To see the other types of publications on this topic, follow the link: ELMy.

Journal articles on the topic 'ELMy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'ELMy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Blacketer, M. J., C. M. Koehler, S. G. Coats, A. M. Myers, and P. Madaule. "Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A." Molecular and Cellular Biology 13, no. 9 (September 1993): 5567–81. http://dx.doi.org/10.1128/mcb.13.9.5567.

Full text
Abstract:
The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state.
APA, Harvard, Vancouver, ISO, and other styles
2

Blacketer, M. J., C. M. Koehler, S. G. Coats, A. M. Myers, and P. Madaule. "Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A." Molecular and Cellular Biology 13, no. 9 (September 1993): 5567–81. http://dx.doi.org/10.1128/mcb.13.9.5567-5581.1993.

Full text
Abstract:
The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state.
APA, Harvard, Vancouver, ISO, and other styles
3

Lönnroth, J.-S., V. Parail, C. Figarella, X. Garbet, G. Corrigan, D. Heading, and JET-EFDA Contributors. "Predictive modelling of ELMy H-modes with a new theory-motivated model for ELMs." Plasma Physics and Controlled Fusion 46, no. 5A (April 23, 2004): A249—A256. http://dx.doi.org/10.1088/0741-3335/46/5a/027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DU, DAN, XUEYU GONG, ZHENHUA WANG, JUN YU, and PINGWEI ZHENG. "Theoretical analysis of the ICRH antenna's impedance matching for ELMy plasmas on EAST." Journal of Plasma Physics 78, no. 6 (April 19, 2012): 595–99. http://dx.doi.org/10.1017/s0022377812000396.

Full text
Abstract:
AbstractA well-optimized design of an ion cyclotron resonance heating (ICRH) antenna is very important for steady-state plasma heating with high radio frequency (RF) power of several tens of megawatts. However, a sharp decrease in the coupling RF power because of impedance mismatch of ICRH system is an issue that must be resolved for present-day fusion reactors and International Thermonuclear Experimental Reactor. This paper has theoretically analyzed the ICRH antenna's impedance matching for ELMy plasmas on experimental advanced superconducting tokamak (EAST) by the transmission line theory. The results indicate that judicious choice of the optimal feeder location is found useful for adjustable capacitors' tolerance to the variations of the antenna input impedance during edge-localized mode (ELM) discharge, which is expected to be good for the design of ICRH antenna system and for real-time feedback control during ELM discharge on EAST.
APA, Harvard, Vancouver, ISO, and other styles
5

Gelfusa, M., A. Murari, E. Peluso, P. Gaudio, F. P. Orsitto, S. Gerasimov, and JET-EFDA Contributors. "Preliminary investigations of equilibrium reconstruction quality during ELMy and ELM-free phases on JET." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 720 (August 2013): 128–30. http://dx.doi.org/10.1016/j.nima.2012.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhai, Junhai, Qingyan Shao, and Xizhao Wang. "Improvements for P-ELM1 and P-ELM2 Pruning Algorithms in Extreme Learning Machines." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24, no. 03 (June 2016): 327–45. http://dx.doi.org/10.1142/s0218488516500161.

Full text
Abstract:
Extreme learning machine (ELM) is an efficient training algorithm for single-hidden layer feed-forward neural networks (SLFNs). Two pruned-ELM named P-ELM1 and P-ELM2 are proposed by Rong et al. P-ELM1 and P-ELM2 employ [Formula: see text] and information gain to measure the association between the class labels and individual hidden node respectively. But for the continuous value data sets, it is inevitable for P-ELM1 and P-ELM2 to evaluate the probability distributions of the data sets with discretization methods for calculating [Formula: see text] and information gain, while the discretization will lead to information loss. Furthermore, the discretization will result in high computational complexity. In order to deal with the problems, based on tolerance rough sets, this paper proposed an improved pruned-ELM algorithm, which can overcome the drawbacks mentioned above. Experimental results along with statistical analysis on 8 UCI data sets show that the improved algorithm outperforms the pruned-ELM in computational complexity and testing accuracy.
APA, Harvard, Vancouver, ISO, and other styles
7

Lang, P. T., B. Alper, R. Buttery, K. Gal, J. Hobirk, J. Neuhauser, M. Stamp, and JET-EFDA contributors. "ELM triggering by local pellet perturbations in type-I ELMy H-mode plasma at JET." Nuclear Fusion 47, no. 8 (July 17, 2007): 754–61. http://dx.doi.org/10.1088/0029-5515/47/8/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Urano, H., W. Suttrop, P. T. Lang, L. D. Horton, A. Herrmann, and ASDEX Upgrade Team. "Fully pellet-controlled ELMs sustaining identical pedestal conditions of natural ELMy H-mode in ASDEX Upgrade." Plasma Physics and Controlled Fusion 46, no. 5A (April 23, 2004): A315—A321. http://dx.doi.org/10.1088/0741-3335/46/5a/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strachan, J. D., R. Budny, I. Coffey, P. Dumortier, C. Grisolia, P. Harbour, M. von Hellermann, et al. "JET radiative mantle experiments in ELMy H-Mode." Plasma Physics and Controlled Fusion 42, no. 5A (May 1, 2000): A81—A88. http://dx.doi.org/10.1088/0741-3335/42/5a/306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McDonald, D. C., Y. Andrew, G. T. A. Huysmans, A. Loarte, J. Ongena, J. Rapp, and S. Saarelma. "Chapter 3: ELMy H-Mode Operation in JET." Fusion Science and Technology 53, no. 4 (May 2008): 891–957. http://dx.doi.org/10.13182/fst08-a1743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Batishchev, O. V., X. Q. Xu, J. A. Byers, R. H. Cohen, S. I. Krasheninnikov, T. D. Rognlien, and D. J. Sigmar. "Kinetic Modelling of Detached and ELMy SOL Plasmas." Contributions to Plasma Physics 36, no. 2-3 (1996): 225–29. http://dx.doi.org/10.1002/ctpp.2150360223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

McDonald, D. C., J. G. Cordey, E. Righi, F. Ryter, G. Saibene, R. Sartori, B. Alper, et al. "ELMy H-modes in JET helium-4 plasmas." Plasma Physics and Controlled Fusion 46, no. 3 (February 23, 2004): 519–34. http://dx.doi.org/10.1088/0741-3335/46/3/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

McDonald, Darren C. "The dimensionless scaling of ELMy H-mode confinement." Comptes Rendus Physique 7, no. 6 (July 2006): 584–91. http://dx.doi.org/10.1016/j.crhy.2006.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Noterdaeme, J. M., Vl V. Bobkov, S. Brémond, A. Parisot, I. Monakhov, B. Beaumont, Ph Lamalle, F. Durodié, and M. Nightingale. "Matching to ELMy plasmas in the ICRF domain." Fusion Engineering and Design 74, no. 1-4 (November 2005): 191–98. http://dx.doi.org/10.1016/j.fusengdes.2005.06.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zeng, L., G. Wang, E. J. Doyle, T. L. Rhodes, W. A. Peebles, M. E. Fenstermacher, T. E. Evans, and R. A. Moyer. "SOL and pedestal density profile evolution during DIII-D ELMy and ELM-suppressed H-mode operation." Journal of Nuclear Materials 337-339 (March 2005): 742–46. http://dx.doi.org/10.1016/j.jnucmat.2004.09.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Horton), JET Team (prepared by L. D. "Pellet fuelling and ELMy H mode physics in JET." Nuclear Fusion 41, no. 2 (February 2001): 189–96. http://dx.doi.org/10.1088/0029-5515/41/2/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fundamenski, W., S. Sipilä, and JET-EFDA contributors. "Boundary plasma energy transport in JET ELMy H-modes." Nuclear Fusion 44, no. 1 (December 5, 2003): 20–32. http://dx.doi.org/10.1088/0029-5515/44/1/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Takizuka, Tomonori. "An offset nonlinear scaling for ELMy H-mode confinement." Plasma Physics and Controlled Fusion 40, no. 5 (May 1, 1998): 851–55. http://dx.doi.org/10.1088/0741-3335/40/5/055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yi, Hye-Suk, Sangyoung Park, Kwang-Guk An, and Keun-Chang Kwak. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea." International Journal of Environmental Research and Public Health 15, no. 10 (September 21, 2018): 2078. http://dx.doi.org/10.3390/ijerph15102078.

Full text
Abstract:
In this study, we design an intelligent model to predict chlorophyll-a concentration, which is the primary indicator of algal blooms, using extreme learning machine (ELM) models. Modeling algal blooms is important for environmental management and ecological risk assessment. For this purpose, the performance of the designed models was evaluated for four artificial weirs in the Nakdong River, Korea. The Nakdong River has harmful annual algal blooms that can affect health due to exposure to toxins. In contrast to conventional neural network (NN) that use backpropagation (BP) learning methods, ELMs are fast learning, feedforward neural networks that use least square estimates (LSE) for regression. The weights connecting the input layer to the hidden nodes are randomly assigned and are never updated. The dataset used in this study includes air temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a concentration, which were collected on a weekly basis from January 2013 to December 2016. Here, upstream chlorophyll-a concentration data was used in our ELM2 model to improve algal bloom prediction performance. In contrast, the ELM1 model only uses downstream chlorophyll-a concentration data. The experimental results revealed that the ELM2 model showed better performance in comparison to the ELM1 model. Furthermore, the ELM2 model showed good prediction and generalization performance compared to multiple linear regression (LR), conventional neural network with backpropagation (NN-BP), and adaptive neuro-fuzzy inference system (ANFIS).
APA, Harvard, Vancouver, ISO, and other styles
20

ONJUN, THAWATCHAI. "Pedestal temperature models based on first and second stability limits of ballooning modes." Laser and Particle Beams 24, no. 1 (March 2006): 113–16. http://dx.doi.org/10.1017/s0263034606060174.

Full text
Abstract:
Models for the prediction of electron pedestal temperatures at the edge of type I ELMy H-mode plasmas are developed. These models are based on theory motivated concepts for pedestal width and pressure gradient. The pedestal pressure gradient is assumed to be limited by high n ballooning mode instabilities, where both the first and second stability limits are considered. The effect of the bootstrap current, which reduces the magnetic shear in the steep pressure gradient region at the edge of the H-mode plasma, can result in access to the second stability of ballooning mode. In these pedestal models, the magnetic shear and safety factor are calculated at one pedestal width away from separatrix. The predictions of these models are compared with the experimental electron pedestal temperatures for type I ELMy H-mode discharges obtained from the latest public version (version 3.2) in the International Tokamak Physics Activity Edge (ITPA) Pedestal Database.
APA, Harvard, Vancouver, ISO, and other styles
21

Horvath, L., C. F. Maggi, F. J. Casson, V. Parail, L. Frassinetti, F. Koechl, S. Saarelma, M. G. Dunne, and K. J. Gibson. "Inter-ELM evolution of the edge current density in JET-ILW type I ELMy H-mode plasmas." Plasma Physics and Controlled Fusion 60, no. 8 (June 13, 2018): 085003. http://dx.doi.org/10.1088/1361-6587/aac7a9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mikkelsen, D. R., H. Shirai, H. Urano, T. Takizuka, Y. Kamada, T. Hatae, Y. Koide, et al. "Stiff temperature profiles in JT-60U ELMy H-mode plasmas." Nuclear Fusion 43, no. 1 (December 13, 2002): 30–39. http://dx.doi.org/10.1088/0029-5515/43/1/304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lang, P. T., H. Zohm, K. Buchl, J. C. Fuchs, O. Gehre, O. Gruber, V. Mertens, H. W. Muller, and J. Neuhauser. "Pellet fuelling of ELMy H mode discharges on ASDEX Upgrade." Nuclear Fusion 36, no. 11 (November 1996): 1531–45. http://dx.doi.org/10.1088/0029-5515/36/11/i07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lang, P. T., H. Zohm, K. Büchl, J. C. Fuchs, O. Gehre, O. Gruber, V. Mertens, et al. "Pellet fuelling of ELMy H mode discharges on ASDEX upgrade." Nuclear Fusion 37, no. 4 (April 1997): 567. http://dx.doi.org/10.1088/0029-5515/37/4/514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kessel, C. E., D. Campbell, Y. Gribov, G. Saibene, G. Ambrosino, R. V. Budny, T. Casper, et al. "Development of ITER 15 MA ELMy H-mode inductive scenario." Nuclear Fusion 49, no. 8 (July 28, 2009): 085034. http://dx.doi.org/10.1088/0029-5515/49/8/085034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Maggi, C. F., S. Saarelma, F. J. Casson, C. Challis, E. de la Luna, L. Frassinetti, C. Giroud, et al. "Pedestal confinement and stability in JET-ILW ELMy H-modes." Nuclear Fusion 55, no. 11 (September 1, 2015): 113031. http://dx.doi.org/10.1088/0029-5515/55/11/113031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cordey, J. G., D. C. McDonald, K. Borrass, M. Charlet, I. Coffey, A. Kallenbach, K. Lawson, et al. "Energy confinement in steady-state ELMy H-modes in JET." Plasma Physics and Controlled Fusion 44, no. 9 (August 30, 2002): 1929–35. http://dx.doi.org/10.1088/0741-3335/44/9/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Valovi, M., R. Budny, L. Garzotti, X. Garbet, A. A. Korotkov, J. Rapp, R. Neu, et al. "Density peaking in low collisionality ELMy H-mode in JET." Plasma Physics and Controlled Fusion 46, no. 12 (November 17, 2004): 1877–89. http://dx.doi.org/10.1088/0741-3335/46/12/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Martin, Y. R., L. Porte, and S. Alberti. "Third harmonic EC heating of ELMy H-mode in TCV." Plasma Physics and Controlled Fusion 48, no. 5A (April 19, 2006): A163—A169. http://dx.doi.org/10.1088/0741-3335/48/5a/s15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Becker, G. "Scaling law for effective heat diffusivity in ELMy H-mode plasmas." Nuclear Fusion 44, no. 11 (November 2004): L26—L28. http://dx.doi.org/10.1088/0029-5515/44/11/l02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Thomsen, H., T. Eich, S. Devaux, G. Arnoux, S. Brezinsek, E. delaLuna, W. Fundamenski, et al. "Power load characterization for type-I ELMy H-modes in JET." Nuclear Fusion 51, no. 12 (November 7, 2011): 123001. http://dx.doi.org/10.1088/0029-5515/51/12/123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rapp, J., A. Kallenbach, R. Neu, T. Eich, R. Fischer, A. Herrmann, S. Potzel, G. J. van Rooij, and J. J. Zielinski. "Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade." Nuclear Fusion 52, no. 12 (November 6, 2012): 122002. http://dx.doi.org/10.1088/0029-5515/52/12/122002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kamada, Y., T. Hatae, T. Fukuda, and T. Takizuka. "Growth of the edge pedestal in JT-60U ELMy H-mode." Plasma Physics and Controlled Fusion 41, no. 11 (November 1, 1999): 1371–78. http://dx.doi.org/10.1088/0741-3335/41/11/304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Urano, H., Y. Kamada, H. Shirai, T. Takizuka, H. Kubo, H. Takenaga, Y. Miura, T. Hatae, and T. Fukuda. "Edge-core relationship of ELMy H-mode plasmas in JT-60U." Plasma Physics and Controlled Fusion 44, no. 5A (April 30, 2002): A437—A443. http://dx.doi.org/10.1088/0741-3335/44/5a/348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kelly, F., R. Maingi, R. Maqueda, J. Menard, and S. Paul. "MARFE stability and movement in an ELMy H-mode NSTX discharge." Journal of Nuclear Materials 390-391 (June 2009): 436–39. http://dx.doi.org/10.1016/j.jnucmat.2009.01.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xia, T. Y., X. Q. Xu, Y. B. Wu, Y. Q. Huang, L. Wang, Z. Zheng, J. B. Liu, Q. Zang, Y. Y. Li, and D. Zhao. "Divertor heat flux simulations in ELMy H-mode discharges of EAST." Nuclear Fusion 57, no. 11 (August 3, 2017): 116016. http://dx.doi.org/10.1088/1741-4326/aa7bba.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, J., D. L. Brower, W. X. Ding, Z. Yan, T. Osborne, E. Strait, M. Curie, et al. "Internal measurement of magnetic turbulence in ELMy H-mode tokamak plasmas." Physics of Plasmas 27, no. 12 (December 2020): 120701. http://dx.doi.org/10.1063/5.0029996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Samper Arbeláez, Andrés, and Luis Fernando Valencia Rueda. "Una paradoja, unas huellas y una luz: los dolores y los miedos de los músicos como ecos silenciosos de los paradigmas de la tradición musical occidental." Cuadernos de Música, Artes Visuales y Artes Escénicas 16, no. 1 (January 20, 2021): 336–55. http://dx.doi.org/10.11144/javeriana.mavae16-1.elmy.

Full text
Abstract:
Este artículo presenta algunas reflexiones sobre la paradoja que emerge en algunos músicos entre una faceta de la experiencia musical que es espontánea y anclada en el disfrute, y otra que de alguna manera ha sido contaminada por marcas de tipo físico, emocional y mental, con énfasis en el tema del miedo en la relación con la música. Encontramos una fricción entre el habitus institucional y la idiosincrasia del músico en formación que se encuentra situada de manera permanente en una “tensión intersticial” entre el canon y su propio mundo interior. Planteamos, basados en nuestra experiencia como músicos, gestores educativos y docentes, que en el sistema de educación musical formal se encuentra el origen de varias de estas huellas cuando este se vuelca demasiado hacia el producto y hacia el dominio de las habilidades y conocimientos musicales como fines, y no como medios para la expresión sensible. Este tipo de educación tiende a privilegiar el dominio técnico y analítico de los saberes canónicos y descuida el vínculo de los músicos con su propio mundo interior y la expresión de este a través de la música, y así desaprovecha la potencia de las voces individuales y pasa por alto la aparición de patologías (físicas, emocionales, mentales) que se manifiestan con diversos niveles de intensidad en las personas. Finalmente, proponemos como alternativas fortalecer la reflexión colegiada que devela los paradigmas pedagógicos naturalizados y traer a la enseñanza de la música una perspectiva somática que favorece la autoconciencia que integra cuerpo, mente y emoción, y que promueve la búsqueda de la voz propia en el contexto artístico del músico en relación consigo mismo, con el otro y con las situaciones vitales que atraviesa. Una perspectiva en cuyo centro está una pregunta permanente por el sentido del oficio: ¿para qué hacemos música?
APA, Harvard, Vancouver, ISO, and other styles
39

Urano, H., Y. Kamada, H. Shirai, T. Takizuka, S. Ide, T. Fujita, and T. Fukuda. "Thermal energy confinement properties of ELMy H mode plasmas in JT-60U." Nuclear Fusion 42, no. 1 (January 1, 2002): 76–85. http://dx.doi.org/10.1088/0029-5515/42/1/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rapp, J., Y. Corre, Y. Andrew, M. R. de Baar, M. Beurskens, S. Brezinsek, M. Brix, et al. "Integrated scenario with type-III ELMy H-mode edge: extrapolation to ITER." Nuclear Fusion 49, no. 9 (August 14, 2009): 095012. http://dx.doi.org/10.1088/0029-5515/49/9/095012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Duan, X. R., J. Q. Dong, L. W. Yan, X. T. Ding, Q. W. Yang, J. Rao, D. Q. Liu, et al. "Preliminary results of ELMy H-mode experiments on the HL-2A tokamak." Nuclear Fusion 50, no. 9 (August 11, 2010): 095011. http://dx.doi.org/10.1088/0029-5515/50/9/095011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pigarov, A. Yu, S. I. Krasheninnikov, T. D. Rognlien, C. J. Lasnier, and E. Unterberg. "Dynamic plasma-wall modeling of ELMy H-mode with UEDGE-MB-W." Journal of Nuclear Materials 463 (August 2015): 705–8. http://dx.doi.org/10.1016/j.jnucmat.2014.09.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kamada, Y., K. Ushigusa, O. Naito, Y. Neyatani, S. Ishida, T. Fujita, R. Yoshino, M. Kikuchi, M. Mori, and H. Ninomiya. "ELMy H-mode with high- betaNand high- beta p in JT-60U." Plasma Physics and Controlled Fusion 36, no. 7A (July 1, 1994): A123—A128. http://dx.doi.org/10.1088/0741-3335/36/7a/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Strand, P., H. Nordman, J. Weiland, and J. P. Christiansen. "Predictive simulations of JET ELMy H-mode beta and collisionality scaling experiments." Plasma Physics and Controlled Fusion 41, no. 12 (November 11, 1999): 1441–52. http://dx.doi.org/10.1088/0741-3335/41/12/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shirai, H., T. Takizuka, Y. Koide, O. Naito, M. Sato, Y. Kamada, and T. Fukuda. "Non-dimensional transport study on ELMy H-mode plasmas in JT-60U." Plasma Physics and Controlled Fusion 42, no. 11 (November 1, 2000): 1193–217. http://dx.doi.org/10.1088/0741-3335/42/11/306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fundamenski, W., S. Sipilä, G. F. Matthews, V. Riccardo, P. Andrew, T. Eich, L. C. Ingesson, et al. "Interpretation of recent power width measurements in JET MkIIGB ELMy H-modes." Plasma Physics and Controlled Fusion 44, no. 6 (May 29, 2002): 761–93. http://dx.doi.org/10.1088/0741-3335/44/6/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Martin, Y. R., M. A. Henderson, S. Alberti, P. Amorim, Y. Andrebe, K. Appert, G. Arnoux, et al. "Accessibility and properties of ELMy H-mode and ITB plasmas in TCV." Plasma Physics and Controlled Fusion 45, no. 12A (November 17, 2003): A351—A365. http://dx.doi.org/10.1088/0741-3335/45/12a/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jachmich, S., T. Eich, W. Fundamenski, A. Kallenbach, and R. A. Pitts. "Divertor particle and power deposition profiles in JET ELMy H-mode discharges." Journal of Nuclear Materials 363-365 (June 2007): 1050–55. http://dx.doi.org/10.1016/j.jnucmat.2007.01.138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rapp, J., M. R. de Baar, W. Fundamenski, M. Brix, R. Felton, C. Giroud, A. Huber, et al. "Highly radiating type-III ELMy H-mode with low plasma core pollution." Journal of Nuclear Materials 390-391 (June 2009): 238–41. http://dx.doi.org/10.1016/j.jnucmat.2009.01.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Borrass, K., J. Lingertat, and R. Schneider. "A Scrape-off Layer Based Density Limit for JET ELMy H-modes." Contributions to Plasma Physics 38, no. 1-2 (1998): 130–35. http://dx.doi.org/10.1002/ctpp.2150380119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography