Contents
Academic literature on the topic 'Emulsion eau-dans-huile'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Emulsion eau-dans-huile.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Emulsion eau-dans-huile"
Dridi, Wafa. "Influence de la formulation sur l'oxydation des huiles végétales en émulsion eau-dans-huile." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0102/document.
Full textOxidation is ubiquitous in lipids and causes degradation of organoleptic and nutritional qualities of foods. Lipid oxidation depends on various parameters (temperature, light, transition metals, lipid dispersion state …) that have to be controlled during food processing and storage. In this context, lipid oxidation was followed by measuring the content of primary oxidation products, for lipids in bulk phase and in water-in-oil emulsions. Different edible oils were chosen for their contents of α-linolenic acid (18: 3 n-3). Emulsions were formulated at varying polyglycerol polyricinoleate (PGPR)/distilled monoglycerides concentration ratios (surfactant ratio), with or without the presence of pro-oxydant metals or chelators. In all experiments, the aqueous volume fraction (40%) and the droplet mean diameter (1 μm) remained constant. Besides this study, an innovative and rapid method based on differential microcalorimetry was developed for monitoring the kinetics of lipid oxidation. The oxidability of the studied oils was related to their content in α-linolenic acid according the following order: linseed oil> camelina oil> rapeseed oil> olive oil. The rate of lipid oxidation increased with the iron sulfate concentration in the water phase. The iron valence or the replacement of iron by copper had no significant impact on the oxidation kinetics. However, both the chemical nature of the counter ion (molecular weight, chelating power) and the proportion of PGPR used to stabilize the emulsions were influential factors. On the whole, our results suggest that surfactants at the water-oil interface do not prevent pro-oxidant species to interact with lipids in the continuous phase but that their organization at the interface is a key parameter for controlling lipid oxidation
Colombel, Emilie. "Cristallisation et agglomération de particules d'hydrate de fréon dans une émulsion eau dans huile : étude expérimentale et modélisation." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2008. http://tel.archives-ouvertes.fr/tel-00372517.
Full textCette étude à pour but d'améliorer la compréhension de ce mécanisme d'agglomération, dans le cas d'une émulsion eau dans huile. Par conséquent, l'agglomération des particules de glace et d'hydrate est comparée. L'agglomération des particules de glace et d'hydrate de trichlorofluoromethane ou fréon (CCl3F) dispersées dans le xylène avec des asphaltènes comme tensioactif est choisie comme système modèle. Comme les hydrates de trichlorofluoromethane (CCl3F) sont stables à pression atmosphérique, ils permettent d'utiliser des techniques d'analyses sans être limité par les conditions de pression. La technique de Résonance Magnétique Nucléaire RMN est utilisée. La grande différence entre le temps de relaxation des solides et des liquides est utilisée afin de contrôler in situ le rapport entre la quantité d'entités (hydrogène ou fluor) solides et total en fonction du temps et des conditions contrôlées de cisaillement. Ainsi, une étude cinétique est réalisée, ce qui permet de connaître la quantité de glace ou d'hydrate formée ; La viscosité apparente du système, pendant la cristallisation et le bouchage, est également suivie grâce à des mesures rhéologiques afin de caractériser l'agglomération des particules. Pour compléter cette étude, des observations en microscopie optique avec une cellule thermostatée est utilisée afin d'obtenir des observations directes de l'agglomération. Cette approche expérimentale nous permet de discuter des différents mécanismes d'agglomération de la glace et de l'hydrate dans une phase hydrocarbure et de les modéliser.
Molle, Boris. "Etude des propriétés dynamiques de structures cellulaires formées dans un système eau/huile/surfactant/alcool." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE10249.
Full textLignel, Sarah. "Emulsions eau-dans-huile générées par un procédé microfluidique : contribution à l'étude de la congélation de l'eau dispersée en émulsion." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2143/document.
Full textThis thesis takes place in the framework of the European project FASES (Fundamentaland Applied Studies on Emulsion Stability). The aim of this project is to understand the phenomena responsible for emulsions destabilization, in relation with the interfacial properties of these systems. The research work described in this thesis is divided into twoparts : the first part deals with the creation of water-in-oil emulsion droplets in a microfluidic device, and in the second part, the influence of the size and the state of dispersion of the droplets on the crystallization of dispersed water is analyzed.To begin with, the operating conditions required to create emulsion droplets by microfluidic were studied. Two modes of introduction of the liquid phases, based on flow and pressure-driven techniques, were used to create the droplets. Maps of the droplet formation regions were drawn as a function of the applied flow rates and pressures. In order to compare the two processes, a model based on the analogy between electrical and microfluidic circuits was proposed.Then, emulsions obtained with the microfluidic device were analyzed by calorimetry and thermo-microscopy. The experimental results evidenced different droplet crystallization processes, depending on the system parameters (oil phase viscosity, droplet size …). The water freezing signals strongly depend on the state of dispersion of the droplets, showing themajor role of droplet sedimentation in the emulsion destabilization process
Wardhono, Endarto Yudo. "Optimization of concentrated W/O emulsions : stability, trapping and release of polysaccharides." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1814/document.
Full textThis study is a part of the European project VEGEPHY (VEGEtale-PHYtosanitaire) to develop a product for the crop protection purposes. The product is a concentrated W/O emulsion trapping of a polysaccharide in the aqueous phase and rapeseed methyl ester oil as a continuous phase. Polysaccharide is used as a thickening adjuvant to modify the rheology properties of the water-based spray solution in order to reduce the drift of thespray. The objective of this study is to formulate concentrated W/O emulsions incorporation with the maximum amount of polysaccharide which show long stability (for over 2 years) and to study the release mechanism of polysaccharide in suitable conditions with a goal of an efficiency time less than 600 seconds.Concentrated W/O emulsions were realized by using a rotor stator system at room temperature. Aqueous phase containing polysaccharide and glycerol was dispersed into the stirred oil continuous phase where in a surfactant (lecithin and/or polyglycerol polyricinoleate, PGPR) has been previously dissolved. Stability tests were performed immediately after preparation and after ageing tests. Various parameters having an influence on thestability have been interpreted from DSC thermogram parallel with microscopic observation, laser diffraction granulometry and rheology measurement. DSC technique was used to study the emulsions by following the evolution of the droplet size versus time. Thermal behaviour of emulsions may be evaluated when they under gofreezing and melting in which the proportion of ice formed in the droplets may be calculated and their link with the evolution of the emulsion versus time. The release of the polysaccharide (CarboxyMethyl Cellulose, CMC)from the emulsion system is obtained by a two steps process : destabilization of the primary W/O emulsion by achemical product and dilution in water that gives an O/W emulsion containing the required concentration of polysaccharide. Destabilization was observed by following the evolution of dispersed droplets using DSC. Dilution process was assessed by measuring electrical conductivity of the water solution and a mathematical model to represent the kinetic release of CMC in water was proposed.The formulation and the stability of concentrated W/O emulsion has shown that DSC completed with granulometry and rheometry is an appropriate technique to study the emulsion characteristics. The study offreezing behaviour of emulsions show that the proportion of ice formed in the dispersed droplets during DSC test indicates good agreement between DSC measurements and thermodynamics calculation. The use of PGPRas surfactant and the introduction of glycerol in the formulation are beneficial to improve the long‐term stabilityof the emulsion. The optimum formulation of concentrated W/O emulsion was obtained containing : 3.5% w/wof CMC, 10% w/w of glycerol in 75% v/v of dispersed phase and 14% w/w of PGPR in the continuous phase. From the release study, an empirical model may be used to describe the released kinetic. The optimum amount of nonionic surfactant Cynthiorex PMH 1125 to break primary W/O emulsion was found at 10% w/w in the primary emulsion with NRe ≥ 4200 and T ≥ 20°C. Under practical field conditions, the minimum release time isthen around 200 seconds
Vernay, Clara. "Déstabilisation de nappes liquides d'émulsions diluées." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS199/document.
Full textOne of the major environmental issues related to spraying of pesticides on cultivated crops is the drift phenomenon. Because of the wind, small droplets may drift away from the targeted crop and cause contamination. One way to reduce the drift is to control the spray drop size distribution and reduce the proportion of small drops. In this context, anti-drift additives have been developed, including dilute oil-in-water emulsions. Although being documented, the effects of oil-in-water emulsions on spray drop size distribution are not yet understood. The objective of this thesis is to determine the mechanisms at the origin of the changes of the spray drop size distribution for emulsion-based sprays.Agricultural spraying involves atomizing a liquid stream through a hydraulic nozzle. At the exit of the nozzle, a free liquid sheet is formed, which is subsequently destabilized into droplets. In order to elucidate the mechanisms causing the changes of the spray drop size distribution, we investigate the influence of emulsions on the destabilization mechanisms of liquid sheets. Model single-tear experiments based on the collision of one tear of liquid on a small solid target are used to produce and visualize liquid sheets with a fast camera. Upon impact, the tear flattens into a sheet radially expanding in the air bounded by a thicker rim. Different destabilization mechanisms of the sheet are observed depending on the fluid properties. A pure water sheet spreads out radially and then retracts due to the effect of surface tension. Simultaneously, the rim corrugates forming radial ligaments, which are subsequently destabilized into droplets. The destabilization mechanism is drastically modified when a dilute oil-in-water emulsion is used. Emulsion-based liquid sheets are destabilized through the nucleation of holes within the sheet that perforate the sheet during its expansion. The holes grow until they merge together and form a web of ligaments, which are then destabilized into drops.The physical-chemical parameters of the emulsion, such as emulsion concentration and emulsion droplet size distribution, are modified to rationalize their influence on the perforation mechanism. We correlate the size distribution of drops issued from conventional agricultural spray with the amount of perforation events in single-tear experiments, demonstrating that the single-tear experiment is an appropriate model experiment to investigate the physical mechanisms governing the spray drop size distribution of anti-drift formulations. We show that the relevant mechanism causing the increase of drops size in the emulsion-based spray is a perforation mechanism.To gain an understanding of the physical mechanisms at the origin of the perforation events, we develop an optical technique that allows the determination of the time and space-resolved thickness of the sheet. We find that the formation of a hole in the sheet is systematically preceded by a localized thinning of the liquid film. We show that the thinning results from the entering and Marangoni-driven spreading of emulsion oil droplet at the air/water interface. The localized thinning of the liquid film ultimately leads to the rupture of the film. We propose the perforation mechanism as a sequence of two necessary steps: the emulsion oil droplets (i) enter the air/water interface, and (ii) spread at the interface. We show that the formulation of the emulsion is a critical parameter to control the perforation. The addition of salt or amphiphilic copolymers can trigger or completely inhibit the perforation mechanism. We show that the entering of oil droplets at the air/water interface is the limiting step of the mechanism. Thin-film forces such as electrostatic or steric repulsion forces stabilize the thin film formed between the interface and the approaching oil droplets preventing the entering of oil droplets at the interface and so inhibit the perforation process
Caubet, Sylvain. "PROCEDES BASSE ENERGIE POUR LA PRODUCTION D'EMULSIONS TRES CONCENTREES HUILE DANS EAU : CARACTERISATION, INTENSIFICATION ET APPLICATIONS." Phd thesis, Université de Pau et des Pays de l'Adour, 2010. http://tel.archives-ouvertes.fr/tel-00609838.
Full textCaubet, Sylvain. "Procédés basse énergie pour la production d’émulsions très concentrées huile dans eau : caractérisation, intensification et applications." Pau, 2010. http://www.theses.fr/2010PAUU3035.
Full textHigh Internal Phase Ratio (HIPR) emulsions are encountered in a wide variety of industrial applications: agrochemicals, petrochemical, cosmetics etc. The aim of this study is to characterize a new low energy mixer called two-rod mixer (TRM). This TRM allows the creation in one step of HIPR emulsion of viscous oil (91%) in water. The different phases of the HIPR emulsification in the batch TRM (B-TRM) have been highlighted, as well as their characteristics times. We show that it is possible to control the droplet size distribution and so the properties of the HIPR made. Furthermore, the energy input during the emulsification is relatively low. Lastly, this batch process has been transposed in a continuous one (C-TRM) that conserves the main characteristics of the batch process: controlled production of uni-modal HIPR emulsion with a low energetic cost and without heating of fluids
Quintero, Carlos Gerardo. "Comportement rhéologique et propriétés interfaciales des systèmes émulsionnés d'intérêt industriel : cas des émulsions pétrolières E/H." Paris 11, 2008. http://www.theses.fr/2008PA114835.
Full textRheological properties of crude oil-in-water emulsions studied, as well as the properties of the interface. Viscoelastic, plastic and flow behavior was studied. Viscosity as a function of phase ratio provides an exponential trend (Richardson’s Law). Crude oil has a very different rheological behaviour at temperatures upper or lower than 23°C, corresponding to paraffin’s precipitation point. The properties of concentrated emulsions can be modeled according Princen’s theories. The rheological behavior of the interface was characterized through measurements of the viscoelastic properties, using a drop oscillating rheometer. It was verified the formation of a gel at the interface according to the Law of Winter and Chambon. The crude oil composition and the volume fraction of the dispersed phase are very important factors to describe the rheological properties of these emulsions
Bonnet, Marie. "Libération contrôlée du magnésium par des émulsions doubles : impact des paramètres de formulation." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13669/document.
Full textDouble water-in-oil-in-water (W/O/W) emulsions are systems in which fat globules are dispersed in an aqueous continuous phase. They provide a compartmented structure that allows the encapsulation of hydrosoluble compounds in the internal aqueous droplets. Nevertheless, the application of multiple emulsions is limited by their thermodynamical instability and the possible diffusion of hydrosoluble matter from one aqueous phase to the other one through the oil layer. In this context, the influence of several formulation parameters (oil nature, hydrophilic emulsifier concentration, oil globule mass fraction, complexation of the encapsulated species) was investigated relatively to magnesium release. All the ingredients used were food grade to match pharmaceutical and food application requirements. Magnesium leakage occurred without film rupturing. A model based on diffusion was proposed in which the rate of release was determined by the permeation coefficient of magnesium across the oil phase, by magnesium chelation and by the osmotic pressure mismatch between the internal and external aqueous phases. The permeation coefficient depended on the chelating agent location and concentration but was poorly influenced by the osmotic pressure. Moreover, the permeation coefficient evolved with time, especially at high oil globule fractions