Dissertations / Theses on the topic 'Energetický materiál'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Energetický materiál.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Slovák, Jiří. "Implementace algoritmu pro měření parametrů energetických materiálů v obvodu FPGA." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220352.
Full textKřištof, Adam. "Energetické materiály na bázi nitramidů." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-216660.
Full textBartošková, Monika. "Termochemické vlastnosti vysokodusíkatých energetických materiálů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-234452.
Full textPiercey, Davin Glenn. "Advanced energetic materials." Diss., lmu, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-153895.
Full textMiró, Sabaté Carlos Hector. "Azole-based energetic materials." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-99477.
Full textWelch, Jan. "Low sensitivity energetic materials." Diss., kostenfrei, 2008. http://edoc.ub.uni-muenchen.de/8495/.
Full textBoddy, Rachael Louise. "Damage in energetic materials." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708696.
Full textSehnal, Dominik. "Nízkocyklová životnost v podmínkách jaderné energetiky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399581.
Full textSchlosser, Radek. "Studium katalytické aktivity keramických perovskitových materiálů pro energetické aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229408.
Full textSaraf, Sanjeev R. "Molecular characterization of energetic materials." Texas A&M University, 2003. http://hdl.handle.net/1969.1/331.
Full textMillar, David Iain Archibald. "Energetic materials at extreme conditions." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/8213.
Full textDiodati, Giulia. "Realizzazione e caratterizzazione di materiali polimerici elettroattivi per lo sviluppo di un sistema di pavimentazione a recupero energetico." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textKleinbauer, Jan. "Energetická bezpečnost EU." Master's thesis, Vysoká škola ekonomická v Praze, 2011. http://www.nusl.cz/ntk/nusl-149864.
Full textChiarotti, Nicola. "Determinazione sperimentale delle perdite di carico di efflussi forzati di aria in schiume metalliche di elevata porosità." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17854/.
Full textUrbinati, Sofia. "Analisi Energetica in un'azienda di fabbricazione di articoli in materie plastiche." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textStrejček, Josef. "Studium syntézy a struktury keramických perovskitových materiálů pro energetické aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229301.
Full textSzlaur, Vít. "Analýza procesů obrábění kovových materiálů se zaměřením na energetické aspekty." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230098.
Full textConroy, Michael W. "First-principles studies of energetic materials." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002276.
Full textDavidson, Alistair J. "High-pressure studies of energetic materials." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/16976.
Full textMelin, Pontus. "Atomistic Modeling of Amorphous Energetic Materials." Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359778.
Full textGoveas, Stephen George. "The laser ignition of energetic materials." Thesis, University of Cambridge, 1997. https://www.repository.cam.ac.uk/handle/1810/272508.
Full textHarding, Philip H. "The energetics of adhesion in composite materials /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/9819.
Full textGöbel, Michael. "Energetic Materials Containing The Trinitromethyl Pseudohalide Functionality." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-124207.
Full textStierstorfer, Jörg. "Advanced Energetic Materials Based on 5-Aminotetrazole." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-129940.
Full textConroy, Michael W. "Density Functional Theory Studies of Energetic Materials." Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/3691.
Full textWard, Daniel W. "Tailoring the physical properties of energetic materials." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29531.
Full textLanderville, Aaron Christopher. "First-Principles Atomistic Simulations of Energetic Materials." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5056.
Full textAydelotte, Brady Barrus. "Fragmentation and reaction of structural energetic materials." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50253.
Full textHlavsa, Tomáš. "Tvorba konceptu energeticky soběstačných obytných budov." Doctoral thesis, Vysoké učení technické v Brně. Fakulta architektury, 2018. http://www.nusl.cz/ntk/nusl-355648.
Full textMocová, Pavla. "Optimalizace návrhu energetické renovace školských budov." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-390264.
Full textNarayanan, Vindhya. "Non-equilibrium Thermomechanics of Multifunctional Energetic Structural Materials." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7570.
Full textReding, Derek James. "Shock induced chemical reactions in energetic structural materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28174.
Full textCommittee Chair: Hanagud, Sathya; Committee Member: Kardomateas, George; Committee Member: McDowell, David; Committee Member: Ruzzene, Massimo; Committee Member: Thadhani, Naresh.
Tang, Shuang Ph D. Massachusetts Institute of Technology. "Materials Physics for Thermoelectric and Related Energetic Applications." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98735.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 118-122).
Thermoelectrics study the direct inter-conversion between heat flow and electrical power, which has a wide range of applications including power generation and refrigeration. The performance of thermoelectricity generation and the refrigeration is characterized by a dimensionless number called the Figure-of-Merit (ZT), defined as ZT = [sigma]-S 2T / [kappa], where a is the electrical conductivity, K is the thermal conductivity, S is the Seebeck coefficient, and T is the absolute temperature. Before 1993, the upper-limit of ZT was barely 1. After the efforts of more than twenty years, the upper-limit of ZT has been pushed up to ~2. However, for the thermoelectric technology to be commercially attractive, the value of ZT and the cost of production have to be further improved. Most of the ZT enhancing strategies that have been proposed since 1993 involve the changing and the controlling of the dimension of materials systems, the scattering mechanism(s) of carriers, the shape of the electronic band structure and the density of states, and the magnitude of the band gap. As further research is carried out, it is found that these strategies do not always work to enhance ZT. Even for a working materials system, the improvement margin of increasing ZT can be small. The balancing between [sigma] and S 2 / [kappa] has significantly limited the improvement margin for our ZT enhancing goal. Therefore, we have two problems to explore: (1) how can we deal with the strong correlation between [sigma] and S2 / [kappa] , when trying to enhance ZT, and (2) how can we make the above mentioned strategies more convergent as we change the dimension of materials systems, the scattering mechanism(s) of carriers, the shape of electronic band structure, and the magnitude of the band gap? This thesis aims to explore the solutions to these two major problems at the research frontier of thermoelectric ZT enhancement. The first problem is discussed by providing a new framework of pseudo-ZTs, where the electronic contribution (zte) and the lattice contribution (ztL) to the overall ZT can be treated in a relatively separate manner. The second problem is discussed under this new framework of pseudo-ZTs, through four subsections: (i) scattering and system dimension; (ii) band structure; (iii) density of states; (iv) band gap. The one-to-one correspondence relation between the carrier scattering mechanism(s) and the maximum Seebeck coefficient is further studied. A new tool for scattering mechanism(s) inference and for the Seebeck coefficient enhancement is provided. For the band structure and the band gap part, advanced band engineering methods are provided to study nanostructured narrow-gap materials, the Dirac cone materials, and the anisotropic materials, which are historically found to be good thermoelectric materials. To further demonstrate the newly developed theories, this thesis has also illustrated the application of these models in some specific materials systems, including the graphene system, the transition metal dichalcogenides monolayer materials systems, the Bi1 -xSbx alloys system, the In1.xGaxN alloys system, and the (BiiySby) 2(S1_xTex)3 alloys system.
by Shuang Tang.
Ph. D.
Jiba, Zetu. "Coating processes towards selective laser sintering of energetic material composites." Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/79246.
Full textDissertation (MSc)--University of Pretoria, 2019.
Chemical Technology
MSc
Unrestricted
Kaleta, Radoslav. "Výpočetní model a analýza energeticky úsporných budov." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403117.
Full textPatel, Nitin R. "Intermediate Strain Rate Behavior of Two Structural Energetic Materials." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4865.
Full textDippold, Alexander. "Nitrogen-rich energetic materials based on 1,2,4-triazole derivatives." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-161426.
Full textSzabo, Tamas. "Energy transfer at gas-liquid interface towards energetic materials /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4797.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on February 29, 2008) Vita. Includes bibliographical references.
Hunter, Steven. "High-pressure computational and experimental studies of energetic materials." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8084.
Full textLock, C. M. "Stable isotope profiling of energetic materials and their precursors." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517100.
Full textWagstaff, Douglas C. "The stability of novel energetic materials and associated propellants." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4642.
Full textCollins, Adam Leigh. "Environmentally responsible energetic materials for use in training ammunition." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610529.
Full textRai, Nirmal Kumar. "Numerical framework for mesoscale simulation of heterogeneous energetic materials." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2001.
Full textWagstaff, D. C. "The Stability of novel energetic materials and associated propellants." Thesis, Department of Environmental and Ordnance Systems, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4642.
Full textSklenářová, Lenka. "Možnosti aplikace systémů s akumulací tepla v jaderné energetice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230557.
Full textLiu, Yen-Shan. "Development of an advanced nanocalorimetry system for rapid material characterizations." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4834.
Full textKaplan, Václav. "Výpočtové hodnocení konstrukčních staviv z hlediska energetické náročnosti budovy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-401470.
Full textLair, Shalayna Lee. "Energetic comparison of double-walled carbon nanotube systems." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textŽák, Tomáš. "Využití hybridní technologie Laser-TIG pro svařování rozdílných materiálů používáných v energetice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400985.
Full textSundaram, Dilip Srinivas. "Multi-scale modeling of thermochemical behavior of nano-energetic materials." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50225.
Full text