Academic literature on the topic 'Embedding dimension'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Embedding dimension.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Embedding dimension"
Sivakumar, B., R. Berndtsson, J. Olsson, K. Jinno, and A. Kawamura. "Dynamics of monthly rainfall-runoff process at the Gota basin: A search for chaos." Hydrology and Earth System Sciences 4, no. 3 (September 30, 2000): 407–17. http://dx.doi.org/10.5194/hess-4-407-2000.
Full textAleksić, Zoran. "Estimating the embedding dimension." Physica D: Nonlinear Phenomena 52, no. 2-3 (September 1991): 362–68. http://dx.doi.org/10.1016/0167-2789(91)90132-s.
Full textGrines, V. Z., E. Ya Gurevich, and O. V. Pochinka. "On Embedding of the Morse-Smale Diffeomorphisms in a Topological Flow." Contemporary Mathematics. Fundamental Directions 66, no. 2 (December 15, 2020): 160–81. http://dx.doi.org/10.22363/2413-3639-2020-66-2-160-181.
Full textHAMBLY, B. M., and T. KUMAGAI. "ASYMPTOTICS FOR THE SPECTRAL AND WALK DIMENSION AS FRACTALS APPROACH EUCLIDEAN SPACE." Fractals 10, no. 04 (December 2002): 403–12. http://dx.doi.org/10.1142/s0218348x02001270.
Full textSATHER-WAGSTAFF, SEAN. "EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION." Glasgow Mathematical Journal 55, no. 1 (August 2, 2012): 85–96. http://dx.doi.org/10.1017/s0017089512000353.
Full textChapman, S. T., P. A. García-Sánchez, D. Llena, and J. Marshall. "Elements in a Numerical Semigroup with Factorizations of the Same Length." Canadian Mathematical Bulletin 54, no. 1 (March 1, 2011): 39–43. http://dx.doi.org/10.4153/cmb-2010-068-3.
Full textGács, Peter. "Clairvoyant embedding in one dimension." Random Structures & Algorithms 47, no. 3 (June 13, 2014): 520–60. http://dx.doi.org/10.1002/rsa.20551.
Full textLequain, Yves. "Embedding dimension in local rings." Communications in Algebra 18, no. 11 (January 1990): 3923–31. http://dx.doi.org/10.1080/00927879008824117.
Full textRosales, J. C., and P. A. Garc�a-S�anchez. "Numerical semigroups with embedding dimension three." Archiv der Mathematik 83, no. 6 (December 2004): 488–96. http://dx.doi.org/10.1007/s00013-004-1149-1.
Full textMees, A. I., P. E. Rapp, and L. S. Jennings. "Singular-value decomposition and embedding dimension." Physical Review A 36, no. 1 (July 1, 1987): 340–46. http://dx.doi.org/10.1103/physreva.36.340.
Full textDissertations / Theses on the topic "Embedding dimension"
Rosa, Renata Martins da. "Dimensão de mergulho (embedding dimension) de anéis locais." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1992. http://hdl.handle.net/10183/127096.
Full textIn this work we show that. for a Cohen-Macaulay ring and for a local ring with algebraically closed residual field and associated graded ring a domain. we hav: the embedding dimension is less than or equal t.o t.he Erull climension plus the multiplicity mines one. Secondly, we see that, given integers m ≥ 1, d ≥ 2 anel given an arbitrary integer e ≥ dm , there exists a local ring with multiplicity Krull dimcnsion d and embedding dimension t.
El, Khoury Sabine. "A class of Gorenstein Artin algebras of embedding dimension four." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5930.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 20, 2009) Vita. Includes bibliographical references.
Chen, Huiyuan. "Dimension Reduction for Network Analysis with an Application to Drug Discovery." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1598303654048332.
Full textLiang, Zhiyu. "Eigen-analysis of kernel operators for nonlinear dimension reduction and discrimination." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388676476.
Full textBoland, Josephine Anne. "Embedding a civic engagement dimension within the higher education curriculum : a study of policy, process and practice in Ireland." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/5804.
Full textFontes, Nuno Ricardo Moura. "Sistemas dinâmicos, análise numérica de séries temporais e aplicações às finanças." Master's thesis, Instituto Superior de Economia e Gestão, 2013. http://hdl.handle.net/10400.5/6454.
Full textTaken's theorem (1981) shows how the series of measurements from a given system can be used to reconstruct the original system's underlying dynamic process. In this work we start from this point and build a bridge between theoretical results and its practical application. Several algorithms are presented and then rebuilt in an effort to reach a middle ground between computer resources optimization and output accuracy. Among these algorithms, the biggest emphasis is put on the correlation dimension algorithm by Grassberger and Procaccia which allows for the deduction of the system's embedding dimension. The results derived are then used to build a forecast approach inspired by the analogues method. The purpose of this work is to show there is potential for dynamical systems' modelling tools to be used in financial markets, especially for intra-day purposes where decision and computational times need to be very small.
O teorema de Takens (1981) mostra como uma série de medições obtidas de um dado sistema podem ser usadas para reconstruir o sistema dinâmico original. Neste trabalho, parte-se deste teorema e constrói-se a ponte entre conceitos teóricos e a sua aplicação numérica. Vários algoritmos são apresentados e depois reconstruídos com o objetivo de se atingir um compromisso entre otimização de recursos computacionais e rigor nos resultados. Entre esses algoritmos, a maior ênfase é colocada no do cálculo do integral de correlação de Grassberger-Procaccia que permite a dedução da dimensão de imersão de um dado sistema. Os resultados obtidos são usados na construção de um modelo de previsão inspirado pela abordagem dos pontos análogos, ou método dos análogos. O objetivo deste trabalho é mostrar que existe potencial na aplicação de ferramentas de modelação de sistemas dinâmicos caóticos no mercado financeiro, em especial em transações intra-diárias onde tempos de decisão e computação têm de ser muito reduzidos.
Grant, Elyot. "Dimension reduction algorithms for near-optimal low-dimensional embeddings and compressive sensing." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84869.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 41-42).
In this thesis, we establish theoretical guarantees for several dimension reduction algorithms developed for applications in compressive sensing and signal processing. In each instance, the input is a point or set of points in d-dimensional Euclidean space, and the goal is to find a linear function from Rd into Rk , where k << d, such that the resulting embedding of the input pointset into k-dimensional Euclidean space has various desirable properties. We focus on two classes of theoretical results: -- First, we examine linear embeddings of arbitrary pointsets with the aim of minimizing distortion. We present an exhaustive-search-based algorithm that yields a k-dimensional linear embedding with distortion at most ... is the smallest possible distortion over all orthonormal embeddings into k dimensions. This PTAS-like result transcends lower bounds for well-known embedding teclhniques such as the Johnson-Lindenstrauss transform. -- Next, motivated by compressive sensing of images, we examine linear embeddings of datasets containing points that are sparse in the pixel basis, with the goal of recoving a nearly-optimal sparse approximation to the original data. We present several algorithms that achieve strong recovery guarantees using the near-optimal bound of measurements, while also being highly "local" so that they can be implemented more easily in physical devices. We also present some impossibility results concerning the existence of such embeddings with stronger locality properties.
by Elyot Grant.
S.M.
Moon, Gordon Euhyun. "Parallel Algorithms for Machine Learning." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1561980674706558.
Full textMelo, Givanildo Donizeti de [UNESP]. "Sobre a dimensão do quadrado de um espaço métrico compacto X de dimensão n e o conjunto dos mergulhos de X em R2n." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138318.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-13T16:57:01Z (GMT) No. of bitstreams: 1 melo_gd_me_sjrp.pdf: 1055550 bytes, checksum: 47636418da76c9ad7d114b45ea3e96c1 (MD5)
Made available in DSpace on 2016-05-13T16:57:01Z (GMT). No. of bitstreams: 1 melo_gd_me_sjrp.pdf: 1055550 bytes, checksum: 47636418da76c9ad7d114b45ea3e96c1 (MD5) Previous issue date: 2016-03-23
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Neste trabalho nós estudamos o seguinte resultado: para um espaço métrico compacto X, de dimensão n, o subespaço dos mergulhos de X em R2n é denso no espaço das funções contínuas de X em R2n se, e somente se, dim(X x X)<2n. A demonstração apresentada é aquela dada por J. Krasinkiewicz e por S. Spiez.
In this work we study the following result: given a compact metric space X of dimension n, the subspace consisting of all embeddings of X into R2n is dense in the space of all continuous maps of X into R2n if and only if dim(X x X)<2n. The presented proof is the one given by J. Krasinkiewicz e por S. Spiez.
Weerasekara, Aruna Bandara. "Electrical and Optical Characterization of Group III-V Heterostructures with Emphasis on Terahertz Devices." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/phy_astr_diss/16.
Full textBooks on the topic "Embedding dimension"
Dimensions, embeddings, and attractors. Cambridge: Cambridge University Press, 2011.
Find full textElmar, Winkelnkemper, ed. High-dimensional knot theory: Algebraic surgery in codimension 2. Berlin: Springer, 1998.
Find full textGould, Jeremy David. Embeddings, dimension groups and presentations of AF algebras, and the index of subfactors. [s.l.]: typescript, 1989.
Find full textTwo-dimensional mesh embedding for Galerkin B-spline methods. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textdeLancey, Moser Robert, and United States. National Aeronautics and Space Administration., eds. Two-dimensional mesh embedding for Galerkin B-spline methods. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textdeLancey, Moser Robert, and United States. National Aeronautics and Space Administration., eds. Two-dimensional mesh embedding for Galerkin B-spline methods. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textdeLancey, Moser Robert, and United States. National Aeronautics and Space Administration., eds. Two-dimensional mesh embedding for Galerkin B-spline methods. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textBehrens, Stefan, Boldizsar Kalmar, Min Hoon Kim, Mark Powell, and Arunima Ray, eds. The Disc Embedding Theorem. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198841319.001.0001.
Full textUnited States. National Aeronautics and Space Administration. and Mississippi State University. Dept. of Aerophysics and Aerospace Engineering., eds. Adaptive grid embedding for the two-dimensional flux-split Euler equations. Mississippi State, Miss: Mississippi State University, Dept. of Aerospace Engineering, 1990.
Find full textFive-dimensional Physics: Classical And Quantum Consequences of Kaluza-klein Cosmology. World Scientific Publishing Company, 2006.
Find full textBook chapters on the topic "Embedding dimension"
Daverman, Robert, and Gerard Venema. "Engulfing, cellularity, and embedding dimension." In Embeddings in Manifolds, 97–143. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/106/04.
Full textOrlando, Giuseppe, Ruedi Stoop, and Giovanni Taglialatela. "Embedding Dimension and Mutual Information." In Nonlinearities in Economics, 105–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70982-2_7.
Full textGuègan, Dominique, and Francesco Lisi. "Predictive dimension: an alternative definition to embedding dimension." In COMPSTAT, 319–24. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-642-57678-2_40.
Full textCarroll, T. L., and J. M. Byers. "Calculating Embedding Dimension with Confidence Estimates." In Understanding Complex Systems, 211–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10892-2_21.
Full textRosales, J. C., and P. A. García-Sánchez. "Numerical semigroups with embedding dimension three." In Numerical Semigroups, 137–54. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0160-6_10.
Full textRosales, J. C., and P. A. García-Sánchez. "Numerical semigroups with maximal embedding dimension." In Numerical Semigroups, 19–32. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0160-6_3.
Full textMaugeri, Nicola, and Giuseppe Zito. "Embedding Dimension of a Good Semigroup." In Numerical Semigroups, 197–230. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40822-0_13.
Full textCoornaert, Michel. "Applications of Mean Dimension to Embedding Problems." In Universitext, 139–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19794-4_8.
Full textFaragó, András. "Low Distortion Metric Embedding into Constant Dimension." In Lecture Notes in Computer Science, 114–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20877-5_12.
Full textCao, Liangyue. "Determining Minimum Embedding Dimension from Scalar Time Series." In Modelling and Forecasting Financial Data, 43–60. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0931-8_3.
Full textConference papers on the topic "Embedding dimension"
Luo, Gongxu, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, and Lifang He. "Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/381.
Full textKaplan, Daniel T. "Model-independent technique for determining the embedding dimension." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Louis M. Pecora. SPIE, 1993. http://dx.doi.org/10.1117/12.162676.
Full text"NEIGHBORHOOD FUNCTION DESIGN FOR EMBEDDING IN REDUCED DIMENSION." In International Conference on Neural Computation Theory and Applications. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003681201900195.
Full textZhao, Xiangyu, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao, and Bo Long. "AutoDim: Field-aware Embedding Dimension Searchin Recommender Systems." In WWW '21: The Web Conference 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3442381.3450124.
Full textChelidze, David. "Statistical Characterization of Nearest Neighbors to Reliably Estimate Minimum Embedding Dimension." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34746.
Full textWang, Yu. "Single Training Dimension Selection for Word Embedding with PCA." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-1369.
Full textLiu, Biying, Guangyuan Liu, and Zhaofang Yang. "Analysis of Affective State from Galvanic Skin Response Using Correlation Dimension and Embedding Dimension." In 2012 5th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2012. http://dx.doi.org/10.1109/iscid.2012.10.
Full textZhang, Miao, Huiqi Li, and Steven Su. "High Dimensional Bayesian Optimization via Supervised Dimension Reduction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/596.
Full textZhao, Ning, Junjie Shen, Yuhe Liu, and Xiaolin Ma. "Analysis of Embedding Dimension of Built-in sensor Nonlinear Output." In 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2018. http://dx.doi.org/10.1109/itoec.2018.8740584.
Full textXing, Changyou, and Ming Chen. "Research on Optimizing Embedding Space Dimension in Network Coordinate System." In 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science. IEEE, 2009. http://dx.doi.org/10.1109/icis.2009.63.
Full textReports on the topic "Embedding dimension"
Krauthgamer, Robert, Nathan Linial, and Avner Magen. Metric Embeddings - Beyond One-Dimensional Distortion. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada619309.
Full text