Journal articles on the topic 'Empty virus like particles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Empty virus like particles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wu, Hui-Lin, Pei-Jer Chen, Jung-Jung Mu, et al. "Assembly of Hepatitis Delta Virus-like Empty Particles in Yeast." Virology 236, no. 2 (1997): 374–81. http://dx.doi.org/10.1006/viro.1997.8743.
Full textLi, T. C., Y. Yamakawa, K. Suzuki, et al. "Expression and self-assembly of empty virus-like particles of hepatitis E virus." Journal of virology 71, no. 10 (1997): 7207–13. http://dx.doi.org/10.1128/jvi.71.10.7207-7213.1997.
Full textHainisch, Edmund K., Christoph Jindra, Reinhard Kirnbauer, and Sabine Brandt. "Papillomavirus-Like Particles in Equine Medicine." Viruses 15, no. 2 (2023): 345. http://dx.doi.org/10.3390/v15020345.
Full textHuynh, Nhung T., Emma L. Hesketh, Pooja Saxena, et al. "Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus." Structure 24, no. 4 (2016): 567–75. http://dx.doi.org/10.1016/j.str.2016.02.011.
Full textRichterová, Zuzana, David Liebl, Martin Horák, et al. "Caveolae Are Involved in the Trafficking of Mouse Polyomavirus Virions and Artificial VP1 Pseudocapsids toward Cell Nuclei." Journal of Virology 75, no. 22 (2001): 10880–91. http://dx.doi.org/10.1128/jvi.75.22.10880-10891.2001.
Full textHord, M., W. Villalobos, A. V. Macaya-Lizano, and C. Rivera. "Chayote Mosaic, a New Disease in Sechium edule Caused by a Tymovirus." Plant Disease 81, no. 4 (1997): 374–78. http://dx.doi.org/10.1094/pdis.1997.81.4.374.
Full textAmmar, E. D., R. E. Gingery, and L. R. Nault. "Cytopathology and ultrastructure of mild and severe strains of maize chlorotic dwarf virus in maize and johnsongrass." Canadian Journal of Botany 71, no. 5 (1993): 718–24. http://dx.doi.org/10.1139/b93-083.
Full textBardi, Giuseppe. "Nanometric Virus-Like Particles: Key Tools for Vaccine and Adjuvant Technology." Vaccines 8, no. 3 (2020): 430. http://dx.doi.org/10.3390/vaccines8030430.
Full textSuárez, Cristina, María L. Salas, and Javier M. Rodríguez. "African Swine Fever Virus Polyprotein pp62 Is Essential for Viral Core Development." Journal of Virology 84, no. 1 (2009): 176–87. http://dx.doi.org/10.1128/jvi.01858-09.
Full textRen, Jingshan, Xiangxi Wang, Ling Zhu, et al. "Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity." Journal of Virology 89, no. 20 (2015): 10500–10511. http://dx.doi.org/10.1128/jvi.01102-15.
Full textShanks, Michael, and George P. Lomonossoff. "Co-expression of the capsid proteins of Cowpea mosaic virus in insect cells leads to the formation of virus-like particles." Journal of General Virology 81, no. 12 (2000): 3093–97. http://dx.doi.org/10.1099/0022-1317-81-12-3093.
Full textMeshcheriakova, Yulia, Alex Durrant, Emma L. Hesketh, Neil A. Ranson, and George P. Lomonossoff. "Combining high-resolution cryo-electron microscopy and mutagenesis to develop cowpea mosaic virus for bionanotechnology." Biochemical Society Transactions 45, no. 6 (2017): 1263–69. http://dx.doi.org/10.1042/bst20160312.
Full textLi, Tian-Cheng, Naokazu Takeda, Tatsuo Miyamura, et al. "Essential Elements of the Capsid Protein for Self-Assembly into Empty Virus-Like Particles of Hepatitis E Virus." Journal of Virology 79, no. 20 (2005): 12999–3006. http://dx.doi.org/10.1128/jvi.79.20.12999-13006.2005.
Full textKimura, Tatsuji, Nobuhiko Ohno, Nobuo Terada, et al. "Hepatitis B Virus DNA-negative Dane Particles Lack Core Protein but Contain a 22-kDa Precore Protein without C-terminal Arginine-rich Domain." Journal of Biological Chemistry 280, no. 23 (2005): 21713–19. http://dx.doi.org/10.1074/jbc.m501564200.
Full textEricson, Brad L., Darby J. Carlson, and Kimberly A. Carlson. "Characterization of Nora Virus Structural Proteins via Western Blot Analysis." Scientifica 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9067848.
Full textBertioli, D. J., R. D. Harris, M. L. Edwards, J. I. Cooper, and W. S. Hawes. "Transgenic Plants and Insect Cells Expressing the Coat Protein of Arabis Mosaic Virus Produce Empty Virus-like Particles." Journal of General Virology 72, no. 8 (1991): 1801–9. http://dx.doi.org/10.1099/0022-1317-72-8-1801.
Full textYuste-Calvo, Carmen, Pablo Ibort, Flora Sánchez, and Fernando Ponz. "Turnip Mosaic Virus Coat Protein Deletion Mutants Allow Defining Dispensable Protein Domains for ‘in Planta’ eVLP Formation." Viruses 12, no. 6 (2020): 661. http://dx.doi.org/10.3390/v12060661.
Full textKlut, M. Emilia, and John G. Stockner. "Virus-Like Particles in an Ultra-Oligotrophic Lake on Vancouver Island, British Columbia." Canadian Journal of Fisheries and Aquatic Sciences 47, no. 4 (1990): 725–30. http://dx.doi.org/10.1139/f90-082.
Full textKim, Hyun-Soon, Jae-Heung Jeon, Kyung Jin Lee, and Kisung Ko. "N-Glycosylation Modification of Plant-Derived Virus-Like Particles: An Application in Vaccines." BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/249519.
Full textGranato, Marisa, Regina Feederle, Antonella Farina, et al. "Deletion of Epstein-Barr Virus BFLF2 Leads to Impaired Viral DNA Packaging and Primary Egress as Well as to the Production of Defective Viral Particles." Journal of Virology 82, no. 8 (2008): 4042–51. http://dx.doi.org/10.1128/jvi.02436-07.
Full textRen, Yupeng, Sek-Man Wong, and Lee-Yong Lim. "In vitro-reassembled plant virus-like particles for loading of polyacids." Journal of General Virology 87, no. 9 (2006): 2749–54. http://dx.doi.org/10.1099/vir.0.81944-0.
Full textStrugała, Aleksander, Jakub Jagielski, Karol Kamel, et al. "Virus-Like Particles Produced Using the Brome Mosaic Virus Recombinant Capsid Protein Expressed in a Bacterial System." International Journal of Molecular Sciences 22, no. 6 (2021): 3098. http://dx.doi.org/10.3390/ijms22063098.
Full textSakaguchi, Takemasa, Atsushi Kato, Fumihiro Sugahara, et al. "AIP1/Alix Is a Binding Partner of Sendai Virus C Protein and Facilitates Virus Budding." Journal of Virology 79, no. 14 (2005): 8933–41. http://dx.doi.org/10.1128/jvi.79.14.8933-8941.2005.
Full textLi, Tian-Cheng, Kumiko Yoshimatsu, Shumpei P. Yasuda, et al. "Characterization of self-assembled virus-like particles of rat hepatitis E virus generated by recombinant baculoviruses." Journal of General Virology 92, no. 12 (2011): 2830–37. http://dx.doi.org/10.1099/vir.0.034835-0.
Full textPatient, Romuald, Christophe Hourioux, Pierre-Yves Sizaret, Sylvie Trassard, Camille Sureau, and Philippe Roingeard. "Hepatitis B Virus Subviral Envelope Particle Morphogenesis and Intracellular Trafficking." Journal of Virology 81, no. 8 (2007): 3842–51. http://dx.doi.org/10.1128/jvi.02741-06.
Full textLi, Tian-Cheng, Jing Zhang, Haruhide Shinzawa, et al. "Empty virus-like particle-based enzyme-linked immunosorbent assay for antibodies to hepatitis E virus." Journal of Medical Virology 62, no. 3 (2000): 327–33. http://dx.doi.org/10.1002/1096-9071(200011)62:3<327::aid-jmv4>3.0.co;2-1.
Full textSrivastava, Vartika, Kripa N. Nand, Aijaz Ahmad, and Ravinder Kumar. "Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery." Vaccines 11, no. 2 (2023): 479. http://dx.doi.org/10.3390/vaccines11020479.
Full textKerstetter-Fogle, Shukla, Wang, et al. "Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy." Cancers 11, no. 4 (2019): 515. http://dx.doi.org/10.3390/cancers11040515.
Full textZamani-Babgohari, Mahbobeh, Kathleen L. Hefferon, Tsu Huang, and Mounir G. AbouHaidar. "How Computational Epitope Mapping Identifies the Interactions between Nanoparticles Derived from Papaya Mosaic Virus Capsid Proteins and Immune System." Current Genomics 20, no. 3 (2019): 214–25. http://dx.doi.org/10.2174/1389202920666190527080230.
Full textDalba, Charlotte, Bertrand Bellier, Noriyuki Kasahara, and David Klatzmann. "Replication-competent Vectors and Empty Virus-like Particles: New Retroviral Vector Designs for Cancer Gene Therapy or Vaccines." Molecular Therapy 15, no. 3 (2007): 457–66. http://dx.doi.org/10.1038/sj.mt.6300054.
Full textChen, Chao, Joseph Che-Yen Wang, Elizabeth E. Pierson та ін. "Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes". PLOS Pathogens 12, № 8 (2016): e1005802. http://dx.doi.org/10.1371/journal.ppat.1005802.
Full textGoldmann, Claudia, Harald Petry, Stephan Frye, et al. "Molecular Cloning and Expression of Major Structural Protein VP1 of the Human Polyomavirus JC Virus: Formation of Virus-Like Particles Useful for Immunological and Therapeutic Studies." Journal of Virology 73, no. 5 (1999): 4465–69. http://dx.doi.org/10.1128/jvi.73.5.4465-4469.1999.
Full textRieser, Ruth, Johanna Koch, Greta Faccioli, et al. "Comparison of Different Liquid Chromatography-Based Purification Strategies for Adeno-Associated Virus Vectors." Pharmaceutics 13, no. 5 (2021): 748. http://dx.doi.org/10.3390/pharmaceutics13050748.
Full textWeerachatyanukul, Wattana, Pauline Kiatmetha, Ponlawoot Raksat, et al. "Viral Capsid Change upon Encapsulation of Double-Stranded DNA into an Infectious Hypodermal and Hematopoietic Necrosis Virus-like Particle." Viruses 15, no. 1 (2022): 110. http://dx.doi.org/10.3390/v15010110.
Full textDepta, Philipp Nicolas, Maksym Dosta, Wolfgang Wenzel, Mariana Kozlowska, and Stefan Heinrich. "Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles." International Journal of Molecular Sciences 23, no. 23 (2022): 14699. http://dx.doi.org/10.3390/ijms232314699.
Full textSaunders, Keith, Frank Sainsbury, and George P. Lomonossoff. "Efficient generation of cowpea mosaicvirus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants." Virology 393, no. 2 (2009): 329–37. http://dx.doi.org/10.1016/j.virol.2009.08.023.
Full textDuran-Meza, A. L., M. V. Villagrana-Escareño, J. Ruiz-García, C. M. Knobler, and W. M. Gelbart. "Controlling the surface charge of simple viruses." PLOS ONE 16, no. 9 (2021): e0255820. http://dx.doi.org/10.1371/journal.pone.0255820.
Full textLi, Haozhou, Aldo Dekker, Shiqi Sun, Alison Burman, Jeroen Kortekaas, and Michiel M. Harmsen. "Novel Capsid-Specific Single-Domain Antibodies with Broad Foot-and-Mouth Disease Strain Recognition Reveal Differences in Antigenicity of Virions, Empty Capsids, and Virus-Like Particles." Vaccines 9, no. 6 (2021): 620. http://dx.doi.org/10.3390/vaccines9060620.
Full textSokullu, Esen, Hoda Soleymani Abyaneh, and Marc A. Gauthier. "Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics." Pharmaceutics 11, no. 5 (2019): 211. http://dx.doi.org/10.3390/pharmaceutics11050211.
Full textMani, Bernhard, Claudia Baltzer, Noelia Valle, José M. Almendral, Christoph Kempf, and Carlos Ros. "Low pH-Dependent Endosomal Processing of the Incoming Parvovirus Minute Virus of Mice Virion Leads to Externalization of the VP1 N-Terminal Sequence (N-VP1), N-VP2 Cleavage, and Uncoating of the Full-Length Genome." Journal of Virology 80, no. 2 (2006): 1015–24. http://dx.doi.org/10.1128/jvi.80.2.1015-1024.2006.
Full textSilvestri, Lynn S., M. Alejandra Tortorici, Rodrigo Vasquez-Del Carpio, and John T. Patton. "Rotavirus Glycoprotein NSP4 Is a Modulator of Viral Transcription in the Infected Cell." Journal of Virology 79, no. 24 (2005): 15165–74. http://dx.doi.org/10.1128/jvi.79.24.15165-15174.2005.
Full textSakaguchi, Takemasa, Tsuneo Uchiyama, Cheng Huang, et al. "Alteration of Sendai Virus Morphogenesis and Nucleocapsid Incorporation due to Mutation of Cysteine Residues of the Matrix Protein." Journal of Virology 76, no. 4 (2002): 1682–90. http://dx.doi.org/10.1128/jvi.76.4.1682-1690.2002.
Full textde Souza, Theo Luiz Ferraz, Sheila Maria Barbosa de Lima, Vanessa L. de Azevedo Braga, et al. "Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein." PeerJ 4 (November 9, 2016): e2670. http://dx.doi.org/10.7717/peerj.2670.
Full textCao, Yimei, Zengjun Lu, Jiachuan Sun, et al. "Synthesis of empty capsid-like particles of Asia I foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs." Veterinary Microbiology 137, no. 1-2 (2009): 10–17. http://dx.doi.org/10.1016/j.vetmic.2008.12.007.
Full textWerr, Margaret, and Reinhild Prange. "Role for Calnexin and N-Linked Glycosylation in the Assembly and Secretion of Hepatitis B Virus Middle Envelope Protein Particles." Journal of Virology 72, no. 1 (1998): 778–82. http://dx.doi.org/10.1128/jvi.72.1.778-782.1998.
Full textCastón, José R., Jorge L. Martı́nez-Torrecuadrada, Antonio Maraver, et al. "C Terminus of Infectious Bursal Disease Virus Major Capsid Protein VP2 Is Involved in Definition of the T Number for Capsid Assembly." Journal of Virology 75, no. 22 (2001): 10815–28. http://dx.doi.org/10.1128/jvi.75.22.10815-10828.2001.
Full textKontou, Maria, Lakshmanan Govindasamy, Hyun-Joo Nam, et al. "Structural Determinants of Tissue Tropism and In Vivo Pathogenicity for the Parvovirus Minute Virus of Mice." Journal of Virology 79, no. 17 (2005): 10931–43. http://dx.doi.org/10.1128/jvi.79.17.10931-10943.2005.
Full textAhi, Yadvinder S., Sai V. Vemula, and Suresh K. Mittal. "Adenoviral E2 IVa2 protein interacts with L4 33K protein and E2 DNA-binding protein." Journal of General Virology 94, no. 6 (2013): 1325–34. http://dx.doi.org/10.1099/vir.0.049346-0.
Full textLockhart, B. E. L. "Occurrence of Arabis mosaic virus in Hostas in the United States." Plant Disease 90, no. 6 (2006): 834. http://dx.doi.org/10.1094/pd-90-0834c.
Full textXie, Yinli, Haitao Li, Xingcai Qi, et al. "Immunogenicity and protective efficacy of a novel foot-and-mouth disease virus empty-capsid-like particle with improved acid stability." Vaccine 37, no. 14 (2019): 2016–25. http://dx.doi.org/10.1016/j.vaccine.2019.02.032.
Full text