Dissertations / Theses on the topic 'Elliptic/parabolic problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Elliptic/parabolic problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kulieva, Gulchehra. "Some special problems in elliptic and parabolic variational inequalities." Licentiate thesis, Luleå : Department of Mathematics, Luleå University of Technology, 2006. http://epubl.ltu.se/1402-1757/2006/77/.
Full textRand, Peter. "Asymptotic analysis of solutions to elliptic and parabolic problems." Doctoral thesis, Linköping : Matematiska institutionen, Linköpings universitet, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1044s.pdf.
Full textSimms, Gavin. "Finite element approximation of some nonlinear elliptic and parabolic problems." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362883.
Full textDyer, Luke Oliver. "Parabolic boundary value problems with rough coefficients." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33276.
Full textGuo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.
Full textSerra, Montolí Joaquim. "Elliptic and parabolic PDEs : regularity for nonlocal diffusion equations and two isoperimetric problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279290.
Full textLa tesi està dividida en dues parts. La primera part es centra principalment en questions de regularitat per equacions integro - iferencials (o no locals) el·líptiques i parbòliques. De la mateixa manera que les densitats de partícules amb un moviment Brownià resolen equacions el·líptiques o parbòliques de segon ordre, les densitats de partícules amb una difusió de tipus Lévy resolen aquestes equacions no locals més generals. En aquest context, les equacions completament no lineals sorgeixen de problemes de control estocàstic o "differential games''. L'exemple típic d'operador el·liptic no local és el laplacià fraccionari, el qual és l'únic d'aquests operadors que és invariant per translacions, rotacions, i reescalament. Hi ha molts resultats clàssics de regularitat per el laplacià fraccionari --- "l'invers'' del qual és el potencial de Riesz. Per exemple, el nucli de Poisson (explícit) per la bola és un resultat "vell'', així com la teoria de resolubilitat en espais L^p. No obstant això, se sabia ben poc sobre la regularitat a la vora per a aquests problemes. Un tema principal d'aquesta tesi és l'estudi d'aquesta regularitat a la vora, que és qualitativament molt diferent de la de les equacions de segon ordre . A la tesi s'estableix una nova teoria regularitat a la vora per completament no lineals ( i lineals ) equacions integro - diferencials el·líptiques . Les nostres demostracions requeixen una combinació de tècniques originals i versions apropiades de les clàssiques equacions de segon ordre ( com ara el mètode de Krylov ). També obtenim nous resultats de regularitat interior per equacions parabòliques no locals completament no lineals i amb "rough kernels''. A tal efecte, desenvolupem un mètode de blow-up i compacitat per a equacions completament no lineals que en permet provar regularitat a partir de teoremes de tipus Liouville. Aquest mètode és una contribució principal de la tesi. Els nous resultats de regularitat a la vora esmentats anteriorment són essencials en la prova d'un altre resultat principal de la tesi: la identitat Pohozaev per al Laplacià fraccionari. Aquesta identitat recorda a una fórmula d'integració per parts, però amb el Laplacià fraccionari. La novetat important és que apareix un terme de vora locals (això era inusual amb equacions no locals) . A la segona part de la tesi que donem dos exemples d'interacció entre isoperimetria i Equacions en Derivades Parcials. En el primer, s'utilitza el mètode d'Alexandrov- Bakelman-Pucci per a EDP el·líptiques a fi d'obtenir noves desigualtats isoperimètriques en cons convexos amb densitats, generalitzant una prova de la desigualtat isoperimètric clàssica de X. Cabré. Els nostres nous resultats contenen com a casos particularsla desigualtat clàssica de Wulff i la desigualtat isoperimètrica en cons de Lions-Pacella. En el segon exemple s'utilitza la desigualtat isoperimètrica i la identitat Pohozaev clàssica per establir un resultat de simetria radial per equacions de reacció-difusió de segon ordre. La novetat en aquest cas és que s'inclouen no-linealitats discontínues. Per a provar aquest resultat, estenem un argument en dues dimensions de P.-L. Lions de 1981 i podem obtenir ara resultass en dimensions superiors.
Chikohora, Sevelyn. "Parallel algorithms for the solution of elliptic and parabolic problems on transputer networks." Thesis, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/32386.
Full textMavinga, Nsoki. "Nonlinear second order parabolic and elliptic equations with nonlinear boundary conditions." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/mavinga.pdf.
Full textTitle from PDF title page (viewed Sept. 23, 2009). Additional advisors: Inmaculada Aban, Alexander Frenkel, Wenzhang Huang, Yanni Zeng. Includes bibliographical references.
Zhao, Yangzhang. "Multilevel sparse grid kernels collocation with radial basis functions for elliptic and parabolic problems." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/39148.
Full textBanz, Lothar [Verfasser]. "hp-finite element and boundary element methods for elliptic, elliptic stochastic, parabolic and hyperbolic obstacle and contact problems / Lothar Banz." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1022752340/34.
Full textSchorr, Robert [Verfasser], Christoph [Akademischer Betreuer] Erath, Michael [Akademischer Betreuer] Schäfer, and Olaf [Akademischer Betreuer] Steinbach. "Numerical Methods for Parabolic-Elliptic Interface Problems / Robert Schorr ; Christoph Erath, Michael Schäfer, Olaf Steinbach." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1187919764/34.
Full textPersson, Jens. "Homogenization of Some Selected Elliptic and Parabolic Problems Employing Suitable Generalized Modes of Two-Scale Convergence." Licentiate thesis, Mid Sweden University, Department of Engineering and Sustainable Development, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-11991.
Full textThe present thesis is devoted to the homogenization of certain elliptic and parabolic partial differential equations by means of appropriate generalizations of the notion of two-scale convergence. Since homogenization is defined in terms of H-convergence, we desire to find the H-limits of sequences of periodic monotone parabolic operators with two spatial scales and an arbitrary number of temporal scales and the H-limits of sequences of two-dimensional possibly non-periodic linear elliptic operators by utilizing the theories for evolution-multiscale convergence and λ-scale convergence, respectively, which are generalizations of the classical two-scale convergence mode and custom-made to treat homogenization problems of the prescribed kinds. Concerning the multiscaled parabolic problems, we find that the result of the homogenization depends on the behavior of the temporal scale functions. The temporal scale functions considered in the thesis may, in the sense explained in the text, be slow or rapid and in resonance or not in resonance with respect to the spatial scale function. The homogenization for the possibly non-periodic elliptic problems gives the same result as for the corresponding periodic problems but with the exception that the local gradient operator is everywhere substituted by a differential operator consisting of a product of the local gradient operator and matrix describing the geometry and which depends, effectively, parametrically on the global variable.
Tautenhahn, Ulrich, Uno Hämarik, Bernd Hofmann, and Yuanyuan Shao. "Conditional stability estimates for ill-posed PDE problems by using interpolation." Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-72654.
Full textSaldaña, de Fuentes Alberto [Verfasser], Tobias [Akademischer Betreuer] Weth, and Nils [Akademischer Betreuer] Ackermann. "Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains / Alberto Saldaña De Fuentes. Gutachter: Tobias Weth ; Nils Ackermann. Betreuer: Tobias Weth." Frankfurt am Main : Univ.-Bibliothek Frankfurt am Main, 2014. http://d-nb.info/1053704186/34.
Full textPieper, Konstantin [Verfasser], Boris [Akademischer Betreuer] Vexler, Renteria Eduardo [Akademischer Betreuer] Casas, and Karl [Akademischer Betreuer] Kunisch. "Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems / Konstantin Pieper. Gutachter: Eduardo Casas Renteria ; Karl Kunisch ; Boris Vexler. Betreuer: Boris Vexler." München : Universitätsbibliothek der TU München, 2015. http://d-nb.info/1073970191/34.
Full textMunyakazi, Justin Bazimaziki. "Higher Order Numerical Methods for Singular Perturbation Problems." Thesis, Online Access, 2009. http://etd.uwc.ac.za/usrfiles/modules/etd/docs/etd_gen8Srv25Nme4_6335_1277251056.pdf.
Full textSauvy, Paul. "Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3020/document.
Full textThis thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching"
Bougherara, Brahim. "Problèmes non-linéaires singuliers et bifurcation." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3012/document.
Full textThis thesis is concerned with the mathematical study of nonlinear partial differential equations. Precisely, we have investigated a class of nonlinear elliptic and parabolic problems with singular coefficients. This lack of regularity involves some difficulties which prevent the straight-orward application of classical methods of nonlinear analysis based on compactness results. In the proofs of the main results, we show how to overcome these difficulties. Precisely we adapt some well-known techniques together with the use of new methods. In this framework, an important step is to estimate accurately the solutions in order to apply the weak comparison principle, to use the regularity theory of parabolic and elliptic equations and to develop in a new context the analytic theory of global bifurcation. The thesis presents two independent parts. 1- In the first part (corresponding to Chapter I), we are interested by a nonlinear and singular parabolic equation involving the p-Laplacian operator. We established for this problem that for any non-negative initial datum chosen in a certain Lebeque space, there exists a local positive weak solution. For that we use some a priori bounds based on logarithmic Sobolev inequalities to get ultracontractivity of the associated semi-group. Additionaly, for a range of values of the singular coefficient, we prove the uniqueness of the solution and further regularity results. 2- In the second part (corresponding to Chapters II, III and IV of the thesis), we are concerned with the study of global bifurcation problems involving singular nonlinearities. We establish the existence of a piecewise analytic global path of solutions to these problems. For that we use crucially the analytic bifurcation theory introduced by Dancer (described in Chapter II of the thesis). In the frame of a class of semilinear elliptic problems involving a critical nonlinearity in two dimensions, we further prove that the piecewise analytic path of solutions admits asymptotically a singular solution (i.e. an unbounded solution), whose Morse index is infinite. As a consequence, this path admits a countable infinitely many “turning points” where the Morse index is increasing
Persson, Jens. "Selected Topics in Homogenization." Doctoral thesis, Mittuniversitetet, Institutionen för teknik och hållbar utveckling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-16230.
Full textHuvudsakligt fokus i avhandlingen ligger på homogeniseringen av vissa elliptiska och paraboliska problem. Mer precist så homogeniserar vi: ickeperiodiska linjära elliptiska problem i två dimensioner med homotetisk skalning; två typer av evolutionsmultiskaliga linjära paraboliska problem, en med två mikroskopiska skalor i både rum och tid där de senare ges i form av en tvåparameterfamilj, och en med två mikroskopiska skalor i rum och tre i tid som ges i form av fixa potensfunktioner; samt, slutligen, evolutionsmultiskaliga monotona paraboliska problem med en mikroskopisk skala i rum och ett godtyckligt antal i tid som inte är begränsade till att vara givna i form av potensfunktioner. För att kunna uppnå homogeniseringsresultat för dessa problem så studerar och utvecklar vi teorin för tvåskalekonvergens och besläktade begrepp. Speciellt så utvecklar vi begreppet mycket svag tvåskalekonvergens med generaliseringar, och vi studerar en tillämpningav denna konvergenstyp där den används för att detektera förekomsten av heterogenitetsskalor.
Leclavier, Sarah. "Volumes finis et solutions renormalisées, applications à des systèmes couplés." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR029/document.
Full textIn this thesis we are interested in proving that the approximate solution, obtained by the finite volume method, converges to the unique renormalized solution of elliptic and parabolic equations with L1 data. In the first part we study an elliptic convection-diffusion equation with L1 data. Mixing the strategy developed for renormalized solution and the finite volume method,we prove that the approximate solution converges to the unique renormalized solution. In the second part we investigate a nonlinear parabolic equation with L1 data. Using a discrete version of classical compactness results, we show that the results obtaines previously in the elliptic case hold true in the parabolic case. In the third part we prove similar results for a doubly nonlinear parabolic equation with L1 data. The doubly nonlinear character of the equation makes new difficulties with respect to the previous part, especially since the chain rule formula does not apply in the discrete case. Finaly, in the fourth part we use the results established previously to investigate a system of thermoviscoelasticity kind. We show that the approximate solution,obtaines by finite element-finite volume scheme, converges to a weak-renormalized solution of the system
Cohen, Laurent David. "Etude de quelques problèmes semi-linéaires paraboliques et elliptiques." Paris 6, 1986. http://www.theses.fr/1986PA066503.
Full textRedwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.
Full textKimmerle, Sven-Joachim. "Macroscopic diffusion models for precipitation in crystalline gallium arsenide." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2009. http://dx.doi.org/10.18452/16060.
Full textBased on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins-Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, see Niethammer et al., and is well-understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation.
Schorr, Robert. "Numerical Methods for Parabolic-Elliptic Interface Problems." Phd thesis, 2019. https://tuprints.ulb.tu-darmstadt.de/8609/1/2019_05_25_Schorr_Dissertation_Final.pdf.
Full textNittka, Robin [Verfasser]. "Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains / vorgelegt von Robin Nittka." 2010. http://d-nb.info/1004249772/34.
Full text魏宏儒. "A survey on the paper "Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems"by D.H.SATTINGER." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/76937255112973433990.
Full text國立中正大學
數學系應用數學研究所
104
We will discuss the application of Monotone iteration methods in proving the existing of the solutions of nonlinear elliptic and parabolic boundary value problems we will also discuss stability of these solution. Keywords:Nonlinear Elliptic Boundary Value Problems,Nonlinear Parabolic Boundary Value Problems,Monotone Methods.
Wang, Delin. "Guaranteed Verification of Finite Element Solutions of Heat Conduction." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-05-9049.
Full text