Journal articles on the topic 'Embedding techniques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Embedding techniques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Meyer, Francois, der Merwe Brink van, and Dirko Coetsee. "Learning Concept Embeddings from Temporal Data." JUCS - Journal of Universal Computer Science 24, no. (10) (2018): 1378–402. https://doi.org/10.3217/jucs-024-10-1378.
Full textDuong, Chi Thang, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen, and Karl Aberer. "Scalable robust graph embedding with Spark." Proceedings of the VLDB Endowment 15, no. 4 (2021): 914–22. http://dx.doi.org/10.14778/3503585.3503599.
Full textLi, Pandeng, Yan Li, Hongtao Xie, and Lei Zhang. "Neighborhood-Adaptive Structure Augmented Metric Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (2022): 1367–75. http://dx.doi.org/10.1609/aaai.v36i2.20025.
Full textJadon, Anil Kumar, and Suresh Kumar. "Enhancing emotion detection with synergistic combination of word embeddings and convolutional neural networks." Indonesian Journal of Electrical Engineering and Computer Science 35, no. 3 (2024): 1933. http://dx.doi.org/10.11591/ijeecs.v35.i3.pp1933-1941.
Full textAnil, Kumar Jadon Suresh Kumar. "Enhancing emotion detection with synergistic combination of word embeddings and convolutional neural networks." Indonesian Journal of Electrical Engineering and Computer Science 35, no. 3 (2024): 1933–41. https://doi.org/10.11591/ijeecs.v35.i3.pp1933-1941.
Full textMao, Yuqing, and Kin Wah Fung. "Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts." Journal of the American Medical Informatics Association 27, no. 10 (2020): 1538–46. http://dx.doi.org/10.1093/jamia/ocaa136.
Full textMa, Xingyu, and Bin Yao. "Embedding Numerical Features and Meta-Features in Tabular Deep Learning." Information Technology and Control 54, no. 2 (2025): 662–81. https://doi.org/10.5755/j01.itc.54.2.39134.
Full textTan, Eugene, Shannon Algar, Débora Corrêa, Michael Small, Thomas Stemler, and David Walker. "Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology." Chaos: An Interdisciplinary Journal of Nonlinear Science 33, no. 3 (2023): 032101. http://dx.doi.org/10.1063/5.0137223.
Full textSAMANTA, SAURAV. "NONCOMMUTATIVITY FROM EMBEDDING TECHNIQUES." Modern Physics Letters A 21, no. 08 (2006): 675–89. http://dx.doi.org/10.1142/s0217732306019037.
Full textAlkaabi, Hussein, Ali Kadhim Jasim, and Ali Darroudi. "From Static to Contextual: A Survey of Embedding Advances in NLP." PERFECT: Journal of Smart Algorithms 2, no. 2 (2025): 57–66. https://doi.org/10.62671/perfect.v2i2.77.
Full textLiang, Jiongqian, Saket Gurukar, and Srinivasan Parthasarathy. "MILE: A Multi-Level Framework for Scalable Graph Embedding." Proceedings of the International AAAI Conference on Web and Social Media 15 (May 22, 2021): 361–72. http://dx.doi.org/10.1609/icwsm.v15i1.18067.
Full textMoudhich, Ihab, and Abdelhadi Fennan. "Evaluating sentiment analysis and word embedding techniques on Brexit." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 695–702. https://doi.org/10.11591/ijai.v13.i1.pp695-702.
Full textNiyonkuru, Enock, Mauricio Soto Gomez, Elena Casarighi, et al. "Replacing non-biomedical concepts improves embedding of biomedical concepts." PLOS One 20, no. 5 (2025): e0322498. https://doi.org/10.1371/journal.pone.0322498.
Full textMehta, Sweta, Pankaj K. Goswami, and K. Sridhar Patnaik. "Network Embedding Techniques for Predicting Software Defects: A Review." International Journal of Scientific Research and Management (IJSRM) 13, no. 06 (2025): 2254–75. https://doi.org/10.18535/ijsrm/v13i06.ec05.
Full textMoudhich, Ihab, and Abdelhadi Fennan. "Evaluating sentiment analysis and word embedding techniques on Brexit." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 1 (2024): 695. http://dx.doi.org/10.11591/ijai.v13.i1.pp695-702.
Full textZhou, Jingya, Ling Liu, Wenqi Wei, and Jianxi Fan. "Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding." ACM Computing Surveys 55, no. 2 (2023): 1–35. http://dx.doi.org/10.1145/3491206.
Full textSrinidhi, K., T. L.S Tejaswi, CH Rama Rupesh Kumar, and I. Sai Siva Charan. "An Advanced Sentiment Embeddings with Applications to Sentiment Based Result Analysis." International Journal of Engineering & Technology 7, no. 2.32 (2018): 393. http://dx.doi.org/10.14419/ijet.v7i2.32.15721.
Full textSabbeh, Sahar F., and Heba A. Fasihuddin. "A Comparative Analysis of Word Embedding and Deep Learning for Arabic Sentiment Classification." Electronics 12, no. 6 (2023): 1425. http://dx.doi.org/10.3390/electronics12061425.
Full textRavindran, Renjith P., and Kavi Narayana Murthy. "Syntactic Coherence in Word Embedding Spaces." International Journal of Semantic Computing 15, no. 02 (2021): 263–90. http://dx.doi.org/10.1142/s1793351x21500057.
Full textPankaj, M. Bhuyar, and S. W. Mohod Dr. "Study of Steganographic Techniques for Data Hiding." International Journal of Research in Computer & Information Technology (IJRCIT) 7, no. 4 (2022): 8–12. https://doi.org/10.5281/zenodo.7180942.
Full textMartina, Toshevska, Stojanovska Frosina, and Kalajdjiesk Jovan. "The Ability of Word Embeddings to Capture Word Similarities." International Journal on Natural Language Computing (IJNLC) Vol.9, No.3, June 2020 9, no. 3 (2023): 18. https://doi.org/10.5281/zenodo.7827290.
Full textGoel, Mukta, and Rohit Goel. "Comparative Analysis of Hybrid Transform Domain Image Steganography Embedding Techniques." International Journal of Scientific Research 2, no. 2 (2012): 388–90. http://dx.doi.org/10.15373/22778179/feb2013/131.
Full textDel Gaizo, John, Curry Sherard, Khaled Shorbaji, Brett Welch, Roshan Mathi, and Arman Kilic. "Prediction of coronary artery bypass graft outcomes using a single surgical note: An artificial intelligence-based prediction model study." PLOS ONE 19, no. 4 (2024): e0300796. http://dx.doi.org/10.1371/journal.pone.0300796.
Full textGerritse, Emma, Faegheh Hasibi, and Arjen De Vries. "Graph Embeddings to Empower Entity Retrieval." Information Retrieval Research 1, no. 1 (2025): 137–65. https://doi.org/10.54195/irrj.19877.
Full textSun, Yaozhu, Utkarsh Dhandhania, and Bruno C. d. S. Oliveira. "Compositional embeddings of domain-specific languages." Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022): 175–203. http://dx.doi.org/10.1145/3563294.
Full textSusanty, Meredita, and Sahrul Sukardi. "Perbandingan Pre-trained Word Embedding dan Embedding Layer untuk Named-Entity Recognition Bahasa Indonesia." Petir 14, no. 2 (2021): 247–57. http://dx.doi.org/10.33322/petir.v14i2.1164.
Full textCheng, Weiyu, Yanyan Shen, Linpeng Huang, and Yanmin Zhu. "Dual-Embedding based Deep Latent Factor Models for Recommendation." ACM Transactions on Knowledge Discovery from Data 15, no. 5 (2021): 1–24. http://dx.doi.org/10.1145/3447395.
Full textBarros, Claudio D. T., Matheus R. F. Mendonça, Alex B. Vieira, and Artur Ziviani. "A Survey on Embedding Dynamic Graphs." ACM Computing Surveys 55, no. 1 (2023): 1–37. http://dx.doi.org/10.1145/3483595.
Full textS. Thiruvenkatasamy, G. Devi, B. Gayathri, C. KaviyaSri, and E. Leela. "Data Loss Transmission in 5g Network by Enabling Green Blockchain Methodologies." South Asian Journal of Engineering and Technology 13, no. 1 (2023): 13–21. http://dx.doi.org/10.26524/sajet.2023.13.2.
Full textDavid, Merlin Susan, and Shini Renjith. "Comparison of word embeddings in text classification based on RNN and CNN." IOP Conference Series: Materials Science and Engineering 1187, no. 1 (2021): 012029. http://dx.doi.org/10.1088/1757-899x/1187/1/012029.
Full textVadalà, Valeria, Gustavo Avolio, Antonio Raffo, Dominique M. M. P. Schreurs, and Giorgio Vannini. "Nonlinear embedding and de-embedding techniques for large-signal fet measurements." Microwave and Optical Technology Letters 54, no. 12 (2012): 2835–38. http://dx.doi.org/10.1002/mop.27169.
Full textLevy, Ronnie, and M. D. Rice. "Techniques and examples in U-embedding." Topology and its Applications 22, no. 2 (1986): 157–74. http://dx.doi.org/10.1016/0166-8641(86)90006-4.
Full textThodi, Diljith M., and Jeffrey J. Rodriguez. "Expansion Embedding Techniques for Reversible Watermarking." IEEE Transactions on Image Processing 16, no. 3 (2007): 721–30. http://dx.doi.org/10.1109/tip.2006.891046.
Full textSong, J. M., F. Ling, W. Blood, et al. "De-embedding techniques for embedded microstrips." Microwave and Optical Technology Letters 42, no. 1 (2004): 50–54. http://dx.doi.org/10.1002/mop.20204.
Full textTakehara, Daisuke, and Kei Kobayashi. "Representing Hierarchical Structured Data Using Cone Embedding." Mathematics 11, no. 10 (2023): 2294. http://dx.doi.org/10.3390/math11102294.
Full textKapil Adhar Wagh. "A Review: Word Embedding Models with Machine Learning Based Context Depend and Context Independent Techniques." Advances in Nonlinear Variational Inequalities 28, no. 3s (2024): 251–58. https://doi.org/10.52783/anvi.v28.2928.
Full textJin, Junchen, Mark Heimann, Di Jin, and Danai Koutra. "Toward Understanding and Evaluating Structural Node Embeddings." ACM Transactions on Knowledge Discovery from Data 16, no. 3 (2022): 1–32. http://dx.doi.org/10.1145/3481639.
Full textYadav, Aditya Kumar. "Refined Global Word Embeddings Based on Sentiment Concept for Sentiment Analysis." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem49245.
Full textProkhorov, Victor, Mohammad Taher Pilehvar, Dimitri Kartsaklis, Pietro Lio, and Nigel Collier. "Unseen Word Representation by Aligning Heterogeneous Lexical Semantic Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 6900–6907. http://dx.doi.org/10.1609/aaai.v33i01.33016900.
Full textP. Bhopale, Bhopale, and Ashish Tiwari. "LEVERAGING NEURAL NETWORK PHRASE EMBEDDING MODEL FOR QUERY REFORMULATION IN AD-HOC BIOMEDICAL INFORMATION RETRIEVAL." Malaysian Journal of Computer Science 34, no. 2 (2021): 151–70. http://dx.doi.org/10.22452/mjcs.vol34no2.2.
Full textXie, Chengxin, Jingui Huang, Yongjiang Shi, Hui Pang, Liting Gao, and Xiumei Wen. "Ensemble graph auto-encoders for clustering and link prediction." PeerJ Computer Science 11 (January 22, 2025): e2648. https://doi.org/10.7717/peerj-cs.2648.
Full textAngerer, Philipp, David S. Fischer, Fabian J. Theis, Antonio Scialdone, and Carsten Marr. "Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data." Bioinformatics 36, no. 15 (2020): 4291–95. http://dx.doi.org/10.1093/bioinformatics/btaa198.
Full textN, Nagendra, and Chandra J. "A Systematic Review on Features Extraction Techniques for Aspect Based Text Classification Using Artificial Intelligence." ECS Transactions 107, no. 1 (2022): 2503–14. http://dx.doi.org/10.1149/10701.2503ecst.
Full textAyo-Soyemi, Olusola. "Market Sentiment Analysis Using NLP: Understanding Trends and Buyer Preferences in Real Estate and Environmental Sectors." Technix International Journal for Engineering Research 12, no. 3 (2025): 974–88. https://doi.org/10.5281/zenodo.15120636.
Full textMoudhich, Ihab, and Abdelhadi Fennan. "Graph embedding approach to analyze sentiments on cryptocurrency." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 1 (2024): 690. http://dx.doi.org/10.11591/ijece.v14i1.pp690-697.
Full textMoudhich, Ihab, and Abdelhadi Fennan. "Graph embedding approach to analyze sentiments on cryptocurrency." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 1 (2024): 690–97. https://doi.org/10.11591/ijece.v14i1.pp690-697.
Full textPark, Jaehyuk. "Decoding Social Structure via Neural Embedding Techniques." Korean Journal of Sociology 58, no. 3 (2024): 241–66. http://dx.doi.org/10.21562/kjs.2024.08.58.3.241.
Full textNewman, G. R., and J. A. Hobot. "Modern acrylics for post-embedding immunostaining techniques." Journal of Histochemistry & Cytochemistry 35, no. 9 (1987): 971–81. http://dx.doi.org/10.1177/35.9.3302021.
Full textJackson, C. M. "Microwave de-embedding techniques applied to acoustics." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 52, no. 7 (2005): 1094–100. http://dx.doi.org/10.1109/tuffc.2005.1503995.
Full textLin, Ching-Chiuan, Shih-Chieh Chen, and Nien-Lin Hsueh. "Adaptive embedding techniques for VQ-compressed images." Information Sciences 179, no. 1-2 (2009): 140–49. http://dx.doi.org/10.1016/j.ins.2008.09.001.
Full text