Journal articles on the topic 'Endosomal TLRs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Endosomal TLRs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sato, Ryota, Tatjana Reuter, Ryosuke Hiranuma, et al. "The impact of cell maturation and tissue microenvironments on the expression of endosomal Toll-like receptors in monocytes and macrophages." International Immunology 32, no. 12 (2020): 785–98. http://dx.doi.org/10.1093/intimm/dxaa055.
Full textLuchner, Marina, Sören Reinke, and Anita Milicic. "TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases." Pharmaceutics 13, no. 2 (2021): 142. http://dx.doi.org/10.3390/pharmaceutics13020142.
Full textPatra, Mahesh Chandra, Asma Achek, Gi-Young Kim, et al. "A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models." Cells 9, no. 7 (2020): 1648. http://dx.doi.org/10.3390/cells9071648.
Full textHung, Yun-Fen, Chiung-Ya Chen, Yi-Chun Shih, Hsin-Yu Liu, Chiao-Ming Huang, and Yi-Ping Hsueh. "Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs." Journal of Cell Biology 217, no. 8 (2018): 2727–42. http://dx.doi.org/10.1083/jcb.201712113.
Full textVeneziani, Irene, Claudia Alicata, Andrea Pelosi, et al. "Toll-like receptor 8 agonists improve NK-cell function primarily targeting CD56brightCD16− subset." Journal for ImmunoTherapy of Cancer 10, no. 1 (2022): e003385. http://dx.doi.org/10.1136/jitc-2021-003385.
Full textGallego, Carolina, Douglas Golenbock, Maria Adelaida Gomez, and Nancy Gore Saravia. "Toll-Like Receptors Participate in Macrophage Activation and Intracellular Control of Leishmania (Viannia) panamensis." Infection and Immunity 79, no. 7 (2011): 2871–79. http://dx.doi.org/10.1128/iai.01388-10.
Full textMandraju, Rajakumar, Sean Murray, James Forman, and Chandrashekhar Pasare. "Differential regulation of CD8 T cell responses by surface and endosomal TLRs (INC6P.347)." Journal of Immunology 192, no. 1_Supplement (2014): 121.14. http://dx.doi.org/10.4049/jimmunol.192.supp.121.14.
Full textMcAlpine, William, Lei Sun, Kuan-wen Wang, et al. "Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function." Proceedings of the National Academy of Sciences 115, no. 49 (2018): E11523—E11531. http://dx.doi.org/10.1073/pnas.1814753115.
Full textMauvieux, Laurent. "TLR1-10 Protein Expression in Circulating Human White Blood Cells during Bacterial and COVID-19 Infections." Blood 142, Supplement 1 (2023): 5349. http://dx.doi.org/10.1182/blood-2023-179266.
Full textOhto, Umeharu, Hiromi Tanji, Takuma Shibata, et al. "Structural studies of nucleic acid sensing Toll-like receptor." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C252. http://dx.doi.org/10.1107/s2053273314097472.
Full textAverett, D. R., S. P. Fletcher, W. Li, S. E. Webber, and J. R. Appleman. "The pharmacology of endosomal TLR agonists in viral disease." Biochemical Society Transactions 35, no. 6 (2007): 1468–72. http://dx.doi.org/10.1042/bst0351468.
Full textZahmatkesh, Azadeh, Elham Salmasi, and Reza Gholizadeh. "Interaction of toll-like receptors and ACE-2 with different variants of SARS-CoV-2: A computational analysis." BioImpacts 14, no. 4 (2024): 30150. http://dx.doi.org/10.34172/bi.2024.30150.
Full textOleynik, Veronica A., Marina A. Plotnikova, Nikita D. Yolshin, Ekaterina A. Romanovskaya-Romanko, and Sergey A. Klotchenko. "Development and approbation of a quantitative PCR system for studying the expression of endosomal receptors and cytosolic nucleic acid sensors in mice." Medical academic journal 1, no. 1 (2025): 90–100. https://doi.org/10.17816/maj637237.
Full textCarreto-Binaghi, Laura E., María Teresa Herrera, Silvia Guzmán-Beltrán, et al. "Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients." Biomedicines 11, no. 4 (2023): 1078. http://dx.doi.org/10.3390/biomedicines11041078.
Full textvon Hofsten, Susannah, Kristin Andreassen Fenton, and Hege Lynum Pedersen. "Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus." International Journal of Molecular Sciences 25, no. 10 (2024): 5351. http://dx.doi.org/10.3390/ijms25105351.
Full textLai, Chao-Yang, Yu-Wen Su, Kuo-I. Lin, Li-Chung Hsu, and Tsung-Hsien Chuang. "Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation." Journal of Immunology Research 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/7807313.
Full textBaumann, Christoph L., Irene M. Aspalter, Omar Sharif, et al. "CD14 is a coreceptor of Toll-like receptors 7 and 9." Journal of Experimental Medicine 207, no. 12 (2010): 2689–701. http://dx.doi.org/10.1084/jem.20101111.
Full textMielcarska, Matylda Barbara, Magdalena Bossowska-Nowicka, Karolina Paulina Gregorczyk, Zbigniew Wyzewski, and Felix Ngosa Toka. "Tyrosine kinase Syk interacts with Hrs after TLR3 stimulation in murine microglial cells." Journal of Immunology 198, no. 1_Supplement (2017): 129.17. http://dx.doi.org/10.4049/jimmunol.198.supp.129.17.
Full textElshikha, Ahmed S., Georges Abboud, Rigena Avdiaj, Laurence Morel, and Sihong Song. "The Inhibitory Effects of Alpha 1 Antitrypsin on Endosomal TLR Signaling Pathways." Biomolecules 15, no. 1 (2025): 43. https://doi.org/10.3390/biom15010043.
Full textVeneziani, Irene, Claudia Alicata, Lorenzo Moretta, and Enrico Maggi. "The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview." Biomedicines 11, no. 1 (2022): 64. http://dx.doi.org/10.3390/biomedicines11010064.
Full textKalliolias, George D., Efthimia K. Basdra, and Athanasios G. Papavassiliou. "Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update." Biomedicines 12, no. 1 (2024): 138. http://dx.doi.org/10.3390/biomedicines12010138.
Full textWang, Kuan-wen, Xiaoming Zhan, William McAlpine, et al. "Enhanced susceptibility to chemically induced colitis caused by excessive endosomal TLR signaling in LRBA-deficient mice." Proceedings of the National Academy of Sciences 116, no. 23 (2019): 11380–89. http://dx.doi.org/10.1073/pnas.1901407116.
Full textSkert, Cristina, Manuela Fogli, Simone Perucca, et al. "Betaherpesvirus Reactivation and Toll-Like Receptor Expression After Allogeneic Stem Cell Transplantation." Blood 118, no. 21 (2011): 4924. http://dx.doi.org/10.1182/blood.v118.21.4924.4924.
Full textNelson, Alexander J., and Yee Ling WU. "Toll-like receptor signaling directly modulates B cell antibody responses." Journal of Immunology 204, no. 1_Supplement (2020): 151.28. http://dx.doi.org/10.4049/jimmunol.204.supp.151.28.
Full textWang, James Q., Bruce Beutler, Christopher C. Goodnow, and Keisuke Horikawa. "Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo." Blood 128, no. 12 (2016): 1604–8. http://dx.doi.org/10.1182/blood-2016-03-708065.
Full textGanguly, Dipyaman, Georgios Chamilos, Roberto Lande, et al. "Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8." Journal of Experimental Medicine 206, no. 9 (2009): 1983–94. http://dx.doi.org/10.1084/jem.20090480.
Full textAo, Da, Xueliang Liu, Sen Jiang, et al. "The Signal Peptide and Chaperone UNC93B1 Both Influence TLR8 Ectodomain Intracellular Endosomal Localization." Vaccines 10, no. 1 (2021): 14. http://dx.doi.org/10.3390/vaccines10010014.
Full textMinton, Kirsty. "Regulation of endosomal TLRs." Nature Reviews Immunology 19, no. 11 (2019): 660–61. http://dx.doi.org/10.1038/s41577-019-0229-1.
Full textLai, Chao-Yang, Da-Wei Yeh, Chih-Hao Lu, et al. "Thiostrepton inhibits psoriasis-like inflammation induced by TLR7, TLR8, and TLR9." Journal of Immunology 196, no. 1_Supplement (2016): 124.41. http://dx.doi.org/10.4049/jimmunol.196.supp.124.41.
Full textElshikha, Ahmed Samir, Georges Abboud, Laurence Morel, and Sihong Song. "Targeting proteolytic cleavage of Toll-Like receptors by alpha-1 antitrypsin inhibited dendritic cells activation and function." Journal of Immunology 208, no. 1_Supplement (2022): 60.20. http://dx.doi.org/10.4049/jimmunol.208.supp.60.20.
Full textMeibers, Hannah, Margaret McDaniel, and Chandrashekhar Pasare. "Vps33B is a crucial regulator of Type I Interferon response downstream of the cGAS-STING pathway." Journal of Immunology 204, no. 1_Supplement (2020): 68.13. http://dx.doi.org/10.4049/jimmunol.204.supp.68.13.
Full textRusso, Carla, Ivan Cornella-Taracido, Luisa Galli-Stampino, et al. "Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells." Blood 117, no. 21 (2011): 5683–91. http://dx.doi.org/10.1182/blood-2010-12-328138.
Full textNahid, M., Lia Benso, John Shin, Huseyin Mehmet, Alexandra Hicks, and Ravisankar Ramadas. "Macrophage tolerance to MyD88-dependent TLR agonists is mediated by LPS-/R848-induced miR-146a (IRM12P.649)." Journal of Immunology 194, no. 1_Supplement (2015): 133.8. http://dx.doi.org/10.4049/jimmunol.194.supp.133.8.
Full textParadowska-Gorycka, Agnieszka, Anna Wajda, Barbara Stypińska, et al. "The TLRs and IFNs in patients with connective tissue diseases." Postępy Polskiej Medycyny i Farmacji 7 (May 27, 2020): 1–10. http://dx.doi.org/10.5604/01.3001.0014.1583.
Full textPawar, Kamlesh, Megumi Shigematsu, Soroush Sharbati, and Yohei Kirino. "Infection-induced 5′-half molecules of tRNAHisGUG activate Toll-like receptor 7." PLOS Biology 18, no. 12 (2020): e3000982. http://dx.doi.org/10.1371/journal.pbio.3000982.
Full textRadovic-Moreno, Aleksandar F., Natalia Chernyak, Christopher C. Mader, et al. "Immunomodulatory spherical nucleic acids." Proceedings of the National Academy of Sciences 112, no. 13 (2015): 3892–97. http://dx.doi.org/10.1073/pnas.1502850112.
Full textLeifer, Cynthia, James Brooks, Jody Cameron, and Gabriela Chiosis. "The Heat Shock Protein gp96 play a multifaceted role in regulating Toll-like receptor 9 (136.40)." Journal of Immunology 184, no. 1_Supplement (2010): 136.40. http://dx.doi.org/10.4049/jimmunol.184.supp.136.40.
Full textPark, Se-Ra, Dong-Jae Kim, Seung-Hyun Han, et al. "Diverse Toll-Like Receptors Mediate Cytokine Production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in Macrophages." Infection and Immunity 82, no. 5 (2014): 1914–20. http://dx.doi.org/10.1128/iai.01226-13.
Full textLeavy, Olive. "AP3 links endosomal TLRs and antigen presentation." Nature Reviews Immunology 12, no. 6 (2012): 400. http://dx.doi.org/10.1038/nri3232.
Full textKiefer, Kerstin, Nathaniel Green, Michael Oropallo, Michael Cancro, and Ann Marshak-Rothstein. "BCR/TLR7 coligation uniquely drives plasma cell differentiation of autoreactive B cells (171.34)." Journal of Immunology 188, no. 1_Supplement (2012): 171.34. http://dx.doi.org/10.4049/jimmunol.188.supp.171.34.
Full textLin, You-Sheng, Yung-Chi Chang, Ting-Yu Lai, Chih-Yuan Lee, Tsung-Hsien Chuang, and Li-Chung Hsu. "The role of novel E3 ubiquitin ligase in the regulation of TLR3 signaling pathway." Journal of Immunology 204, no. 1_Supplement (2020): 226.26. http://dx.doi.org/10.4049/jimmunol.204.supp.226.26.
Full textMukhopadhyay, Subhankar, Audrey Varin, Yunying Chen, Baoying Liu, Karl Tryggvason, and Siamon Gordon. "SR-A/MARCO–mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens." Blood 117, no. 4 (2011): 1319–28. http://dx.doi.org/10.1182/blood-2010-03-276733.
Full textShehab, Marwa, Rana Jammaz, Noor Salloum, and Elias A. Rahal. "Endosomal Toll-Like Receptors (TLRs) mediate enhancement of IL-17A production triggered by Epstein-Barr virus (EBV) DNA in mice." Journal of Infection in Developing Countries 12, no. 02.1 (2018): 26S. http://dx.doi.org/10.3855/jidc.10074.
Full textLehnardt, Seija, Thomas Wallach, Vitka Gres, and Philipp Henneke. "Guardians of neuroimmunity – Toll-like receptors and their RNA ligands." Neuroforum 25, no. 3 (2019): 185–93. http://dx.doi.org/10.1515/nf-2018-0032.
Full textDela Justina, Vanessa, Fernanda R. Giachini, Fernanda Priviero, and R. Clinton Webb. "Double-stranded RNA and Toll-like receptor activation: a novel mechanism for blood pressure regulation." Clinical Science 134, no. 2 (2020): 303–13. http://dx.doi.org/10.1042/cs20190913.
Full textLentini, Germana, Agata Famà, Giuseppe Valerio De Gaetano, et al. "Role of Endosomal TLRs in Staphylococcus aureus Infection." Journal of Immunology 207, no. 5 (2021): 1448–55. http://dx.doi.org/10.4049/jimmunol.2100389.
Full textMielcarska, Matylda Barbara, Justyna Struzik, and Felix Ngosa Toka. "Tlr3 interacts with ESCRT-I components Tsg101 and Hcrp1 in mouse astrocyte cell line." Journal of Immunology 206, no. 1_Supplement (2021): 15.02. http://dx.doi.org/10.4049/jimmunol.206.supp.15.02.
Full textLu, Chih-Hao, Chao-Yang Lai, Da-Wei Yeh, et al. "Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation." Mediators of Inflammation 2018 (December 16, 2018): 1–14. http://dx.doi.org/10.1155/2018/3523642.
Full textGarcía-Martínez, Karla Yvonne, Jingyi Chen, and Cynthia A. Leifer. "A Role for Stimulator of Interferon Genes in Toll-Like Receptor 8 Signaling." Journal of Immunology 210, no. 1_Supplement (2023): 161.04. http://dx.doi.org/10.4049/jimmunol.210.supp.161.04.
Full textDominguez, Donye, Natalia Chernyak, Monica guan, et al. "Robust antitumor effects of SNA-based T cell therapy." Journal of Immunology 202, no. 1_Supplement (2019): 134.7. http://dx.doi.org/10.4049/jimmunol.202.supp.134.7.
Full text