Academic literature on the topic 'Endosome'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Endosome.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Endosome"
Liu, Kai, Ruxiao Xing, Youli Jian, et al. "WDR91 is a Rab7 effector required for neuronal development." Journal of Cell Biology 216, no. 10 (2017): 3307–21. http://dx.doi.org/10.1083/jcb.201705151.
Full textChotard, Laëtitia, Ashwini K. Mishra, Marc-André Sylvain, Simon Tuck, David G. Lambright, and Christian E. Rocheleau. "TBC-2 Regulates RAB-5/RAB-7-mediated Endosomal Trafficking inCaenorhabditis elegans." Molecular Biology of the Cell 21, no. 13 (2010): 2285–96. http://dx.doi.org/10.1091/mbc.e09-11-0947.
Full textSchmid, S., R. Fuchs, M. Kielian, A. Helenius, and I. Mellman. "Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants." Journal of Cell Biology 108, no. 4 (1989): 1291–300. http://dx.doi.org/10.1083/jcb.108.4.1291.
Full textLiu, Kai, Youli Jian, Xiaojuan Sun, et al. "Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion." Journal of Cell Biology 212, no. 2 (2016): 181–98. http://dx.doi.org/10.1083/jcb.201506081.
Full textNordeng, Tommy W., Tone F. Gregers, Thomas Lasker Kongsvik, et al. "The Cytoplasmic Tail of Invariant Chain Regulates Endosome Fusion and Morphology." Molecular Biology of the Cell 13, no. 6 (2002): 1846–56. http://dx.doi.org/10.1091/mbc.01-10-0478.
Full textde Wit, Heidi, Yael Lichtenstein, Regis B. Kelly, Hans J. Geuze, Judith Klumperman, and Peter van der Sluijs. "Rab4 Regulates Formation of Synaptic-like Microvesicles from Early Endosomes in PC12 Cells." Molecular Biology of the Cell 12, no. 11 (2001): 3703–15. http://dx.doi.org/10.1091/mbc.12.11.3703.
Full textLeung, Som-Ming, Wily G. Ruiz, and Gerard Apodaca. "Sorting of Membrane and Fluid at the Apical Pole of Polarized Madin-Darby Canine Kidney Cells." Molecular Biology of the Cell 11, no. 6 (2000): 2131–50. http://dx.doi.org/10.1091/mbc.11.6.2131.
Full textWang, Yi, Steven Pennock, Xinmei Chen, and Zhixiang Wang. "Endosomal Signaling of Epidermal Growth Factor Receptor Stimulates Signal Transduction Pathways Leading to Cell Survival." Molecular and Cellular Biology 22, no. 20 (2002): 7279–90. http://dx.doi.org/10.1128/mcb.22.20.7279-7290.2002.
Full textCasanova, James E., and Bettina Winckler. "A new Rab7 effector controls phosphoinositide conversion in endosome maturation." Journal of Cell Biology 216, no. 10 (2017): 2995–97. http://dx.doi.org/10.1083/jcb.201709034.
Full textStoorvogel, W., V. Oorschot, and H. J. Geuze. "A novel class of clathrin-coated vesicles budding from endosomes." Journal of Cell Biology 132, no. 1 (1996): 21–33. http://dx.doi.org/10.1083/jcb.132.1.21.
Full textDissertations / Theses on the topic "Endosome"
Stroud, Evelyn Joy. "Kinetic analysis of endosome processing : maturation of early endosomes and vesicular traffic to lysosomes." Master's thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/27043.
Full textStimpson, Helen Elizabeth Margaret. "Sorting into the yeast endosome." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615138.
Full textLegalatladi, Seetsela. "The kinetics of endosome processing." Master's thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/27047.
Full textMcKenzie, Jenna Elyse. "The recycling endosome is required for transport of retrograde toxins." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/406.
Full textHernández, Pérez Inés. "Kazrin C Controls Endocytic Trafficking and is a Double Regulator of Actin Polymerisation and Microtubule Transport." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671167.
Full textLas células eucariotas internalizan y redistribuyen las moléculas de su superficie a través de la ruta endocítica. Este es un proceso clave para la adquisición de nutrientes y el catabolismo que también controla la exposición de receptores y complejos de adhesión celular, entre otros. Trabajos anteriores de nuestro laboratorio identificaron la kazrina C como una proteína que bloqueaba la endocitosis dependiente de clatrina (CME) cuando se sobreexpresaba. El trabajo expuesto en esta tesis confirma el papel de la kazrina en la CME, al demostrar que células KO de kazrina generadas por el sistema de CRISPR-cas9 no internalizaban correctamente la transferrina (Tfn), un marcador endocítico. La kazrina C co-localizó con marcadores de uniones adherentes como la N-cadherina en la membrana plasmática y en estructuras intracelulares. De hecho, un fraccionamiento subcelular demostró la presencia de la kazrina en endosomas tempranos (EEs). Además, la depleción de la kazrina provocó una acumulación de EEs con N-cadherina, y estos tenían una distribución más periférica que en las células control, lo cual es coherente con un papel de la kazrina en EEs. Las células KO de kazrina incubadas con Tfn no transportaban el cargo hacia el compartimento de reciclaje endocítico (ERC) y tenían el consiguiente defecto en el reciclaje de Tfn. Todos los fenotipos en las células KO de kazrina se recuperaron con la re-expresión de GFP-kazrina C pero no con la de GFP. Estas evidencias apuntan hacia un papel de la kazrina C en el reciclaje endosomal y el transporte de EEs hacia el ERC. De acuerdo con esta hipótesis, la depleción de la kazrina causó defectos en procesos celulares que dependen del reciclaje a través del ERC, tales como la migración celular y la citoquinesis. Este estudio también analiza los mecanismos moleculares de la función de la kazrina C en el tráfico endocítico. Se demostró que la kazrina C interacciona con los motores asociados a microtúbulos kinesina-1 y dineína, y que se une directamente a la cadena intermedia ligera de la dineína, LIC1. De hecho, la kazrina C tiene un dominio coiled-coil similar a los de los adaptadores de la dineína. La kazrina C tiene también en común con estos adaptadores su localización en la región pericentriolar, donde parecía atrapar EEs. Por lo tanto, proponemos que la kazrina C promueve el transporte de EEs a través de microtúbulos, probablemente como un adaptador de EEs y la dineína. En consonancia, este y anteriores estudios del laboratorio mostraron una interacción directa y co-localizaciones parciales de la kazrina C con componentes de EEs, tales como el adaptador de clatrina AP-1 y las GTPasas EHD1/3. Además, la kazrina C interaccionó con PI3P y con la PI3K de clase III, y su depleción causó un aumento en los niveles endosomales de la sonda de PI3P GFP-FYVE. Por último, hemos establecido una relación entre la kazrina C y otro elemento clave del tráfico endocítico: la maquinaria de polimerización de actina asociada a Arp2/3. Se observaron interacciones directas con la cortactina y el N-WASP, así como la co-localización de la GFP-kazrina C y la cortactina en la membrana plasmática y estructuras intracelulares. La depleción de la kazrina causó una reducción en la actina ramificada cortical y un aumento en la endosomal. En conjunto, probamos una función de la kazrina C en el reciclaje endosomal y proponemos que esta función está mediada por la regulación del transporte a través de microtúbulos, la polimerización de actina y el metabolismo de PI3P.
Eukaryotic cells internalise and redistribute the molecules from their surface through the endocytic pathway. This process is key to nutrient uptake and catabolism, and controls the surface exposure of signalling receptors and cell adhesion complexes, among others. Previous work in the laboratory identified kazrin C as a protein that blocked Clathrin-Mediated Endocytosis (CME) when overexpressed. The work presented in this thesis further supported the role of kazrin in CME, as kazrin KO cells generated with the CRISPR-cas9 system were defective in the uptake of the endocytic marker Transferrin (Tfn). Kazrin C co-localised with markers of adherence junctions, such as N-cadherin, at the plasma membrane and on intracellular structures. Indeed, subcellular fractionation analysis showed the localisation of kazrin in Early Endosomes (EEs). Consistent with a role of kazrin in EEs, kazrin depletion caused an accumulation of N-cadherin-loaded EEs, which showed a more peripheral distribution as compared to WT cells. Kazrin KO cells loaded with Tfn were unable to transport the cargo towards the Endocytic Recycling Compartment (ERC) and had a concomitant defect in Tfn recycling. All phenotypes on KO cells were recovered by the re-expression of GFP-kazrin C but not GFP. These evidences indicated a role of kazrin C in endosomal recycling and the transport of EEs towards the ERC. In agreement with this hypothesis, kazrin depletion caused defects in cellular processes that strongly depend on recycling through the ERC, such as cell migration and cytokinesis. This study also analysed the molecular mechanisms of kazrin C function in endocytic traffic. Kazrin C was found to interact with the microtubule motors kinesin-1 and dynein, and directly bind to the dynein Light Intermediate Chain LIC1. In fact, kazrin C contains a coiled-coil domain similar to those found in dynein adaptors. Also similar to those, GFP-kazrin C localised to the pericentriolar region, where it seemed to trap EEs. Therefore, we proposed that kazrin C promoted microtubule-dependent transport of EEs, possibly as an EE dynein adaptor. Accordingly, this and previous studies in the laboratory showed direct interactions and partial co-localisations of kazrin C with EE components, such as the AP-1 clathrin adaptor complex and EHD1/3 GTPases. In addition, kazrin C interacted with PI3P and the class III PI3K, and its depletion caused an increase in the endosomal levels of the PI3P probe GFP-FYVE. Finally, we linked kazrin C with another player in endocytic traffic: the Arp2/3-associated machinery for actin polymerisation. Direct interactions were observed with cortactin and N-WASP, as well as co-localisation of GFP-kazrin C with cortactin at the plasma membrane and intracellular structures. Moreover, kazrin depletion caused a reduction in cortical and an increase in endosomal branched actin. Altogether, we proved that kazrin C functions in endosomal recycling and propose that this function is mediated by the regulation of microtubule-dependent transport, actin polymerisation and PI3P metabolism.
Universitat Autònoma de Barcelona. Programa de Doctorat en Bioquímica, Biologia Molecular i Biomedicina
Schuster, Martin. "Motor cooperation in bi-directional early endosome motility." Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3169.
Full textCook, N. R. "Reconstitution of TGN to endosome transport in vitro." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597930.
Full textSenic-Matuglia, Francesca. "RAB11, une petite GTPase des endosomes de recyclage : étude de trois de ses partenaires et de son rôle dans la mélalogénèse." Paris 11, 2002. http://www.theses.fr/2002PA112220.
Full textRab11 is a small GTPase localized on endosomal recycling compartment (ERC) membranes and implicated in membrane organization and protein recycling to plasma membrane. The molecular mechanisms of membrane traffic leading to melanosome biogenesis are poorly understood. We demonstrate here that active mutated forms of Rab11 reduce the melanin content of melanocytes, while a corresponding Rab4 mutant does not. We show that this is mainly due to the inhibition of the processing and transport of Pmel17, a protein involved in the early stages of melanosome biogenesis. We also provide evidence that Rab11 directly binds to the cytoplasmic tail of Pmel17. Moreover, we found that the neurospecific BetaB subunit of the AP-3 coat complex is associated with Rab11 positive membranes in melanocytic cells and specifically interacts with Rab11. Our results constitute the first evidence that a Rab protein, through specific interactions with tissue-specific coat complex and cargo, regulates sorting from a compartment related to the ERC toward later stages of membrane maturation. Besides these results, were identified by two hybrid screens two novel Rab11 partners. The first, called RCP (Rab coupling protein) is an endosomal membrane-associated protein Interacting both with Rab11 and Rab4. We demonstrated that RCP is implicated in endosomal recycling. The second partner corresponds to Rab3IP, the human orthologue of rat Rabin 3, a previously identified Rab3A interacting protein with sequence homology to two Rab Guanine nucleotide Exchange Factors (Sec2p and GRAB). In vitro results indicate that Rab3lP has a weak exchange activity on Rab11. Furthermore, over-expression of GFP-tagged Rab3IP in HeLa cells induces a phenotype closely related to that generated by Rab11 dominant-positive mutant. Finally, using FRAP experiments, we were able to demonstrate that the fluorescence recovery of GFP-Rab11 after photobleaching of the pericentriolar area is affected in cell co-expressing YFP-Rab3IP
Barres, Céline. "La galectine-5 associée aux exosomes de réticulocyte de rat : caractérisation et étude fonctionnelle." Montpellier 2, 2009. http://www.theses.fr/2009MON20098.
Full textDuring their maturation into erythrocytes, reticulocytes release small membrane vesicles called exosomes. Exosomes are intralumenal vesicles of multivesicular endosomes released in the extracellular medium upon fusion of these endosomal compartments with the plasma membrane. This secretion pathway contributes to reticulocyte plasma membrane remodelling during erythropoiesis by specific clearance of membrane proteins. The study presented in this thesis deals with galectine-5 characteristics and its role during reticulocyte maturation. This protein belongs to the galectin family proteins and is specific of both erythroid lineage and rat species. We show that galectin-5, although mainly cytosolic, is present on the cell surface of rat reticulocytes and erythrocytes but also localizes with endosomal compartments. We also document (i) galectin-5 translocation from the cytosol into the endosomal lumen leading to its secretion in association with exosomes, (ii) its binding (at least in part) onto the vesicle surface, with potential involvement in sorting of galactose-bearing glycoconjugates. Finally, we demonstrate that the presence of galectin-5 on the exosome surface modulates vesicle uptake by rat peritoneal and murine J774 macrophages. Results reveal that the mechanism of internalization is temperature dependent, dynamin dependent, and that exosome uptake is decreased by adding galectin-5 in the absence of haptenic ligand
Apfeldorfer, Coralie. "Lysosome biogenesis during osteoclastogenesis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1164801444532-19433.
Full textBooks on the topic "Endosome"
Dikic, Ivan. Endosomes. Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-39951-5.
Full textOtegui, Marisa S., ed. Plant Endosomes. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1420-3.
Full textOtegui, Marisa S., ed. Plant Endosomes. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0767-1.
Full textOtegui, Marisa S. Plant endosomes: Methods and protocols. Humana Press, 2014.
Logan, Niall A., and Paul Vos, eds. Endospore-forming Soil Bacteria. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19577-8.
Full textLogan, Niall A. Endospore-forming Soil Bacteria. Springer-Verlag Berlin Heidelberg, 2011.
Grotenhuis, J. A. Endoscope-assisted microneurosurgery: A concise guidebook. Machaon, 1998.
Neufeld, Jessi. Biomarkers of Alzheimer-Associated Endosomal Dysfunction. [publisher not identified], 2018.
Kroh, Matthew, and Kevin M. Reavis, eds. The SAGES Manual Operating Through the Endoscope. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24145-6.
Full textViguera, José María. La prenda cambiaria: El endoso en garantía. Civitas, 1994.
Book chapters on the topic "Endosome"
Tooze, J., and M. Hollinshead. "The Tubular Early Endosome." In Molecular Mechanisms of Membrane Traffic. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02928-2_48.
Full textPodinovskaia, Maria, and Anne Spang. "The Endosomal Network: Mediators and Regulators of Endosome Maturation." In Endocytosis and Signaling. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96704-2_1.
Full textVergne, Isabelle, and Vojo Deretic. "In Vitro Phagosome–Endosome Fusion." In Autophagosome and Phagosome. Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-157-4_19.
Full textMayer, R. John, Carron Tipler, Jane Arnold, et al. "Endosome-Lysosomes, Ubiquitin and Neurodegeneration." In Intracellular Protein Catabolism. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0335-0_33.
Full textFuchs, R., S. Schmid, I. Mellman, and H. Klapper. "Regulation of ATP-Dependent Endosome Acidification." In Endocytosis. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84295-5_17.
Full textTakeda, Yuichi, and Tomohiko Taguchi. "Retrograde Membrane Traffic and Recycling Endosome." In Glycoscience: Biology and Medicine. Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54836-2_47-1.
Full textTakeda, Yuichi, and Tomohiko Taguchi. "Retrograde Membrane Traffic and Recycling Endosome." In Glycoscience: Biology and Medicine. Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54841-6_47.
Full textThilo, Lutz. "Endosome Processing: Structural, Functional and Kinetic Interrelations." In Botulinum and Tetanus Neurotoxins. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9542-4_18.
Full textKaur, Gulpreet, and Aparna Lakkaraju. "Early Endosome Morphology in Health and Disease." In Retinal Degenerative Diseases. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75402-4_41.
Full textSteele-Mortimer, Olivia, Michael J. Clague, Leo Thomas, Jean-Pierre Gorvel, and Jean Gruenberg. "Regulation of Early Endosome Fusion In Vitro." In Molecular Mechanisms of Membrane Traffic. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02928-2_45.
Full textConference papers on the topic "Endosome"
Freeman, Eric, and Lisa Mauck Weiland. "Endosomal Vaccine Delivery Through the Nastic Model." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1338.
Full textDagdug, Leonardo. "Diffusion’s Study of Free Ligands Between Vesicle and Tubules Within the Endosome." In STATISTICAL PHYSICS AND BEYOND: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1900498.
Full textHu, Xian. "A Fast Projection Imaging Method for the Quantification of the Dynamics of Endosome Maturation." In European Light Microscopy Initiative 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.elmi2021.74.
Full textBarra, Jonathan, Iram Nelson, Lauren Elder, Ling Wang, and Margarida M. Barroso. "Abstract 2396: Role of iron transporter DMT1 in endosome-mitochondria interactions and mitochondrial metabolism in breast cancer cells." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2396.
Full textWallrabe, Horst, Masilamani Elangovan, Almut Burchard, Ammasi Periasamy, and Margarida Barroso. "FRET microscopy reveals clustered distribution of co-internalized receptor-ligand complexes in the apical recycling endosome of polarized epithelial MDCK cells." In International Symposium on Biomedical Optics, edited by Ammasi Periasamy and Peter T. C. So. SPIE, 2002. http://dx.doi.org/10.1117/12.470677.
Full textBhagwani, A. R., B. Harmon, D. Farkas, et al. "Increased Endosome Formation with Deficiency in RNA Recognition Receptors in Pulmonary Arterial Endothelial Cells from Patients with PAH - A P53-Dependent Revolving Door to Altered Endothelial Function in PAH?" In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5395.
Full textChoi, JungHun, and Robert H. Sturges. "Design and Simulation of a Smart Endoscope: Part II." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60252.
Full textMunnae, Jomkwun, Gary McMurray, and Harvey Lipkin. "Static and Kinematic Analysis of a Planar Cable-Driven Flexible Endoscope." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87542.
Full textMcLaurin, A. P., and Edwin R. Jones, Jr. "Virtual endoscope." In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, edited by Scott S. Fisher, John O. Merritt, and Mark T. Bolas. SPIE, 1994. http://dx.doi.org/10.1117/12.173900.
Full textSeptier, D., V. Mytskaniuk, R. Habert, et al. "Label-free three photon micro-endoscope." In CLEO: Science and Innovations. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sm3l.5.
Full textReports on the topic "Endosome"
Kent, Michael S., Bryan Carson, Susan Rempe, et al. Mechanism of fusion of pathogenic enveloped viruses with the endosomal membrane. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1494634.
Full textStone, Gary F., and John Smith. High Resolution Sub-MM Fiberoptic Endoscope Final Report CRADA No. TSB-1447-97. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1418930.
Full textReynolds, Charles M., Karen L. Foley, David B. Ringelberg, and Lawrence B. Perry. Fate of Nonindigenous, Endospore-Forming Bacteria in Soils. Strategies for Laboratory and Field Investigations. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada430422.
Full textUrzola Mestra, Enrique Carlos. Vulnerabilidad del deudor en el cobro jurídico de un acreedor cooperativa. Ediciones Universidad Cooperativa de Colombia, 2022. http://dx.doi.org/10.16925/gcnc.27.
Full textEvans, Donald L., Avigdor Eldar, Liliana Jaso-Friedmann, and Herve Bercovier. Streptococcus Iniae Infection in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Towards the Pathogen and Vaccine Formulation. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7586538.bard.
Full textAvni, Adi, and Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, 2015. http://dx.doi.org/10.32747/2015.7600030.bard.
Full textPalmer, Guy, Varda Shkap, Wendy Brown, and Thea Molad. Control of bovine anaplasmosis: cytokine enhancement of vaccine efficacy. United States Department of Agriculture, 2007. http://dx.doi.org/10.32747/2007.7695879.bard.
Full textHealth hazard evaluation report: HETA-2006-0298-3090, evaluation of worker exposures to peracetic acid-based sterilant during endoscope reprocessing, Kaleida Health-Buffalo General Hospital, Buffalo, New York. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 2009. http://dx.doi.org/10.26616/nioshheta200602983090.
Full text