finite Element Methods for Singularly-Perturbed Elliptic and Parabolic Problems. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada290410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography