To see the other types of publications on this topic, follow the link: Elliptische partielle Differentialgleichungen.

Dissertations / Theses on the topic 'Elliptische partielle Differentialgleichungen'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Elliptische partielle Differentialgleichungen.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Achatz, Stefan. "Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967546184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Winkert, Patrick. "Comparison principles and multiple solutions for nonlinear elliptic problems." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031131/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartholomäus, Lukas [Verfasser]. "Nichtlineare partielle Differentialgleichungen vom gemischten elliptisch-hyperbolischen Typ / Lukas Bartholomäus." Ulm : Universität Ulm, 2017. http://d-nb.info/1139050524/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14792.

Full text
Abstract:
In der vorliegenden Arbeit untersuchen wir schwache Lösungen, die zu einem geeigneten Sobolevraum gehören, q-elliptischer und parabolischer Systeme partieller Differentialgleichungen auf deren Regularität für den Fall 1
In the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1
APA, Harvard, Vancouver, ISO, and other styles
5

Schreittmiller, Robert. "Zur Approximation der Lösungen elliptischer Systeme partieller Differentialgleichungen mittels finiter Elemente und H-Matrizen." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980690218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung der Fall 1 [p[2 /." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966135091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Michel, Christian Verfasser], and Sergej [Akademischer Betreuer] [Rjasanow. "Schnelle Randelementmethode für die Behandlung von Inhomogenitäten bei elliptischen partiellen Differentialgleichungen / Christian Michel ; Betreuer: Sergej Rjasanow." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/1136607978/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heinz, Sebastian. "Preservation of quasiconvexity and quasimonotonicity in polynomial approximation of variational problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15808.

Full text
Abstract:
Die vorliegende Arbeit beschäftigt sich mit drei Klassen ausgewählter nichtlinearer Probleme, die Forschungsgegenstand der angewandten Mathematik sind. Diese Probleme behandeln die Minimierung von Integralen in der Variationsrechnung (Kapitel 3), das Lösen partieller Differentialgleichungen (Kapitel 4) und das Lösen nichtlinearer Optimierungsaufgaben (Kapitel 5). Mit deren Hilfe lassen sich unterschiedlichste Phänomene der Natur- und Ingenieurwissenschaften sowie der Ökonomie mathematisch modellieren. Als konkretes Beispiel werden mathematische Modelle der Theorie elastischer Festkörper betrachtet. Das Ziel der vorliegenden Arbeit besteht darin, ein gegebenes nichtlineares Problem durch polynomiale Probleme zu approximieren. Um dieses Ziel zu erreichen, beschäftigt sich ein großer Teil der vorliegenden Arbeit mit der polynomialen Approximation von nichtlinearen Funktionen. Den Ausgangspunkt dafür bildet der Weierstraßsche Approximationssatz. Auf der Basis dieses bekannten Satzes und eigener Sätze wird als Hauptresultat der vorliegenden Arbeit gezeigt, dass im Übergang von einer gegebenen Funktion zum approximierenden Polynom wesentliche Eigenschaften der gegebenen Funktion erhalten werden können. Die wichtigsten Eigenschaften, für die dies bisher nicht bekannt war, sind: Quasikonvexität im Sinne der Variationsrechnung, Quasimonotonie im Zusammenhang mit partiellen Differentialgleichungen sowie Quasikonvexität im Sinne der nichtlinearen Optimierung (Theoreme 3.16, 4.10 und 5.5). Schließlich wird gezeigt, dass die zu den untersuchten Klassen gehörenden nichtlinearen Probleme durch polynomiale Probleme approximiert werden können (Theoreme 3.26, 4.16 und 5.8). Die dieser Approximation zugrunde liegende Konvergenz garantiert sowohl eine Approximation im Parameterraum als auch eine Approximation im Lösungsraum. Für letztere werden die Konzepte der Gamma-Konvergenz (Epi-Konvergenz) und der G-Konvergenz verwendet.
In this thesis, we are concerned with three classes of non-linear problems that appear naturally in various fields of science, engineering and economics. In order to cover many different applications, we study problems in the calculus of variation (Chapter 3), partial differential equations (Chapter 4) as well as non-linear programming problems (Chapter 5). As an example of possible applications, we consider models of non-linear elasticity theory. The aim of this thesis is to approximate a given non-linear problem by polynomial problems. In order to achieve the desired polynomial approximation of problems, a large part of this thesis is dedicated to the polynomial approximation of non-linear functions. The Weierstraß approximation theorem forms the starting point. Based on this well-known theorem, we prove theorems that eventually lead to our main result: A given non-linear function can be approximated by polynomials so that essential properties of the function are preserved. This result is new for three properties that are important in the context of the considered non-linear problems. These properties are: quasiconvexity in the sense of the calculus of variation, quasimonotonicity in the context of partial differential equations and quasiconvexity in the sense of non-linear programming (Theorems 3.16, 4.10 and 5.5). Finally, we show the following: Every non-linear problem that belongs to one of the three considered classes of problems can be approximated by polynomial problems (Theorems 3.26, 4.16 and 5.8). The underlying convergence guarantees both the approximation in the parameter space and the approximation in the solution space. In this context, we use the concepts of Gamma-convergence (epi-convergence) and of G-convergence.
APA, Harvard, Vancouver, ISO, and other styles
9

Winter, Matthias. "Concentrated patterns in biological systems." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11163816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knees, Dorothee. "Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains boundary, transmission and crack problems /." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11730040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meyer, Marcus. "Identification of material parameters in mechanical models." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000525.

Full text
Abstract:
Die Dissertation beschäftigt sich mit Parameteridentifikationsproblemen, wie sie häufig in Fragestellungen der Festkörpermechanik zu finden sind. Hierbei betrachten wir die Identifikation von Materialparametern -- die typischerweise die Eigenschaften der zugrundeliegenden Materialien repräsentieren -- aus gemessenen Verformungen oder Belastungen eines Testkörpers. In mathematischem Sinne entspricht dies der Lösung von Identifikationsproblemen, die eine spezielle Klasse von inversen Problemen bilden. Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick von Optimierungs- und Regularisierungsverfahren zur stabilen Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt 3 betrachten wir die Identifikation von skalaren und stückweise konstanten Parametern in linearen elliptischen Differentialgleichungen. Hierbei werden zwei Testprobleme erörtert, die Identifikation von Diffusions- und Reaktionsparameter in einer allgemeinen elliptischen Differentialgleichung und die Identifikation der Lame-Konstanten in einem Modell der linearisierten Elastizität. Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden erläutert. Insbesondere betrachten wir hier Newton-artige Algorithmen, Gradientenmethoden, Multi-Parameter Regularisierung and den evolutionären Algorithmus CMAES. Abschließend werden Ergebnisse einer numerischen Studie präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die Identifikation von verteilten Parametern in hyperelastischen Materialmodellen. Das nichtlineare Elastizitätsproblem wird detailiert erläutert und verschiedene Materialmodelle werden diskutiert (linear elastisches St.-Venant-Kirchhoff Material und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung Materialien. Zur Lösung des resultierenden Parameteridentifikationsproblems werden Lösungsansätze aus der optimalen Steuerung in Form eines Newton-Lagrange SQP Algorithmus verwendet. Die Resultate einer numerischen Studie werden präsentiert, basierend auf einem zweidimensionales Testproblem mit einer sogenannten Cook-Mebran. Abschließend wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung von Parameteridentifikationsproblems kurz erörtert
The dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly
APA, Harvard, Vancouver, ISO, and other styles
12

Bringmann, Philipp. "Adaptive least-squares finite element method with optimal convergence rates." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22350.

Full text
Abstract:
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten.
The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
APA, Harvard, Vancouver, ISO, and other styles
13

Plura, Olgierd [Verfasser]. "Anisotrope elliptische partielle Differentialgleichungen / vorgelegt von Olgierd Plura." 2008. http://d-nb.info/990249395/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Achatz, Stefan [Verfasser]. "Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten / Stefan Achatz." 2003. http://d-nb.info/967546184/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wolf, Jörg [Verfasser]. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung : der Fall 1 ." 2002. http://d-nb.info/966135091/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Schreittmiller, Robert [Verfasser]. "Zur Approximation der Lösungen elliptischer Systeme partieller Differentialgleichungen mittels finiter Elemente und H- Matrizen / Robert Schreittmiller." 2006. http://d-nb.info/980690218/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography