Academic literature on the topic 'Endosomal Sorting Complexes Required for Transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Endosomal Sorting Complexes Required for Transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Endosomal Sorting Complexes Required for Transport"

1

Nickerson, Daniel P., Matthew West, and Greg Odorizzi. "Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes." Journal of Cell Biology 175, no. 5 (November 27, 2006): 715–20. http://dx.doi.org/10.1083/jcb.200606113.

Full text
Abstract:
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.
APA, Harvard, Vancouver, ISO, and other styles
2

Bache, Kristi G., Andreas Brech, Anja Mehlum, and Harald Stenmark. "Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes." Journal of Cell Biology 162, no. 3 (August 4, 2003): 435–42. http://dx.doi.org/10.1083/jcb.200302131.

Full text
Abstract:
Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs causes a reduction in membrane-associated ESCRT-I subunits, a decreased number of multivesicular bodies and an increased size of late endosomes. Even though Hrs mainly localizes to early endosomes and Tsg101 to late endosomes, the two proteins colocalize on a subpopulation of endosomes that contain lyso-bisphosphatidic acid. Overexpression of Hrs causes accumulation of Tsg101 on early endosomes and prevents its localization to late endosomes. We conclude that Hrs mediates the initial recruitment of ESCRT-I to endosomes and, thereby, indirectly regulates multivesicular body formation.
APA, Harvard, Vancouver, ISO, and other styles
3

Dukes, Joseph D., Judith D. Richardson, Ruth Simmons, and Paul Whitley. "A dominant-negative ESCRT-III protein perturbs cytokinesis and trafficking to lysosomes." Biochemical Journal 411, no. 2 (March 27, 2008): 233–39. http://dx.doi.org/10.1042/bj20071296.

Full text
Abstract:
In eukaryotic cells, the completion of cytokinesis is dependent on membrane trafficking events to deliver membrane to the site of abscission. Golgi and recycling endosomal-derived proteins are required for the terminal stages of cytokinesis. Recently, protein subunits of the ESCRT (endosomal sorting complexes required for transport) that are normally involved in late endosome to lysosome trafficking have also been implicated in abscission. Here, we report that a subunit, CHMP3 (charged multivesicular body protein-3), of ESCRT-III localizes at the midbody. Deletion of the C-terminal autoinhibitory domain of CHMP3 inhibits cytokinesis. At the midbody, CHMP3 does not co-localize with Rab11, suggesting that it is not present on recycling endosomes. These results combined provide compelling evidence that proteins involved in late endosomal function are necessary for the end stages of cytokinesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Bache, Kristi G., Susanne Stuffers, Lene Malerød, Thomas Slagsvold, Camilla Raiborg, Delphine Lechardeur, Sébastien Wälchli, Gergely L. Lukacs, Andreas Brech, and Harald Stenmark. "The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor." Molecular Biology of the Cell 17, no. 6 (June 2006): 2513–23. http://dx.doi.org/10.1091/mbc.e05-10-0915.

Full text
Abstract:
The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling.
APA, Harvard, Vancouver, ISO, and other styles
5

Shideler, Tess, Daniel P. Nickerson, Alexey J. Merz, and Greg Odorizzi. "Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9." Molecular Biology of the Cell 26, no. 7 (April 2015): 1345–56. http://dx.doi.org/10.1091/mbc.e14-06-1156.

Full text
Abstract:
Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.
APA, Harvard, Vancouver, ISO, and other styles
6

Luzio, J. Paul, Michael D. J. Parkinson, Sally R. Gray, and Nicholas A. Bright. "The delivery of endocytosed cargo to lysosomes." Biochemical Society Transactions 37, no. 5 (September 21, 2009): 1019–21. http://dx.doi.org/10.1042/bst0371019.

Full text
Abstract:
In mammalian cells, endocytosed cargo that is internalized through clathrin-coated pits/vesicles passes through early endosomes and then to late endosomes, before delivery to lysosomes for degradation by proteases. Late endosomes are MVBs (multivesicular bodies) with ubiquitinated membrane proteins destined for lysosomal degradation being sorted into their luminal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery. Cargo is delivered from late endosomes to lysosomes by kissing and direct fusion. These processes have been studied in live cell experiments and a cell-free system. Late endosome–lysosome fusion is preceded by tethering that probably requires mammalian orthologues of the yeast HOPS (homotypic fusion and vacuole protein sorting) complex. Heterotypic late endosome–lysosome membrane fusion is mediated by a trans-SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex comprising Syntaxin7, Vti1b, Syntaxin8 and VAMP7 (vesicle-associated membrane protein 7). This differs from the trans-SNARE complex required for homotypic late endosome fusion in which VAMP8 replaces VAMP7. VAMP7 is also required for lysosome fusion with the plasma membrane and its retrieval from the plasma membrane to lysosomes is mediated by its folded N-terminal longin domain. Co-ordinated interaction of the ESCRT, HOPS and SNARE complexes is required for cargo delivery to lysosomes.
APA, Harvard, Vancouver, ISO, and other styles
7

Herz, Hans-Martin, and Andreas Bergmann. "Genetic analysis of ESCRT function in Drosophila: a tumour model for human Tsg101." Biochemical Society Transactions 37, no. 1 (January 20, 2009): 204–7. http://dx.doi.org/10.1042/bst0370204.

Full text
Abstract:
Class E Vps (vacuolar protein sorting) proteins are components of the ESCRTs (endosomal sorting complexes required for transport) which are required for protein sorting at the early endosome. Most of these genes have been identified and genetically characterized in yeast. Recent genetic studies in Drosophila have revealed the phenotypic consequences of loss of vps function in multicellular organisms. In the present paper, we review these studies and discuss a mechanism which may explain how loss of the human Tsg101 (tumour susceptibility gene 101), a vps23 orthologue, causes tumours.
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Brian A., Ishara F. Azmi, and David J. Katzmann. "Regulation of Vps4 ATPase activity by ESCRT-III." Biochemical Society Transactions 37, no. 1 (January 20, 2009): 143–45. http://dx.doi.org/10.1042/bst0370143.

Full text
Abstract:
MVB (multivesicular body) formation occurs when the limiting membrane of an endosome invaginates into the intraluminal space and buds into the lumen, bringing with it a subset of transmembrane cargoes. Exvagination of the endosomal membrane from the cytosol is topologically similar to the budding of retroviral particles and cytokinesis, wherein membranes bud away from the cytoplasm, and the machinery responsible for MVB sorting has been implicated in these phenomena. The AAA (ATPase associated with various cellular activities) Vps4 (vacuolar protein sorting 4) performs a critical function in the MVB sorting pathway. Vps4 appears to dissociate the ESCRTs (endosomal sorting complexes required for transport) from endosomal membranes during the course of MVB sorting, but it is unclear how Vps4 ATPase activity is synchronized with ESCRT release. We have investigated the mechanisms by which ESCRT components stimulate the ATPase activity of Vps4. These studies support a model wherein Vps4 activity is subject to spatial and temporal regulation via distinct mechanisms during MVB sorting.
APA, Harvard, Vancouver, ISO, and other styles
9

Rodahl, Lina M., Susanne Stuffers, Viola H. Lobert, and Harald Stenmark. "The role of ESCRT proteins in attenuation of cell signalling." Biochemical Society Transactions 37, no. 1 (January 20, 2009): 137–42. http://dx.doi.org/10.1042/bst0370137.

Full text
Abstract:
The ESCRT (endosomal sorting complex required for transport) machinery consists of four protein complexes that mediate sorting of ubiquitinated membrane proteins into the intraluminal vesicles of multivesicular endosomes, thereby targeting them for degradation in lysosomes. In the present paper, we review how ESCRT-mediated receptor down-regulation affects signalling downstream of Notch and growth factor receptors, and how ESCRTs may control cell proliferation, survival and cytoskeletal functions and contribute to tumour suppression.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Junbing, Jinchao Liu, Anne Norris, Barth D. Grant, and Xiaochen Wang. "A novel requirement for ubiquitin-conjugating enzyme UBC-13 in retrograde recycling of MIG-14/Wntless and Wnt signaling." Molecular Biology of the Cell 29, no. 17 (August 15, 2018): 2098–112. http://dx.doi.org/10.1091/mbc.e17-11-0639.

Full text
Abstract:
After endocytosis, transmembrane cargoes such as signaling receptors, channels, and transporters enter endosomes where they are sorted to different destinations. Retromer and ESCRT (endosomal sorting complex required for transport) are functionally distinct protein complexes on endosomes that direct cargo sorting into the recycling retrograde transport pathway and the degradative multivesicular endosome pathway (MVE), respectively. Cargoes destined for degradation in lysosomes are decorated with K63-linked ubiquitin chains, which serve as an efficient sorting signal for entry into the MVE pathway. Defects in K63-linked ubiquitination disrupt MVE sorting and degradation of membrane proteins. Here, we unexpectedly found that UBC-13, the E2 ubiquitin-conjugating enzyme that generates K63-linked ubiquitin chains, is essential for retrograde transport of multiple retromer-dependent cargoes including MIG-14/Wntless. Loss of ubc-13 disrupts MIG-14/Wntless trafficking from endosomes to the Golgi, causing missorting of MIG-14 to lysosomes and impairment of Wnt-dependent processes. We observed that retromer-associated SNX-1 and the ESCRT-0 subunit HGRS-1/Hrs localized to distinct regions on a common endosome in wild type but overlapped on ubc-13(lf) endosomes, indicating that UBC-13 is important for the separation of retromer and ESCRT microdomains on endosomes. Our data suggest that cargo ubiquitination mediated by UBC-13 plays an important role in maintaining the functionally distinct subdomains to ensure efficient cargo segregation on endosomes.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Endosomal Sorting Complexes Required for Transport"

1

Simões, alves Sabrina. "Roles of the Endosomal Sorting Complexes Required for Transport (ESCRTs) in the biogenesis of Lysosome Related Organelles." Paris 5, 2011. http://www.theses.fr/2011PA05T007.

Full text
Abstract:
Les mélanosomes sont des compartiments membranaires appartenant à la famille des organites apparentés aux lysosomes. Générés par des cellules spécialisées, comme les mélanocytes de la peau, ils synthétisent et stockent un pigment : la mélanine. Leur biogenèse s’organise en une série d’évènements séquentiels au cours desquels la formation d’un organite immature “non pigmenté” précède la génération d’un mélanosome mature “pigmenté”. Pour ce faire, le mélanocyte spécialise une partie de son trafic intracellulaire pour transporter, de manière régulée mélanosomes, les composants structuraux qui le composent et les enzymes synthétisant le pigment. En effet doivent être transportés de manière régulée aux mélanosomes en formation. Mon travail de thèse a porté sur les mécanismes ubiquitaires du transport intracellulaire qui coordonnent la spécialisation du système endosomal dans les mélanocytes. Dans ce contexte, j'ai étudié le rôle de différentes machineries de tri endosomal, tels que « the Endosomal Sorting Complex Required for Transport » (ESCRTs) et les tétraspanines au cours de la biogenèse des mélanosomes. Je me suis appuyée sur une combinaison de méthodes biochimiques et morphologiques, incluant la microscopie électronique à haute résolution pour montrer que les machineries tétraspanines et ESCRTs contrôlent respectivement la biogenèse précoce et tardive des mélanosomes. En effet, le tri endosomal de la protéine prémélanosomale Pmel17 est dépendant de la tétraspanine CD63 mais indépendant de la machinerie ESCRT (-­‐II et –III). J’ai également montré que l’enzyme mélanogénique Tyrp1 est transporté aux mélanosomes via des intermédiaires endosomaux post-­‐Golgiens, processus dépendante de ESCRT-­‐I et –III. De plus, j'ai décrit que deux sous-complexes de ESCRT-­‐III (hVps20-­‐hVps32 et hVps2-­‐hVps24) s’associent respectivement à deux populations de mélanosomes distinctes (précoces et tardifs). J’ai pu également mettre en évidence un nouveau rôle de la sous-­‐unité hVps24 dans les processus de fusions membranaires nécessaires à la maturation des mélanosomes. Mon travail de thèse a contribué à une meilleure compréhension du processus de la biogenèse des mélanosomes, en montrant comment le trafic intracellulaire est exploité par les mélanocytes de la peau afin de générer un organite hautement spécialisé. Mes résultats ont également mis en lumière l’articulation qui s’opère entre mécanismes dépendant et indépendant des ESCRTs au cours de la biogenèse des mélanosomes
Melanosomes are Lysosome Related Organelles of pigment cells in which melanin pigments are synthesized and stored. Melanosome biogenesis proceeds through a sequential process in which an unpigmented precursor matures into a melanin containing melanosome that remains distinct from lysosomes. This process requires morphogenetic and structural modifications of endosomal intermediates accompanied by inter-organellar transport of melanocyte-specific components required for melanosome structure and pigment synthesis. The aim of my PhD project was to better understand how ubiquitous mechanisms of endosomal sorting and intracellular transport operate in the modulation of the endosomal system to generate melanosomes. In this context, I have investigated the function of different endosomal sorting machineries, such as the Endosomal Sorting Complexes Required for Transport (ESCRTs) and Tetraspanins. Using a combination of biochemical and morphological methods, I have shown that the sorting of the premelanosomal protein Pmel17 into endosomes was not only independent of ESCRT-0/I but also of functional ESCRT-II/III complexes. Moreover, I have contributed to the studies revealing the Tetraspanin CD63 as a key component of an ESCRT-independent mechanism operating in the sorting of Pmel17 in melanocytes. My data also revealed that the melanogenic enzyme Tyrp1 is delivered to melanosomes via endosomal intermediates, process that requires the function of ESCRT-I/III complexes. My PhD work contributed to a better understanding of the process of melanosome biogenesis and highlight how ubiquitous mechanisms of trafficking are exploited to generate a highly specialized organelle, the melanosome
APA, Harvard, Vancouver, ISO, and other styles
2

Heaven, Graham. "Structural investigation of histidine domain protein tyrosine phosphatase and its interactions with endosomal sorting complexes required for transport." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/structural-investigation-of-histidine-domain-protein-tyrosine-phosphatase-and-its-interactions-with-endosomal-sorting-complexes-required-for-transport(80578bba-c1d7-4b88-8cab-02421913d660).html.

Full text
Abstract:
Biogenesis of the multivesicular body (MVB) organelle is an important process for regulation of signalling in the cell. Signal receptors embedded within the outer MVB membrane can be sorted into intralumenal vesicles which bud away from the cytosol to within the MVB preventing further signalling. Sorting of receptors, invagination of the membrane and release of vesicles into the MVB lumen are mediated by the endosomal sorting complexes required for transport (ESCRT) along with a range of accessory proteins including histidine domain protein tyrosine phosphatase (HD-PTP). HD-PTP is a multidomain protein which makes several interactions with ESCRT partners, including ESCRT-0, ESCRT-I and ESCRT-III. This thesis focusses specifically on the interaction between HD-PTP CC domain and Ubap1 (ESCRT-I), and the two interactions of HD-PTP Bro and PRR domains with STAM2 (ESCRT-0) SH3 and Core domains. To address the structure of HD-PTP, multiple techniques were used: X-ray crystallography, which gives high resolution structural information; small angle X-ray scattering (SAXS), which gives low resolution data for large non-crystallisable units in their solution state; and double electron-electron resonance (DEER) spectroscopy, which gives high resolution nanometre-range distance constraints between cysteines labelled with methanethiosulfonate spin label (MTSL). It was shown by X-ray crystallography that HD-PTP has an elongated CC domain, in stark contrast to its homologues ALIX and Bro1 which both have V-shaped CC domains. The CC domain showed limited flexibility both by SAXS and DEER. Further investigation showed that there was no significant conformational change upon binding its ESCRT-I partner Ubap1. The multidomain structure of HD-PTP Bro1-CC-PRR was described by SAXS, showing that these domains form an extended arrangement in solution. In addition, SAXS was also used to analyse the structure of these domains in complex with STAM2 (ESCRT-0), which showed that STAM2 is simultaneously tethered by the Bro1 domain and PRR. The Bro-CC-PRR portion of HD-PTP, has 9 cysteines, so with the aim of measuring local structural information in the CC domain alone, alternative spin labelling methods were investigated. Use of a bromoacrylaldehyde spin label (BASL), instead of MTSL, allowed more selective labelling of surface exposed cysteines, and avoided labelling most of the cysteines in the Bro1 domain. This novel method allowed the shape of the CC domain to be monitored during STAM2 binding and showed that there is no induced conformational change.
APA, Harvard, Vancouver, ISO, and other styles
3

Du, Xing. "Investigation of RNA Binding Protein Pumilio as a Genetic Modifier of Mutant CHMP2B in Frontotemporal Dementia (FTD): A Masters Thesis." eScholarship@UMMS, 2008. http://escholarship.umassmed.edu/gsbs_diss/846.

Full text
Abstract:
Frontotemporal dementia (FTD) is the second most common early-onset dementia. A rare mutation in CHMP2B gene was found to be associated with FTD linked to chromosome 3. Previous studies have shown that mutant CHMP2B could lead to impaired autophagy pathway and altered RNA metabolism. However, it is still unknown what genes mediate the crosstalk between different pathways affected by mutant CHMP2B. Genetic screens designed to identify genes interacting with mutant CHMP2B represents a key approach in solving the puzzle. Expression of mutant CHMP2B (CHMP2Bintron5) in Drosophila eyes leads to a neurodegenerative phenotype including melanin deposition and disrupted internal structure of ommatidia. The phenotype is easily quantified by estimating the percentage of black dots on the surface of the eyes. Using this established Drosophila model, I searched for genes encoding RNA binding proteins that genetically modify CHMP2Bintron5 toxicity. I found that partial loss of Pumilio, a translation repressor, mitigates CHMP2Bintron5 induced toxicity in the fly eyes. Western blot analysis showed that down regulation of Pumilio does not significantly decrease CHMP2Bintron5 protein level, indicating indirect regulation involved in suppression of the phenotype. The molecular targets regulated by Pumilio and the mechanism underlying CHMP2Bintron5 toxicity suppression by Pumilio down-regulation requires further investigation.
APA, Harvard, Vancouver, ISO, and other styles
4

Du, Xing. "Investigation of RNA Binding Protein Pumilio as a Genetic Modifier of Mutant CHMP2B in Frontotemporal Dementia (FTD): A Masters Thesis." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/846.

Full text
Abstract:
Frontotemporal dementia (FTD) is the second most common early-onset dementia. A rare mutation in CHMP2B gene was found to be associated with FTD linked to chromosome 3. Previous studies have shown that mutant CHMP2B could lead to impaired autophagy pathway and altered RNA metabolism. However, it is still unknown what genes mediate the crosstalk between different pathways affected by mutant CHMP2B. Genetic screens designed to identify genes interacting with mutant CHMP2B represents a key approach in solving the puzzle. Expression of mutant CHMP2B (CHMP2Bintron5) in Drosophila eyes leads to a neurodegenerative phenotype including melanin deposition and disrupted internal structure of ommatidia. The phenotype is easily quantified by estimating the percentage of black dots on the surface of the eyes. Using this established Drosophila model, I searched for genes encoding RNA binding proteins that genetically modify CHMP2Bintron5 toxicity. I found that partial loss of Pumilio, a translation repressor, mitigates CHMP2Bintron5 induced toxicity in the fly eyes. Western blot analysis showed that down regulation of Pumilio does not significantly decrease CHMP2Bintron5 protein level, indicating indirect regulation involved in suppression of the phenotype. The molecular targets regulated by Pumilio and the mechanism underlying CHMP2Bintron5 toxicity suppression by Pumilio down-regulation requires further investigation.
APA, Harvard, Vancouver, ISO, and other styles
5

Djeddi, Abderazak. "Caractérisation cellulaire et fonctionnelle de l’autophagie : interactions avec la voie de maturation endosomale chez Caenorhabditis elegans." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112036.

Full text
Abstract:
L’autophagie est une voie catabolique durant laquelle des constituants cytoplasmiques sont engloutis dans des vésicules à double membrane nommées autophagosomes. Elle sert à éliminer les protéines mal repliées ou les agrégats protéiques, à détruire les organites défectueux comme les mitochondries, le réticulum endoplasmique et les peroxysomes mais aussi des pathogènes intracellulaires. Le matériel séquestré dans les autophagosomes est ensuite envoyé, pour dégradation, vers le lysosome. La dégradation du matériel séquestré génère des nucléotides, des acides aminés et des acides gras qui seront recyclés en vue de la synthèse de macromolécules et de la génération d’ATP.Dans cette étude nous explorons l’aspect cellulaire et fonctionnel de la voie de l’autophagie chez Caenorhabditis elegans. Nous montrons que le génome du nématode contient deux homologues du gène autophagique de levure Atg8. Ces homologues codent pour les protéines LGG-1 et LGG-2 qui sont des protéines des membranes des autophagosomes. Ces protéines agissent de façon synergique dans les processus physiologiques impliquant l’autophagie, en l’occurrence, la longévité et la formation des larves dauer.Nous montrons également que l’autophagie est impliquée dans le maintien de l’homéostasie cellulaire chez les mutants ESCRT. Les complexes ESCRT sont impliqués dans l’adressage des protéines ubiquitinées vers les corps multi vésiculaires pour les dégrader. Les mutants ESCRT se caractérisent par des altérations cellulaires et développementales. Nos résultats indiquent que l’inactivation des ESCRT cause une augmentation du flux autophagique. L’inactivation de l’autophagie dans ces mutants exacerbe les défauts cellulaires alors que son induction protège de la dégradation
Macroautophgagy is a catabolic process involved in the clearance of cellular components in the lysosome when cells face starvation conditions. This eukaryotic process requires the formation of double membrane vesicles named autophagosomes. Autophagy is implicated in the elimination of misfolded proteins, protein aggregates and long-lived or damaged organelles such as mitochondria, endoplasmic reticulum and peroxysomes. It is alos required for the clearance of intracellular pathogens. The material enclosed inside autophagososmes in degraded in the lysosome: nucleotides, amino-acids and fatty-acids are generated and reused for neosynthesis of macromolecules and ATP.In the present study, we are exploring the cellular and functional aspects of the autophagic pathway in Caenorhabditis elegans. We show that the genome of the worm contain two homologues of the Yeast autophagic gene, Atg8. These homlogues encode for two proteins namely, LGG-1 and LGG-2, which localize to the autophagosomal membranes. We have shown that this two proteins act synergistically in dauer formation and longevity.We have also shown that autophagy play an important role in maintaining cell homeostasis in endosomal maturation mutans. These latter mutants show defects in the ESCRT coplexes (Endosomal Sorting Complex Required for Transport). ESCRT complexes are required the recycling of cell surface receptors and for the sorting of ubiquitinated prtoteins into the multivesicular bodies. Mutations in the ESCRTs cause cellular et developmental defects. In our study, we show that autophagy is induced in these mutants and play a beneficial role in correcting cellular defects
APA, Harvard, Vancouver, ISO, and other styles
6

Ren, Yudan. "Glycoprotein M and ESCRT in herpes simplex virus type 1 assembly." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/241516.

Full text
Abstract:
Herpes simplex virus type 1 (HSV-1) has a large linear double-stranded DNA genome in an icosahedral capsid shell, a cell-derived lipid envelope and a proteinaceous tegument layer. There are over fifty viral proteins and many host proteins identified in HSV-1 virions. The final formation of mature virus particles requires the membrane wrapping of tegumented capsids in the cytoplasm, a process termed secondary envelopment. This process involves the coordination of numerous viral and cellular proteins and results in double-membrane structures with enveloped virions contained within cellular vesicles. Mature viruses are then released through the fusion of these virion-containing vesicles and plasma membranes. This thesis describes investigation into the functions of viral glycoprotein M (gM) and the cellular Endosomal Sorting Complexes Required for Transport (ESCRT) in secondary envelopment. Firstly, it has been reported that gH/L can be efficiently internalised and targeted to the TGN by the co-expression of gM in transfection assays. In order to examine the role of gM in guiding the localisation of viral proteins in infected cells, a HSV-1 gM deletion virus (∆gM), and its revertant virus were constructed. The major phenotype demonstrated was that the absence of gM caused the internalisation of cell surface gH/L to be inhibited and higher levels of gH/L to be observed on the cell surface. Further, lower levels of gH/L were detected in purified ∆gM virions, which was in agreement with the delayed entry kinetics, smaller plaque sizes and greater replication deficits at low multiplicity of infection observed in ∆gM infected cells. Over all the results presented in this thesis demonstrate that in infected cells the efficient incorporation of gH/L into virions relies on the function of gM in HSV-1. Secondly, during HSV-1 secondary envelopment the budding and scission of the viral envelope from the host membrane share topological similarities with the formation of intraluminal vesicle in multivesicular bodies, retrovirus budding, and abscission at the end of cytokinesis, processes that require the cellular ESCRT machinery. There are four multiprotein ESCRT complexes and many associated proteins involved in their regulation. It has been previously shown that the ESCRT-III complex and a functional ATPase VPS4 are required for HSV-1 secondary envelopment, but different from the strategy utilised by HIV-1, the recruitment of ESCRT during HSV-1 infection is independent of TSG101 and/or ALIX. Data presented in this thesis demonstrate that CHMP4A/B/C proteins of the ESCRT-III complex are specifically crucial for HSV-1 secondary envelopment. Simultaneous depletion of CHMP4A/B/C proteins significantly inhibited HSV-1 replication. Ultrastructure analysis revealed that there were virtually no extracellular virions in CHMP4A/B/C depleted samples while more free capsids were observed in the cytoplasm, although the nuclear capsids and primary envelopment events appeared to be normal. In order to identify interactions between HSV-1 and ESCRT proteins, 22 HSV-1 tegument proteins were cloned and tested against a panel of ESCRT and ESCRT-associated proteins in yeast two-hydrid assays. Analysis of positive hits from yeast two-hybrid interaction screens using GST pull-down, co-immunoprecipitation and protein co-localisation assays have validated interactions of pUL47 with CC2D1A/1B, CIN85, CHMP6 and ALIX, pUL46 and pUL49 with CC2D1A/1B and CIN85, and pUL16 with CC2D1A/1B. Furthermore, the newly identified ESCRT associated proteins CC2D1A and CC2D1B have been detected in purified virions. The role of the identified ESCRT proteins in HSV-1 replication has been investigated using siRNA depletion. Unfortunately siRNA depletions of the various ESCRT candidates individually or in combinations did not show any significant effect on HSV-1 replication. Overall these data suggest that unlike HIV and other retroviruses, HSV-1 has evolved multiple parallel pathways to hijack the ESCRT machinery to facilitate its replication, particularly, through the interactions that lead directly to the recruitment of CHMP4A/B/C proteins. Disruption of some of these pathways did not prevent HSV-1 replication in tissue culture, suggesting any one potential pathway is sufficient for ESCRT recruitment to sites of HSV-1 assembly.
APA, Harvard, Vancouver, ISO, and other styles
7

Chatterjee, Madhurima. "Intestine Homeostasis and the Role of Tumor Suppressor Gene 101 in Drosophila Melanogaster: A Dissertation." eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/597.

Full text
Abstract:
Tissue homeostasis in the adult Drosophila melanogaster intestine is maintained by controlling the proper balance of stem cell self-renewal and differentiation. In the adult fly midgut, intestinal stem cells (ISCs) are the only dividing cells and their identity maintenance is crucial to the proper functioning of the fly gut. Various pathways such as Notch, JAK-STAT and Wingless are known to regulate ISC division and differentiation. Here I used a pathogen feeding model to study conditions that accelerate ISC division and guide intestinal cell differentiation favoring enterocyte development. I also examined the role of Tumor Suppressor Gene 101 (TSG101) in ISC maintenance and function. TSG101, a part of the ESCRT1 complex. It is known to stimulate the Notch pathway and to play a role in endocytic trafficking. TSG101 loss-of-function mutants show developmental defects in various fly and mammalian tissues. The protein also plays a role in virus abscission from host cells. In my experiments I have observed that TSG101 is required for ISC maintenance. TSG101 knockdown and loss of function mutant clones have defects in ISC proliferation that hinder the normal intestinal responses to oral pathogen ingestion. Based on these results I conclude that TSG101 is needed in the adult fly intestine for proper ISC maintenance and function, thereby being an important player in intestinal homeostasis.
APA, Harvard, Vancouver, ISO, and other styles
8

Warren, Jennifer Laura. "The non-canonical functions of the endosomal sorting complex required for transport-III protein VPS20." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weiss, Eric R. "Investigating the Roles of NEDD4.2s and Nef in the Release and Replication of HIV-1: A Dissertation." eScholarship@UMMS, 2012. https://escholarship.umassmed.edu/gsbs_diss/641.

Full text
Abstract:
Replication of HIV-1 requires the assembly and release of mature and infectious viral particles. In order to accomplish this goal, HIV-1 has evolved multiple methods to interact with the host cell. HIV-1 recruits the host cell ESCRT machinery to facilitate the release of nascent viral particles from the host cell membrane. Recruitment of these cellular factors is dependent on the presence of short motifs in Gag referred to as Late-domains. Deletion or mutation of these domains results in substantial decrease in the release of infectious virions. However, previously published work has indicated that over-expression of the E3 ubiquitin ligase, NEDD4.2s is able to robustly rescue release of otherwise budding-defective HIV-1 particles. This rescue is specific to the NEDD4.2s isoform as related E3 ubiquitin ligases display no ability to rescue particle release. In addition, rescue of particle release is dependent on the presence of the partial C2 domain and a catalytically active HECT domain of NEDD4.2s. Here I provide evidence supporting the hypothesis that a partial C2 domain of NEDD4.2s constitutes a Gag interacting module capable of targeting the HECT domains of other E3 ubiquitin ligases to HIV-1 Gag. Also, by generating chimeras between HECT domains shown to form poly-ubiquitin chains linked through either K48 or K63 of ubiquitin, I demonstrate that the ability of NEDD4.2s to catalyze the formation of K63-polyubiquitin chains is required for its stimulation of HIV-1 L-domain mutant particle release. In addition, I present findings from on-going research into the role of the HIV-1 accessory protein Nef during viral replication using the culture T-cell line, MOLT3. My current findings indicate that downregulation of CD4 from the host cell membrane does not solely account for the dramatic dependence of HIV-1 replication on Nef expression in this system. In addition, I present evidence indicating that Nef proteins from diverse HIV-1 Groups and strains are capable of enhancing HIV-1 replication in this system. Analysis of a range of mutations in Nef known to impact interaction with cellular proteins suggest that the observed replication enhancement requires Nef targeting to the host cell membrane and may also require the ability to interact with select Src-kinases. Lastly, we find that the ability of Nef to enhance replication in this system is separate from any increase in viral particle infectivity, in agreement with current literature.
APA, Harvard, Vancouver, ISO, and other styles
10

Tavares, Lucas Alves. "O envolvimento da proteína adaptadora 1 (AP-1) no mecanismo de regulação negativa do receptor CD4 por Nef de HIV-1." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17136/tde-06012017-113215/.

Full text
Abstract:
O Vírus da Imunodeficiência Humana (HIV) é o agente etiológico da Síndrome da Imunodeficiência Adquirida (AIDS). A AIDS é uma doença de distribuição mundial, e estima-se que existam atualmente pelo menos 36,9 milhões de pessoas infectadas com o vírus. Durante o seu ciclo replicativo, o HIV promove diversas alterações na fisiologia da célula hospedeira a fim de promover sua sobrevivência e potencializar a replicação. A rápida progressão da infecção pelo HIV-1 em humanos e em modelos animais está intimamente ligada à função da proteína acessória Nef. Dentre as diversas ações de Nef está a regulação negativa de proteínas importantes na resposta imunológica, como o receptor CD4. Sabe-se que esta ação resulta da indução da degradação de CD4 em lisossomos, mas os mecanismos moleculares envolvidos ainda são totalmente elucidados. Nef forma um complexo tripartite com a cauda citosólica de CD4 e a proteína adaptadora 2 (AP-2), em vesículas revestidas por clatrina nascentes, induzindo a internalização e degradação lisossomal de CD4. Pesquisas anteriores demonstraram que o direcionamento de CD4 aos lisossomos por Nef envolve a entrada do receptor na via dos corpos multivesiculares (MVBs), por um mecanismo atípico, pois, embora não necessite da ubiquitinação de carga, depende da ação de proteínas que compõem os ESCRTs (Endosomal Sorting Complexes Required for Transport) e da ação de Alix, uma proteína acessória da maquinaria ESCRT. Já foi reportado que Nef interage com subunidades dos complexos AP-1, AP-2, AP-3 e Nef não parece interagir com subunidades de AP-4 e AP-5. Entretanto, o papel da interação de Nef com AP-1 e AP-3 na regulação negativa de CD4 ainda não está totalmente elucidado. Ademais, AP-1, AP-2 e AP-3 são potencialmente heterogêneos devido à existência de isoformas múltiplas das subunidades codificadas por diferentes genes. Todavia, existem poucos estudos para demonstrar se as diferentes combinações de isoformas dos APs são formadas e se possuem propriedades funcionais distintas. O presente trabalho procurou identificar e caracterizar fatores celulares envolvidos na regulação do tráfego intracelular de proteínas no processo de regulação negativa de CD4 induzido por Nef. Mais especificamente, este estudo buscou caracterizar a participação do complexo AP-1 na modulação negativa de CD4 por Nef de HIV-1, através do estudo funcional das duas isoformas de ?-adaptina, subunidades de AP-1. Utilizando a técnica de Pull-down demonstramos que Nef é capaz de interagir com ?2. Além disso, nossos dados de Imunoblot indicaram que a proteína ?2-adaptina, e não ?1-adaptina, é necessária no processo de degradação lisossomal de CD4 por Nef e que esta participação é conservada para degradação de CD4 por Nef de diferentes cepas virais. Ademais, por citometria de fluxo, o silenciamento de ?2, e não de ?1, compromete a diminuição dos níveis de CD4 por Nef da membrana plasmática. A análise por imunofluorêsncia indireta também revelou que a diminuição dos níveis de ?2 impede a redistribuição de CD4 por Nef para regiões perinucleares, acarretando no acúmulo de CD4, retirados por Nef da membrana plasmática, em endossomos primários. A depleção de ?1A, outra subunidade de AP-1, acarretou na diminuição dos níveis celulares de ?2 e ?1, bem como, no comprometimento da eficiente degradação de CD4 por Nef. Além disso, foi possível observar que, ao perturbar a maquinaria ESCRT via super-expressão de HRS (uma subunidade do complexo ESCRT-0), ocorreu um acumulo de ?2 em endossomos dilatados contendo HRS-GFP, nos quais também detectou-se CD4 que foi internalizado por Nef. Em conjunto, os resultados indicam que ?2-adaptina é uma importante molécula para o direcionamento de CD4 por Nef para a via ESCRT/MVB, mostrando ser uma proteína relevante no sistema endo-lisossomal. Ademais, os resultados indicaram que as isoformas ?-adaptinas não só possuem funções distintas, mas também parecem compor complexos AP-1 com diferentes funções celulares, já que apenas a variante AP-1 contendo ?2, mas não ?1, participa da regulação negativa de CD4 por Nef. Estes estudos contribuem para o melhor entendimento dos mecanismos moleculares envolvidos na atividade de Nef, que poderão também ajudar na melhor compreensão da patogênese do HIV e da síndrome relacionada. Em adição, este trabalho contribui para o entendimento de processos fundamentais da regulação do tráfego de proteínas transmembrana no sistema endo-lisossomal.
The Human Immunodeficiency Virus (HIV) is the etiologic agent of Acquired Immunodeficiency Syndrome (AIDS). AIDS is a disease which has a global distribution, and it is estimated that there are currently at least 36.9 million people infected with the virus. During the replication cycle, HIV promotes several changes in the physiology of the host cell to promote their survival and enhance replication. The fast progression of HIV-1 in humans and animal models is closely linked to the function of an accessory protein Nef. Among several actions of Nef, one is the most important is the down-regulation of proteins from the immune response, such as the CD4 receptor. It is known that this action causes CD4 degradation in lysosome, but the molecular mechanisms are still incompletely understood. Nef forms a tripartite complex with the cytosolic tail of the CD4 and adapter protein 2 (AP-2) in clathrin-coated vesicles, inducing CD4 internalization and lysosome degradation. Previous research has demonstrated that CD4 target to lysosomes by Nef involves targeting of this receptor to multivesicular bodies (MVBs) pathway by an atypical mechanism because, although not need charging ubiquitination, depends on the proteins from ESCRTs (Endosomal Sorting Complexes Required for Transport) machinery and the action of Alix, an accessory protein ESCRT machinery. It has been reported that Nef interacts with subunits of AP- 1, AP-2, AP-3 complexes and Nef does not appear to interact with AP-4 and AP-5 subunits. However, the role of Nef interaction with AP-1 or AP-3 in CD4 down-regulation is poorly understood. Furthermore, AP-1, AP-2 and AP-3 are potentially heterogeneous due to the existence of multiple subunits isoforms encoded by different genes. However, there are few studies to demonstrate if the different combinations of APs isoforms are form and if they have distinct functional properties. This study aim to identify and characterize cellular factors involved on CD4 down-modulation induced by Nef from HIV-1. More specifically, this study aimed to characterize the involvement of AP-1 complex in the down-regulation of CD4 by Nef HIV-1 through the functional study of the two isoforms of ?-adaptins, AP-1 subunits. By pull-down technique, we showed that Nef is able to interact with ?2. In addition, our data from immunoblots indicated that ?2- adaptin, not ?1-adaptin, is required in Nef-mediated targeting of CD4 to lysosomes and the ?2 participation in this process is conserved by Nef from different viral strains. Furthermore, by flow cytometry assay, ?2 depletion, but not ?1 depletion, compromises the reduction of surface CD4 levels induced by Nef. Immunofluorescence microscopy analysis also revealed that ?2 depletion impairs the redistribution of CD4 by Nef to juxtanuclear region, resulting in CD4 accumulation in primary endosomes. Knockdown of ?1A, another subunit of AP-1, resulted in decreased cellular levels of ?1 and ?2 and, compromising the efficient CD4 degradation by Nef. Moreover, upon artificially stabilizing ESCRT-I in early endosomes, via overexpression of HRS, internalized CD4 accumulates in enlarged HRS-GFP positive endosomes, where co-localize with ?2. Together, the results indicate that ?2-adaptin is a molecule that is essential for CD4 targeting by Nef to ESCRT/MVB pathway, being an important protein in the endo-lysosomal system. Furthermore, the results indicate that ?-adaptins isoforms not only have different functions, but also seem to compose AP-1 complex with distinct cell functions, and only the AP-1 variant comprising ?2, but not ?1, acts in the CD4 down-regulation induced by Nef. These studies contribute to a better understanding on the molecular mechanisms involved in Nef activities, which may also help to improve the understanding of the HIV pathogenesis and the related syndrome. In addition, this work contributes with the understanding of primordial process regulation on intracellular trafficking of transmembrane proteins.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Endosomal Sorting Complexes Required for Transport"

1

Reyes, Francisca C. "Trans-species Complementation Analysis to Study Function Conservation of Plant Endosomal Sorting Complex Required for Transport (ESCRT) Proteins." In Methods in Molecular Biology, 143–48. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1420-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lopez-Reyes, Israel, Cecilia Banuelos, Abigail Betanzos, and Esther Orozco. "A Bioinformatical Approach to Study the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery in Protozoan Parasites: The Entamoeba histolytica Case." In Bioinformatics - Trends and Methodologies. InTech, 2011. http://dx.doi.org/10.5772/19480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography