Academic literature on the topic 'Energi Thermal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energi Thermal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energi Thermal"
,, Monice, and Perinov . "ANALISIS POTENSI SAMPAH SEBAGAI BAHAN BAKU PEMBANGKIT LISTRIK TENAGA SAMPAH (PLTSA) DI PEKANBARU." SainETIn 1, no. 1 (January 24, 2017): 9–16. http://dx.doi.org/10.31849/sainetin.v1i1.166.
Full textSilaban, Mawardi. "Peluang Energi terbarukan di Industri Pemanfaatan Termal Surya Pada Proses Pengeringan Kayu." Majalah Ilmiah Pengkajian Industri 7, no. 1 (July 29, 2019): 1–8. http://dx.doi.org/10.29122/mipi.v7i1.3639.
Full textHendrawan, Andi, Lusiani Lusiani, and Aji K. Hendrawan. "Desain Diameter Pipa secara Matematis pada Pembangkit Listrik Panas Laut (Oceans Thermal Energy Conversion)." Saintara : Jurnal Ilmiah Ilmu-Ilmu Maritim 6, no. 2 (September 30, 2022): 138–42. http://dx.doi.org/10.52475/saintara.v6i2.177.
Full textAli, Muhammad, and Jaka Windarta. "Pemanfaatan Energi Matahari Sebagai Energi Bersih yang Ramah Lingkungan." Jurnal Energi Baru dan Terbarukan 1, no. 2 (June 5, 2020): 68–77. http://dx.doi.org/10.14710/jebt.2020.10059.
Full textIrianto, Ignatius Djoko. "DESIGN AND ANALYSIS OF HELIUM BRAYTON CYCLE FOR ENERGY CONVERSION SYSTEM OF RGTT200K." JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA 18, no. 2 (June 22, 2016): 75. http://dx.doi.org/10.17146/tdm.2016.18.2.2320.
Full textTobing, Iqbal Fahri, Mustaqimah Mustaqimah, and Raida Agustina. "Modifikasi Pengering Tipe Tray Dryer Dengan Penambahan Insulator." Jurnal Ilmiah Mahasiswa Pertanian 4, no. 4 (March 31, 2020): 422–31. http://dx.doi.org/10.17969/jimfp.v4i4.12685.
Full textZakyia, Imra, and Mohammad Ali Shafii. "Analisis Distribusi Fluks Neutron pada Reaktor Berbentuk Slab Menggunakan Persamaan Difusi Multigrup Satu Dimensi dengan Metode Gauss-Seidel." Jurnal Fisika Unand 9, no. 3 (August 14, 2020): 388–93. http://dx.doi.org/10.25077/jfu.9.3.388-393.2020.
Full textFauzi, Ahmad, and Poki Agung Budiantoro. "RADIATOR THERMAL SEBAGAI SISTEM PENOLAK PANAS PADA SATELIT BENTUK SILINDER." Transmisi 22, no. 3 (August 5, 2020): 67–72. http://dx.doi.org/10.14710/transmisi.22.3.67-72.
Full textTarigan, Elieser. "Energy Saving Measures and Simulation in the Library Building of University of Surabaya." Jurnal Teknologi Rekayasa 3, no. 1 (June 20, 2018): 63. http://dx.doi.org/10.31544/jtera.v3.i1.2018.63-70.
Full textSetiadi, Amos. "STUDI AWAL ENERGI TERMAL PADA TOSAN AJI." Ornamen 19, no. 1 (November 30, 2022): 86–91. http://dx.doi.org/10.33153/ornamen.v19i1.4349.
Full textDissertations / Theses on the topic "Energi Thermal"
Wodlin, Jakob. "Konceptstudie för omvandling av termisk energi till elektrisk samt mekanisk energi i en autonom undervattensfarkost." Thesis, Linköpings universitet, Fluida och mekatroniska system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129220.
Full textThe report discusses a concept study regarding the conversion of thermal energy into electrical and mechanical energy, in the autonomous underwater vehicle SAPPHIRES. First, the requirements and expectations regarding the concept of energy conversion are investigated and efforts are made to identify any published literature, which has already made attempts of solving the issue. General theory regarding heat engines and an extensive literature study are also included in this work. The energy conversion is assumed to perform according to two cases called "high-performance" and "low/medium-performance", meaning mechanical and electrical energy or electrical power should be delivered by the concept, respectively. More specifically, the mechanical and electrical powers should be delivered of a maximum of 600 and 6 kW, respectively and the concept should at least fulfill one of the performance settings. The actual concept study comprises of two iterations of concept generations, evaluations and selections and shows that a concept called "Open system inspired by nuclear thermal propulsion" seems to be the best way of converting thermal energy on-board SAPPHIRES. Moreover, a more detailed analysis, comprising of, inter alia, mathematical modelling and conceptual design, indicates that the concept possibly can meet the so-called "high-performance" and thus, deliver both mechanical and electrical powers of 600 and 6 kW, respectively. More specifically, a mathematical analysis, based on some assumptions regarding the concept's functionality, shows that an "Open system inspired by nuclear thermal propulsion" could deliver a mechanical power of 1025 kW and an electrical power of 141 kW. Rough conceptual design also shows that the vital parts of the concept could fit within the specified maximal dimensions (a cylinder-shaped volume with a length and diameter of 1.7 and 0.5 m, respectively). However, it is clear the possible concepts of energy conversion are severely limited by their capacities of delivering enough mechanical energy, to meet the "high-performance" demands. Assuming only the "low/medium-performance" has to be met, more possible concepts becomes available and in that case, factors such as maintenance, environmental impact and signature of SAPPHIRES could be considered to a greater extent.
Holmström, Susanne. "Fjärrvärmesystem." Thesis, University of Gävle, Ämnesavdelningen för energi- och maskinteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4484.
Full textThis is a report written for an examination project C-level, on the subject of energy. The examination project is a product of the FVB Sweden AB (district heating bureau). It started with a meeting with Stefan Jonsson FVB Sweden AB, were he explained the content of the project, and from this a presentation of the problem was made. The problem that needed to be solved was how they could control the valves in the system to provide heating to everyone in the system. The valves are often oversized so the pump in the heating plant would have to be enormous to be able to provide enough flow to be sufficient, if everyone in the system had there valves fully opened.
I came up with two solutions to the problem, one was a wireless network that could keep track of the valves and the other solution was an extra sensor that was placed on the radiator. The purpose for that was to open the valve if the temperature dropped more than one degree inside. With the help of a program called IDA it was calculated that, if the temperature drop five degrees, they would have sixteen hours at the heating power plant to open the flow before the sensor open the valves.
After careful consideration I came up with the conclusion that the wireless network must be the best solution. Mostly because you can monitor all the clients in the system from the heating power plant and that will make it easier to discover faults and temperature differences.
Wireless networks is already a well tested solution in form of wireless controlled electricity meters so it shouldn’t be to much of a problem connecting these sensors to it either.
Riise, Jørn Arnold Kvistad. "Computer Code for Thermal Analysis of Rocket Motors." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8945.
Full textFurther development of a two-dimensional thermal analysis code (G2DHeat) to include internal decomposition and charring ablation of insulation materials is presented. An overview of the structural changes made to the program code by implementing an implicit solution routine, including source term is given, before testing and verification of accuracy is performed. A kinetic model for decomposition reactions, as well as routines for handling the generated gas from the decomposition reactions, changes concerning the material properties and erosion of surface material are implemented and explained. Comparisons of results are made with similar results obtained by commercial programs. Possible reasons affecting the results are pointed out, before additional comparisons with experimentally observed measurements are performed. Based on the simulated results it is concluded that a great deal of testing remains for proper validation of the program. How to include better boundary conditions for simulating charring ablation is suggested and recommended for further development of the program.
Boström, Cecilia. "Storleksoptimering av en etanolfabrik för integrering med ENA Energis kraftvärmeverk. : Baserat på en regional energibalans mellan tillgång på etanolbränsle i Enköping kommun och producerad etanol med hjälp av tillgänglig ånga från ENA kraftvärmeverk." Thesis, Mälardalen University, School of Sustainable Development of Society and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-1608.
Full textAbstract
The future of ethanol is depending on good solutions for the production. ENA energy power plant produces electrical power and district heating by heating biofuel. By building an integrated bioenergy plant surplus steam could be used to produce ethanol as fuel to vehicle.
This would mean that ethanol is produced renewable energy and the energy for the process derives from the surplus of power. ENA energy, MDH (the University of Mälardalen) and the energy authority has initiated a research project were different bioenergy combinations integrate with existing power plant. As a part of the project which size an integrated factory should be to gain the best efficiency for the plant was investigated. Consideration will be taken to the cost of the production in order to be competitive to the price of imported ethanol.
Etanolens framtid vilar på bra lösningar för framställning. I ENA energi kraftverk i Enköping produceras el och fjärrvärme genom eldning av biobränsle. Genom att bygga ett integrerat bioenergikraftverk där skulle man kunna använda överskottsånga till att framställa etanol som fordonsbränsle. Detta skulle innebära att etanolen framställs med ett förnybart bränsle och energin till framställningen kommer från ett överskott på värme. ENA energi, MDH och energimyndigheten har initierat ett forskningsprojekt där en bioenergiintegrering skall undersökas. Som del i detta skall här undersökas vilken storlek en integrerad etanolfabrik skall ha för att nå högsta totala verkningsgrad för verket samt om framställningspriset kan konkurrera med importerad etanol.
Pedersen, Per-Kristian. "Thermal-Hydraulic Analysis of a Pneumatic Resonating Device." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18575.
Full textEithun, Camilla Foyn. "Development of a thermal conductivity apparatus: Analysis and design." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18588.
Full textTrøtscher, Thomas. "Large-scale Wind Power integration in a Hydro-Thermal Power Market." Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9551.
Full textThis master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been adapted to Northern Europe, with focus on Denmark West and the integration of large quantities of wind power. In the model, demand and supply of electricity are equated, at an hourly time resolution, to find the spot price in each area. Historical load values are used to represent demand which is assumed to be completely inelastic. Supply is modeled according to the type of generation: Thermal generators are represented by piecewise linear, upward sloping, marginal cost curves. Historical wind generation data is used to model the fluctuating wind power output, and wind power is considered to have zero marginal cost. Hydro power is modeled by one aggregate reservoir for Norway and one for Sweden; the marginal cost of hydro power is set as a function of the difference between the reservoir level and the historical median reservoir level. Additionally, decentral combined heat and power plants in Denmark are considered to operate irrespective of the market. Six separate price areas constitute the model: Denmark West, Denmark East, Norway, Sweden/Finland, Germany, and Central Europe. The areas are modeled as having no internal bottlenecks and are connected by tie-lines constrained by active power limits. This report quantifies the impact the installed wind power capacity has on the power price in Denmark West by scaling up the wind power output in the model. Because wind power has a marginal cost close to zero, it will force prices down. The effect will be most prominent during high wind speed hours in a power system with substantial amounts of wind power. Results show that the impact is modest; average power prices fall by only 10% if the installed wind power capacity is doubled, and thermal generation will set the power price in all hours until wind energy exceeds 50% of domestic demand in Denmark. Since prices fall the most during hours with high wind power output, income to wind turbine owners will decline quickly as the installed capacity becomes large. The effect is most pronounced at wind energy shares above 40%, thereafter the income -- per MWh sold -- falls rapidly. In absence of government subventions, this effect will limit the economically viable level of installed wind power capacity. Expansion of the cross-border transmission capacity and higher thermal generation costs can both help offset the income reduction to wind turbine owners from higher wind power penetration. Alone, a 30% increase in thermal generation costs can allow 50% of wind energy and still retain todays income to wind turbine owners. Use of the Norwegian hydro reservoirs to balance out fluctuations in wind power output is found to stabilize and reduce the price. This benefits both consumers and wind turbine owners in Denmark. Expansion of transmission capacity to Norway will further stabilize the price; a new 1000MW cable lets the Danish market easily accomodate 50% wind energy. With lower and more volatile prices as a result of high wind power penetration, a load can profit by being flexible. Water electrolysis is one such load; it uses electricity to produce hydrogen, and production can quickly be ramped up and down in accordance with the power price. Presently, steam methane reforming is the least expensive method of producing hydrogen, but with higher wind power penetration, electrolysis might become competitive. Using a previously developed model to assess the cost of electrolysis, in combination with the power market model developed here, this report finds that wind energy must exceed 85% of domestic demand in Denmark, combined with higher natural gas prices, for electrolysis to break even with steam methane reforming.
Linde, Daniel. "Evaluation of a Flat-Plate Photovoltaic Thermal (PVT) Collector prototype." Thesis, Högskolan Dalarna, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:du-24061.
Full textEriksson, Linnea. "The impact of calculation methods on the gap between predicted and actual energy performance of buildings : Using a thermal simulation model of a building." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33225.
Full textByggnadssektorn är ansvarig för nästan en fjärdedel av de totala globala koldioxidutsläppen. Viljan att minska utsläppen kan ses i de allt striktare riktlinjer som sätts över hela världen. För att reducera utsläppen finns det två sätt: bygga nya energieffektiva byggnader eller ombyggnation av nuvarande byggnader. Livslängden på nuvarande byggnadsbestånd innebär att de största besparingarna innan 2030 kommer att ske inom ombyggnationer. För detta krävs tillförlitliga verktyg, och i nuläget finns det ett gap mellan byggnaders förutspådda och verkliga energiprestanda. I denna examensuppsatts kommer beräkningsmetodens inflytande över detta gap att undersökas. En byggnad på RMIT:s campus i Melbourne, Australien, som kommer att undergå en ombyggnation som designats av Siemens har använts. En termisk simuleringsmodell av byggnaden skapades och avstämdes mot den verkliga byggnaden, och jämfördes mot uppmätta värden av byggnadens energiprestanda. Ombyggnationerna var sedan implementerade och skillnaden mellan den förutspådda prestandan av byggnaden, genom den omfattande simuleringsmodellen och den enklare beräkningsmetoden som användes av Siemens, jämfördes. Genom att analysera gapet mellan de olika beräkningsmetoderna kunde slutsatser dras angående hur de kan bidra till gapet i energiprestanda. Slutsatserna från arbetet är att simuleringsmodellen ger en bra bild av energianvändningen av byggnaden, med hänsyn till informationen som varit tillänglig. Byggnadens totala uppmätta elektricitetsanvändning är speciellt väl överrensstämmande med simuleringsmodellens resultat både i den årliga användningen, ca 4 % skillnad från uppmätta värden, och variationen över ett år. Den totala användningen av naturgas enligt simuleringsmodellen är under de uppmätta värdena med en skillnad på ca 40 %, men med en god överrensstämmelse med den årliga variationen. Användningen av elektricitet i modellen är relativt stabil, användningen av naturgas är känslig för direkta ändringar till uppvärmningssystemet. Inputparametrarna som har störst inverkan på elanvändningen är interna, energiproducerande och konsumerande, enheters användningsprofil (PC, personer, ljus m.m.), el konsumtion, och latenta samt sensibla värme. Siemens beräkningsmetod bidrar till gapet mellan förutspådda och verkliga energiprestanda genom brist på samverkan mellan de olika delarna i ombyggnationen. Ombyggnationen som innebär uppgradering av byggnadens belysning innebär exempelvis märkbara skillnader i byggnadens uppvärmnings- och kylsystem. Användningen av endast en period i skapandet av regressionsmodeller för att förutspå vattenkokarnas och kylarnas användning leder även till en missledande framtida energiproduktion. Styrkan i simuleringsmodellen är möjligheten till samverkan mellan olika ombyggnationer påverkan på varandra samt möjligheten till scenarioanalys.
Singh, Chitranjan, and Tamas Tamilinas. "Energy optimization tool for mild hybrid vehicles with thermal constraints." Thesis, KTH, Fordonsdynamik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293496.
Full textDet nuvarande globala scenariot är sådant där miljöpåverkan håller på att bli en växande angelägenhet. Globala fordonstillverkare har fokuserat mer på hybrid- och elfordon, eftersom både mer medvetna kunder och statlig lagstiftning har börjat kräva högre emissionskrav. Ett av de många sätt som Volvo Car Group närmar sig denna trend är genom mild hybridisering genom att bistå förbränningsmotorn med en liten elmotor och ett batteripaket. En smart strategi för energihantering behövs för att få ut det mesta av de fördelar som hybrida elfordon erbjuder. Huvudsyftet med denna strategi är att utnyttja den elektriska energin ombord på ett sådant sätt att den totala effektiviteten hos hybriddrivlinan blir så hög som möjligt.Den nuvarande implementeringen är sådan att beslutet att använda det fordonsbaserade batteriet är inte-förutsägbart. Detta resulterar i en suboptimal användning av hybriddrivlinan. I denna avhandling är ett prediktivt Energioptimeringsverktyg utvecklat för att maximera nyttan av hybridisering och det praktiska implementerandet av detta verktyg undersöks. Optimeringen beaktar både kapaciteten och de termiska belastningsbegränsningarna hos batteriet. Det utvecklade optimeringsverktyg använder information om vägen framåt tillsammans medkonvex optimering för att producera optimala referenstrajektorier av batteritillståndet. Dessa trajektorier används i en realtidsstyrenhet för att bestämma batterianvändningen genom att kontrollera adjungerade tillstånden strategiekvationen för den ekvivalenta förbrukningsminimiseringen. Optimeringsverktyget verifieras och jämförs med den ursprungliga styrenheten i en simuleringsmiljö baserad på Simulink. När perfekt information om vägen framåt är känd, är den genomsnittliga minskningen av bränsleförbrukningen 0,99 % relativt den ursprungliga styrenheten. Flera frågor som uppstår i den verkliga implementeringen undersöks, såsom den begränsade beräkningshastigheten och längden på den väg framåt som kan förutses. Av denna anledning är segmenteras informationen till optimeringsverktyget och den resulterande prestandan undersöks. För en 30 sekunders segmentering av framtida väginformation är den genomsnittliga besparingen i bränsleförbrukningen 0,13 % i förhållande till den ursprungligastyrenheten. Resultaten visar att den viktigaste faktorn som begränsar bränsleförbrukningsbesparingen är införandet av de termiska belastningsbegränsningarna på batteriet.
Books on the topic "Energi Thermal"
Penoncello, Steven G. Thermal Energy Systems. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22141.
Full textDing, Yulong, ed. Thermal Energy Storage. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019842.
Full textAli, Hafiz Muhammad, Furqan Jamil, and Hamza Babar. Thermal Energy Storage. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1131-5.
Full textCanada, Energy Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.
Find full textCanada. Energy, Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.
Find full textGarg, H. P., S. C. Mullick, and A. K. Bhargava. Solar Thermal Energy Storage. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5301-7.
Full textBecker, Manfred, and Karl-Heinz Funken, eds. Solar Thermal Energy Utilization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-52340-3.
Full textBook chapters on the topic "Energi Thermal"
Borah, Sushmita, Amin Al-Habaibeh, and Rolands Kromanis. "The Effect of Temperature Variation on Bridges—A Literature Review." In Springer Proceedings in Energy, 207–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_26.
Full textTamme, Rainer, Doerte Laing, Wolf-Dieter Steinmann, and Thomas Bauer. "Thermal Energy Storage thermal energy storage." In Encyclopedia of Sustainability Science and Technology, 10551–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_684.
Full textTamme, Rainer, Doerte Laing, Wolf-Dieter Steinmann, and Thomas Bauer. "Thermal Energy Storage thermal energy storage." In Solar Energy, 688–714. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_684.
Full textMcMullan, R. "Thermal Energy." In Environmental Science in Building, 56–83. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22169-1_4.
Full textNewman, Jay. "Thermal Energy." In Physics of the Life Sciences, 1–33. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77259-2_12.
Full textAnglart, Henryk. "Thermal Energy." In Introduction to Sustainable Energy Transformation, 85–120. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003036982-7.
Full textStutzmann, Martin, and Christoph Csoklich. "Thermal Energy." In The Physics of Renewable Energy, 83–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17724-8_6.
Full textReed, Samuel, Heber Sugo, and Erich Kisi. "New Highly Thermally Conductive Thermal Storage Media." In Transition Towards 100% Renewable Energy, 379–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69844-1_34.
Full textMertes, Claus R. "Solar Thermal Desalination solar thermal desalination." In Solar Energy, 649–54. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_685.
Full textEhrlich, Robert, Harold A. Geller, and John R. Cressman. "Solar Thermal." In Renewable Energy, 303–40. 3rd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172673-10.
Full textConference papers on the topic "Energi Thermal"
Petruzzi, Alessandro, Francesco D’Auria, Tomislav Bajs, and Francesc Reventos. "International Training Program in Support of Safety Analysis: 3D S.UN.COP—Scaling, Uncertainty and 3D Thermal-Hydraulics/Neutron-Kinetics Coupled Codes Seminars." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-76056.
Full textBadruzzaman, Ahmed. "Energy security and climate change — Myths and realities." In 2014 30th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2014. http://dx.doi.org/10.1109/semi-therm.2014.6892203.
Full textKlein, Levente J., Sergio Bermudez, Hans-Dieter Wehle, Stephan Barabasi, and Hendrik F. Hamann. "Sustainable data centers powered by renewable energy." In 2012 IEEE/CPMT 28th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2012. http://dx.doi.org/10.1109/stherm.2012.6188874.
Full textLuttrell, Jeff, Abhishek Guhe, and Dereje Agonafer. "Expanding the envelope for indirect/direct evaporative data center cooling using thermal energy storage." In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016. http://dx.doi.org/10.1109/semi-therm.2016.7458461.
Full textWu, Xiao Ping, Masataka Mochizuki, Koichi Mashiko, Thang Nguyen, Vijit Wuttijumnong, Gerald Cabsao, Randeep Singh, and Aliakbar Akbarzadeh. "Energy conservation approach for data center cooling using heat pipe based cold energy storage system." In 2010 IEEE/CPMT 26th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2010. http://dx.doi.org/10.1109/stherm.2010.5444304.
Full textParthasarathy, Swarrnna K., Khondker Z. Ahmed, Borislav Alexandrov, Satish Kumar, and Saibal Mukhopadhyay. "Energy efficient active cooling of integrated circuits using autonomous Peltier/Seebeck mode switching of a thermoelectric module." In 2014 30th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2014. http://dx.doi.org/10.1109/semi-therm.2014.6892222.
Full textPavlovic, Milan. "ENERGY SAVINGS BY RECYCLING." In Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar Bled. Connecticut: Begellhouse, 2000. http://dx.doi.org/10.1615/ichmt.2000.thersieprocvol2thersieprocvol1.780.
Full textXuefei Han and Yogendra Joshi. "Energy reduction in server cooling via real time thermal control." In 2012 IEEE/CPMT 28th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2012. http://dx.doi.org/10.1109/stherm.2012.6188829.
Full textSahu, Vivek, Andrei G. Fedorov, Yogendra Joshi, Kazuaki Yazawa, Amirkoushyar Ziabari, and Ali Shakouri. "Energy efficient liquid-thermoelectric hybrid cooling for hot-spot removal." In 2012 IEEE/CPMT 28th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2012. http://dx.doi.org/10.1109/stherm.2012.6188838.
Full textKOENEN, ALAIN, and DAMIEN MARQUIS. "Walls Thermal Resistance Measurement with an Energy Room Method: Uncertainty and Analysis of Different Approaches." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30342.
Full textReports on the topic "Energi Thermal"
Johra, Hicham. Thermal properties of common building materials. Department of the Built Environment, Aalborg University, January 2019. http://dx.doi.org/10.54337/aau294603722.
Full textLager, Daniel, Lia Kouchachvili, and Xavier Daguenet. TCM measuring procedures and testing under application conditions. IEA SHC Task 58, May 2021. http://dx.doi.org/10.18777/ieashc-task58-2021-0004.
Full textTomlinson, J., and R. Kedl. Thermal energy storage. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5687600.
Full textLiu, X., Z. Chen, and S. E. Grasby. Using shallow temperature measurements to evaluate thermal flux anomalies in the southern Mount Meager volcanic area, British Columbia, Canada. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330009.
Full textFeierl, Lukas, Maria Moser, and Hannes Poier. Modular conception and construction. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0010.
Full textAscari, Matthew. Ocean Thermal Extractable Energy Visualization. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1219878.
Full textBertoncelli, Mariana, and Hashim Ahmed. Thermal energy treatments for BPE. BJUI Knowledge, July 2020. http://dx.doi.org/10.18591/bjuik.0730.
Full textZarza, E., D. Alarcón, M. Frasquet, and P. Saini. Integration schemes and BOPs more commonly used in commercial SHIP applications. IEA SHC Task 64, October 2022. http://dx.doi.org/10.18777/ieashc-task64-2022-0001.
Full textBarowy, Adam, Alex Klieger, Jack Regan, and Mark McKinnon. UL 9540A Installation Level Tests with Outdoor Lithium-ion Energy Storage System Mockups. UL Firefighter Safety Research Institute, April 2021. http://dx.doi.org/10.54206/102376/jemy9731.
Full textYahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Full text