Dissertations / Theses on the topic 'Elliptische partielle Differentialgleichungen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Elliptische partielle Differentialgleichungen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Achatz, Stefan. "Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967546184.
Full textWinkert, Patrick. "Comparison principles and multiple solutions for nonlinear elliptic problems." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031131/04.
Full textBartholomäus, Lukas [Verfasser]. "Nichtlineare partielle Differentialgleichungen vom gemischten elliptisch-hyperbolischen Typ / Lukas Bartholomäus." Ulm : Universität Ulm, 2017. http://d-nb.info/1139050524/34.
Full textWolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14792.
Full textIn the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1
Schreittmiller, Robert. "Zur Approximation der Lösungen elliptischer Systeme partieller Differentialgleichungen mittels finiter Elemente und H-Matrizen." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980690218.
Full textWolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung der Fall 1 [p[2 /." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966135091.
Full textMichel, Christian Verfasser], and Sergej [Akademischer Betreuer] [Rjasanow. "Schnelle Randelementmethode für die Behandlung von Inhomogenitäten bei elliptischen partiellen Differentialgleichungen / Christian Michel ; Betreuer: Sergej Rjasanow." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/1136607978/34.
Full textHeinz, Sebastian. "Preservation of quasiconvexity and quasimonotonicity in polynomial approximation of variational problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15808.
Full textIn this thesis, we are concerned with three classes of non-linear problems that appear naturally in various fields of science, engineering and economics. In order to cover many different applications, we study problems in the calculus of variation (Chapter 3), partial differential equations (Chapter 4) as well as non-linear programming problems (Chapter 5). As an example of possible applications, we consider models of non-linear elasticity theory. The aim of this thesis is to approximate a given non-linear problem by polynomial problems. In order to achieve the desired polynomial approximation of problems, a large part of this thesis is dedicated to the polynomial approximation of non-linear functions. The Weierstraß approximation theorem forms the starting point. Based on this well-known theorem, we prove theorems that eventually lead to our main result: A given non-linear function can be approximated by polynomials so that essential properties of the function are preserved. This result is new for three properties that are important in the context of the considered non-linear problems. These properties are: quasiconvexity in the sense of the calculus of variation, quasimonotonicity in the context of partial differential equations and quasiconvexity in the sense of non-linear programming (Theorems 3.16, 4.10 and 5.5). Finally, we show the following: Every non-linear problem that belongs to one of the three considered classes of problems can be approximated by polynomial problems (Theorems 3.26, 4.16 and 5.8). The underlying convergence guarantees both the approximation in the parameter space and the approximation in the solution space. In this context, we use the concepts of Gamma-convergence (epi-convergence) and of G-convergence.
Winter, Matthias. "Concentrated patterns in biological systems." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11163816.
Full textKnees, Dorothee. "Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains boundary, transmission and crack problems /." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11730040.
Full textMeyer, Marcus. "Identification of material parameters in mechanical models." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000525.
Full textThe dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly
Bringmann, Philipp. "Adaptive least-squares finite element method with optimal convergence rates." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22350.
Full textThe least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
Plura, Olgierd [Verfasser]. "Anisotrope elliptische partielle Differentialgleichungen / vorgelegt von Olgierd Plura." 2008. http://d-nb.info/990249395/34.
Full textAchatz, Stefan [Verfasser]. "Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten / Stefan Achatz." 2003. http://d-nb.info/967546184/34.
Full textWolf, Jörg [Verfasser]. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung : der Fall 1 ." 2002. http://d-nb.info/966135091/34.
Full textSchreittmiller, Robert [Verfasser]. "Zur Approximation der Lösungen elliptischer Systeme partieller Differentialgleichungen mittels finiter Elemente und H- Matrizen / Robert Schreittmiller." 2006. http://d-nb.info/980690218/34.
Full text