Dissertations / Theses on the topic 'Energiberäkning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Energiberäkning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Karlsson, Fredrik. "Energiberäkning av varmmassafickor." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32323.
Full textBodin, Gustav, and Momamed Jaber. "Energiberäkning för påbyggnader." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112099.
Full textSaving energy is important both economically and environmentally. The way we in Sweden build our houses and the rules that govern our energy usage has varied over the years. Åtvidabergstakvåningar is a company that perform superstructures in the shape of new penthouses for villas. Åtvidabergstakvåningar came with the initiative for the study, too get a picture of how the energy usage transformed for villas equipped with their penthouses. They also came with the initiative for the method to create time distinct villas and equip these with their penthouses. The study gives a picture of how the building envelop is composed and how the energy loss is through it. The study will also compare how the rules that govern energy loss and usage have transformed over the years. The result of the Study is an energy calculation that declares the energy usage for the time distinct villas with and without penthouses. The Result of the study shows that the older houses get a better energy performance after adding on the penthouses, while the new house got a value that was similar.
Holopainen, Viktor, and Sanan Alhilali. "Energiberäkning : En jämförelse mellan småhus och passivhus." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-52988.
Full textEriksson, Douglas. "Energiberäkning på Sjösäkerhetsanordningar : Energikartläggning och beräkningsverktyg för ljus." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160554.
Full textPå uppdrag av Sjöfartsverket har detta examensarbete genomförts med syfte att dels göra en energikartläggning på befintliga lysanordningar men även att skapa ett användarvänligt beräkningsprogram. Energikartläggningen gjordes på ungefär 600 st. lysanordningar (lysbojar och lysprickar) som alla använder alkaliska engångsbatterier och är placerade runt om i Sveriges farleder. Beräkningsprogrammet skapades utifrån särskilda bestämmelser vid beräkning av ljusintensitet då dagens metod är bristfällig och inkonsekvent. Resultatet blev att ett beräkningsprogram togs fram som gör det möjlig för användaren att med känd indata kunna beräkna vilken kapacitet på batteriet som behövs under en önskad driftperiod. Samma metod som i beräkningsprogrammet användes även vid energikartläggning som resulterade i att en stor del av den inköpta batterikapaciteten inte kom till användning. Batterier för ungefär 800 tkr inhandlas årligen och beräkningarna visar att med en bytesmarginal på 3 månader finns det fortfarande möjlighet att spara ungefär 300 tkr som procentuellt blir lite drygt 37 %. I dagsläget köps de in alldeles för många engångsbatterier då siffrorna visar ett uppenbart energisvin. Det som krävs för att minska användningen av batterier är bättre planerade rutter, utökad kunskap om energi och bättre beräkningsverktyg. I de stora hela har detta arbete bidragit till ökad kunskap och ett användarvänligt beräkningsverktyg.
Larson, Karl. "Energiberäkning och utvärdering av valbara värmekällor för skolbyggnad vid Miljöbyggnadskrav." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-377242.
Full textÄdling, Anna. "Timmerhusets historia och framtid : En studie av timmerhusets energianvändning." Thesis, University of Gävle, Department of Technology and Built Environment, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-759.
Full textI en tid där vår miljömedvetenhet och vårt energianvändande får allt större utrymme ställs allt högre krav på de alla de material som vi använder oss av. Ett område där energianvändandet har fått allt mer fokus är byggbranschen. Med EU:s direktiv 2002/91/EG blir kravet på att våra byggnader ska vara energieffektiva allt större. Även timmerhuset som har tusenåriga traditioner måste klara de energikrav som vi har på 2000-talet. Boverket har utifrån direktivet fastställt nya krav som säger att hus belägna i den norra klimatzonen får ha en lägsta energianvändning av 130 kWh/år och 110 kWh/år i den södra.
Endast 8” timmerhuset beläget i den södra klimatzonen klarar Boverkets krav på 110 kWh/år.
Uppsatsen analyserar fem energisparande åtgärder:
• Användning av grövre timmer
• Utvändig tilläggsisolering
• Invändig tilläggsisolering
• Invändig tilläggsisolera av den norra väggen samt endast på de ställen där timmerväggen ändå inte kommer att vara synlig:
- Badrum
- Kök
• Dubbel timmervägg med isolering emellan
In a time where our environmental awareness and our use of energy gets more and more attention, grows the demand requirements on all the materials that we use. An area where the focus on etc the energy consumption has increased is the construction industry. With EU´s directive 2002/91/EG the demand energy efficient requirements gets even higher. Even the timberhouse that has traditions for over a 1000 years has to make the demand requirements that we have in the 21-century. Boverket has on the basis of the directive
established new demands that say that houses located in the northern climate zone gets to have a maximum energy consumption of 130 kWh/year and 110 kWh/year in the southern climate zone.
Only the 8” timberhouse located in the southern climate zone made the demand requirements on 110 kWh/year.
The report analyses five different energy saving alternatives;
• Use of rougher timber
• Externally addition isolation
• Internally addition isolation
• Internally addition isolation of the northern wall and only on thoose walls where the timberwall neverhteless is gonna be visible:
- Bathroom
- Kitchen
• Doubble timberwall with isolation inbetween
Nilsson, Anna, and Stina Vendel. "Värmelagring i byggnader : Kan en god värmelagringsförmåga kompensera ett högt U-värde?" Thesis, Karlstad University, Faculty of Technology and Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-1821.
Full textIdag bor ungefär en tredjedel av jordens befolkning i hus som är byggda av lera. I Sverige byggs det endast i liten skala med detta byggmaterial och då främst i egen regi. De människor som sysslar med detta tror att leran har goda egenskaper som byggnadsmaterial, bland annat en god värmelagringsförmåga. När det idag byggs hus sätts stort fokus på att husens U-värden ska vara så låga som möjligt medan man bortser ifrån konstruktionens värmelagringsförmåga. En massiv lervägg utan isolering får ett högt U-värde, vilket man idag vill undvika. I BBR ställs krav på en byggnads energiförbrukning och på ett U-medelvärde för dess klimatskal. I detta arbete undersöktes det om leran har såpass goda egenskaper vad gäller värmelagring att det kan kompensera för dess höga U-värde och se hur värmelagringsförmågan och värmeledningen samverkar. Syftet var att se om det är möjligt att bygga ett hus med lerväggar i Sverige som klarar BBR:s krav på energihushållning och målet var att redovisa en vägg av lera som klarar detta.
För att värmelagringen ska fungera krävs i huvudsak två saker; bra värmelagringsförmåga i klimatskalet och att inomhustemperaturen svänger. Svängning i temperaturen inomhus uppkommer av så kallad gratisvärme från personer, hushållsapparater och solinstrålning. Under de delar av dygnet då gratisvärmen är stor kommer det att bli ett överskott av energi. Meningen är att väggarna ska ta upp den energin och lagra den till ett tillfälle då det är kallare inne och då avge den. På detta sätt görs en energibesparing samtidigt som komforten ökar i och med att temperatursvängningarna dämpas.
De tillfällen då väggen är varmare än inomhustemperaturen kommer energi att avges från väggen. Mängden av denna energi kallas värmetröghet och har enheten kJ/m². För att få fram denna energimängd användes en fördjupad metod inom värmelagring. Metoden går ut på att väggen delas in i flera skikt och värmetransporterna mellan varje skikt räknas ut. I och med denna förflyttning av energi så kommer temperaturen i varje skikt att ändras. Dessa beräkningar görs på 24 timmar jämnt uppdelat i tidssteg. I de fallen då det finns en värmetröghet kommer temperaturen i det innersta skiktet vid ett eller flera tidssteg att överskrida inomhustemperaturen, och därmed avge energi. Energin från de olika tidsstegen summeras för att få den totala värmetrögheten. Dessa beräkningar gjordes i Excel.
Den andra delen, förutom värmelagring, som är viktig i dessa energiberäkningar är U-värdet. Även detta räknades ut i Excelprogrammet.
För att se hur U-värde och värmetröghet samverkar räknades energiförbrukningen ut för ett hus där väggkonstruktionen varierades. Genom att hålla alla värden konstanta utom just värmetrögheten och U-värdet kunde skillnader observeras. Den konstanta indatan skapades genom att anta en fiktiv villa som motsvarar en svensk ”medelvilla”. Data för denna byggnad matades sedan in i ett energiberäkningsprogram, gjort av Jens Beiron, för att få fram dess årliga energiförbrukning. Dessa resultat jämfördes sedan med det norra och södra kravet på energihushållning som ställs i BBR.
Två fall sattes upp, i det första fallet gjordes en jämförelse mellan en massiv lervägg och en träregelvägg. Det andra fallet gick ut på att optimera lerväggen (isolera), om denna inte skulle klara BBR:s krav vad gäller energihushållning.
Resultatet från fall 1 visade att en massiv lervägg inte skulle klara kravet om den inte hade en tjocklek på 1800mm (norra zonens krav) och 4800mm (södra zonens krav). Väggen behövde en tjocklek på minst 720mm för att överhuvudtaget ge tillbaka värme till rummet. Träregelväggen däremot klarade kravet med en isoleringstjocklek av 500mm (södra zonens krav) och 200mm (norra zonens krav). För att ge tillbaka värme behövde väggen ha en isoleringstjocklek på 250mm.
I fall två testades en lervägg med 100mm cellplast och 200mm cellplast med den sammanlagda väggtjockleken på 400mm i båda fallen. Värmetrögheten var god i båda fallen så länge inte isoleringen sattes på insidan av väggen då den bidrog till att ingen värme kunde transporteras in i konstruktionen. Den varianten med 100mm isolering klarade den norra zonens krav medan den med 200mm isolering även klarade det södra kravet.
Av resultaten kunde man se att en konstruktion måste ha ett någorlunda lågt U-värde för att kunna lagra värme från ett tillfälle till ett annat. Detta beroende på att värmegenomgångsmotståndet annars blir så pass litet att värmen istället transporteras rakt igenom väggen. En massiv lervägg skulle under detta arbetes förutsättningar inte klara kraven. En isolerad lervägg skulle däremot kunna göra det.
Träregelväggen får ett lågt U-värde men låg värmetröghet medan den isolerade lerväggen får ett högre U-värde fast hög värmetröghet samtidigt som båda dessa klarar kraven. Detta visar att värmetrögheten faktiskt kan kompensera ett lägre U-värde.
Olsson, Sofia, and Ingela Karlsson. "Energieffektivisering av en äldre byggnad : Fallstudie på Andra Magasinsgatan i Gävle." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-22569.
Full textThe purpose of this report is to propose a cost-effective way of improving energy efficiency in an old building in Gävle based on Gävle municipality's restrictions on physical and aesthetic changes. This is due to the fact that environmental problems in recent times have become a major threat to our world, and there are daily efforts aiming at curbing these and the greenhouse effect they contribute to. The housing sector stands for almost a third of all energy consumption, which is a large part of greenhouse gas emissions. To reduce energy consumption and thereby help to mitigate the greenhouse effect, energy efficiency can be improved in buildings. In this case study, literature reviews, inspections, surveys, studies, calculations and simulations have been executed in order to reach a result. The history of the building has also been investigated and the zoning of Gävle city has been studied to determine whether or not there exists restrictions regarding physical or aesthetic alterations due to special preservation requirements. However, since no restrictions existed according to the zoning or the preservation requirements of the municipality, the building regulations of the National Board of Housing, Building and Planning with the caution requirement have been followed carefully during the development of the study. The most cost effective and energy effective measure to take in this case study is to combine three types; to provide additional insulation to the inside of the exterior walls, to provide additional insulation to the attic as well as to replace the external doors with new doors that are both tighter and have better U-values.
Wilander, Stina. "Byggnadsekonomi : En jäförelse ellan passivhus och konventionella hus." Thesis, Växjö University, School of Technology and Design, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2110.
Full textMed stigande energikostnader, och med påverkan av miljön är det viktigt att spara energi. Ett led i detta är
att bygga bostäder och andra byggnader mer energisnåla, eftersom dessa står för nästan 40 % av Sveriges
energianvändning.
Ett hinder för att bygga energisnålt är den ökade kostnaden vid produktionen, för exempelvis ökande mängd
byggnadsmaterial. Det är därför viktigt att inte bara titta på vad byggnadskostnaden blir, utan vad kostnaden blir
på sikt. Läggs extra pengar vid byggnationen på extra isolering och effektivare installationer, kommer
driftskostnaden av huset minska. Detta gör att inom en framtid kommer den dyrare byggnationen ha betalat sig.
Det visar sig att passivhus fungerar och att det betalar sig i längden att bygga passivhus. Det tar bara olika
lång tid beroende vilka faktorer som tas med vid beräkningarna. Men med samma ökning av elpriset som under
de gångna åren, återbetalar sig passivhuset på ca 16 år. Där efter sparas mer pengar in varje år i form av lägre
driftskostnader
Along with increasing energy costs, and effection on the environment, it is more and more important to save
energy. One thing we can do is to build so called passivehouses, as the houses takes up almost 40 % of the
total energy, spent in Sweden.
Increasing production costs stands in the way of building low-energy buildings. Therefore it’s important not
only to consider the cost of building the house, but also to look at what the yearly costs will be. If more money is
spent, during the production of the house, at extra isolation and more effective installation systems, the yearly
costs will decrease. That leads to the conclusion that the house is repaid in a certain amount of years. How long
it takes and which factors it depends on the most, will be revealed in this paper.
One of the conclusion is that the passivehouses works, and the extra money spent when building the house,
is repaid in about 16 years. The repayment time, depends on a huge number of scenarios, but the money will
still be repaid, it’s just a matter of time
Bergviken, Christian, and Jakob Johansson. "Prefabricerade nära nollenergihus : Fallstudie om energieffektivisering av konventionella byggnader." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Byggnadsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-19511.
Full textWellholm, Jill. "Avvikelser mellan beräknad och faktisk energianvändning i byggnader : Fallstudie av en fastighet byggd 2012." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296268.
Full textHaddad, Anthony. "Energiberäkningar, energiuppföljningar och systemlösningar : Skanskas flerbostadshus i Stockholmsområdet." Thesis, Mittuniversitetet, Institutionen för kemiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39325.
Full textThe purpose of the project is to analyze deviations between calculated and measured energy consumption for several apartment buildings in Stockholm. This is a topic that has been brought to the attention of authorities and companies, while at the same time the energy requirements are becoming increasingly tough. About 40 percent of Sweden's total energy supply is used for operation and heating of buildings, which means that the construction sector needs to work actively to reduce energy consumption and play a major role in the change towards climate neutrality in 2045 for Sweden. The aim of the project is to identify contributing factors to deviations between energy calculation and energy consumption for selected projects, and to develop proposals for improvement measures that contribute to improved energy calculations and reduced energy consumption. The method used is to first analyze the size of the objects and then to analyze the total deviation of these objects on a yearly and monthly basis. The total deviation is analyzed on an annual basis, then the monthly consumption is mapped into four items: real estate electricity, heating, domestic hot water and household electricity. A new simulation and energy calculation are performed on a selected project with a focus on causes of deviations. The result shows that the most contributing factor to deviations is higher VVC losses, higher indoor temperature during the heating season, lower internal heat and higher ventilation flow. Furthermore, the study shows that it is possible to find the causes of deviation by examining measurement data only if there is good measurement basis.
Haglund, Jonatan, and Marcus Svedlund. "Verifiering av beräknad energiprestanda för flerbostadshus byggda år 2007-2009." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Byggnadsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-20664.
Full textAv hela Sveriges energikonsumtion står byggsektorn för cirka 40 %, där bruksskedet är dominerande med cirka 80 % av den totala energiförbrukningen under byggnadens livscykel. Arbetet kring att minska sektorns energibehov pågår,och kravet på minskad energianvändning i byggnader ökar. Som ett led i arbetet har Boverket sedan 2006 ställt krav på högsta tillåten energianvändning förbyggnader. Vid projektering ska därför en energiberäkning göras för att säkerställa att byggnaden uppfyller gällande krav. Verkligheten är mer komplex än vad som kan simuleras i ett energiberäkningsprogram, och dessa tenderar ofta att underskatta byggnaders energianvändning. Examensarbetet syftar därför till att studera och analysera avvikelser mellan beräknad och faktiskt energianvändning för nybyggda flerbostadshus. Totalt har fyra fastigheter, färdigställda mellan 2007 och 2009, i Stockholm, Göteborg och Jönköping studerats. Examensarbetet är gjort i samarbete med Riksbyggen, som har byggt och förvaltar de studerade fastigheterna. Fastigheterna har beräknats i programmen Enorm 2004 och VIP+ 5.2, och församtliga redovisas en högre energianvändning än beräknat. Avvikelser är dock små, mellan 1 % och 8,6 %, för den totala energianvändningen med undantag för en fastighet som har 22 % högre användning än beräknat. Däremot finns stora skillnader för enskilda mät värden. Störst är avvikelserna för uppvärmning, där beräkningarna underskattade denna med upp till 50 %. Anledningar till avvikelse är underskattad rumstemperatur och att ingen hänsyn till vädring och kulvertförluster tagits vid beräkning. För tappvarmvatten gäller däremot det omvända då detta överskattades i beräkningar med upp till 57 %. En anledning är höga schablonvärden vid beräkning. Hela avvikelsen behöver dock inte bero på missbedömning och felberäkning i projektering, utan fel kan dock också uppstå när separat mätning av tappvarmvatten saknas och en bedömning måste göras av varmvattenandel av total vattenförbrukning. Resultatet ligger till grund förföljande slutsatser och rekommendationer: En högre innetemperatur än dagens rekommendation om 21 °C bör övervägas vid dimensionering. Användning av schablonvärden för tappvarmvatten bör göras med försiktighet, då dessa tenderar att vara för stora. Ett vädringstillägg på 4 kWh/m², år har visat sig minska avvikelser i uppvärmningsbehov. Jämförelse mellan beräknad och deklarerad energianvändning bör göras per mätslag istället för total energianvändning. IMD (individuell mätning med debitering) ger, förutom energibesparing, en mer tillförlitlig uppföljning.
Olsson, Johan. "Utvärdering av energiberäkningsprogram : Att användas i tidigt planeringsstadium för byggnader." Thesis, Uppsala universitet, Byggteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-213967.
Full textEidner, Albin, and Markus Engman. "En studie i energieffektivisering av miljonprogrammet." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150560.
Full textMackegård, Moa. "Energieffektivisering av flerbostadshus i Hammarby Sjöstad : En uppföljning av projektet ”Att förnya en ny stad”." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301366.
Full textLevin, Therése. "IDA Klimat och Energi - Ett lämpligt och användbart alternativ för noggrannare energiberäkningar på VVS GRUPPEN AB?" Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-21857.
Full textIn July 2006 the Building Regulation’s new requirements for energy efficiency took effect,which are expected to lead to changes in the entire building process in the matter of dealingwith energy efficiency and energy consumption. The new requirements introduced theconcept of “specific energy consumption”, a concept which is very likely to bring a futureneed of energy calculations being carried out with greater accuracy at a much earlier stage ofthe process.”VVS GRUPPEN AB” in Lund carry out coarser energy calculations, mostly by hand, at aquite early stage of the process, while more detailed calculations are left to be carried out by aconstructor at a latter stage. Considering the new, tougher requirements, it is probably only amatter of time before the need of carrying out more detailed calculations earlier in the processbecomes obvious, which presumably will be followed by a need of other methods thancalculations by hand. As regards method, no requirements have been stated. Theresponsibility of choosing a suitable method lies in the hands of each project.In cooperation with VVS GRUPPEN, a study of one alternative method for more detailedenergy calculations was carried out. The method used was a computer–based simulation tool,“IDA Indoor Climate and Energy 3.0”. In order to be able to compare the simulations withthe current method used at the company, coarser calculations by hand, comparable to thecompany’s, were carried out. The investigation was restricted to calculation of the specificenergy consumption and also to one specific project, a new library-building in a small towncalled Lomma.The purpose of the study was to investigate whether IDA indoor Climate and Energy couldbe a useful and suitable method, as regards the interests of VVS GRUPPEN, for carrying outmore detailed calculations at the early stage of the process instead of the current method ofcombining courser calculations by hand with simpler computer-based calculations. Theobject of the study was to form an opinion of how useful IDA indoor Climate and Energywould be for VVS GRUPPEN, or a comparable company, when carrying out calculations ofspecific energy consumption.The research resulted in the opinion that IDA Indoor Climate and Energy could be a usefultool at the company. The company’s object-suited and unconventional solutions do questionthe use of such a time-consuming and demanding programme as IDA. At the same time IDAcreates great opportunities for further investigation of specific solutions as well as convenientfollow-ups, useful as regards both current project and documentation of experience for futureprojects. The use of IDA at the company would, due to the object-suited and somewhatunconventional solutions often created by he group, have to be combined with calculations byhand as well as judgement based on experience. This both in order to being able to check thecredibility of the result and to correct the result in case of a created model where the technicalsolution has had to be simplified. The question of whether the use of IDA at VVS GRUPPENwould be appropriate or not considering the programme’s time-consuming qualitiescombined with complicated and object-suited installations was left for further investigation todecide.
Kinell, Anders. "Energikartläggning i byggnader : Utredning av två byggnaders skillnad i energianvändning." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44107.
Full textKaverén, Erik, and Johan Svensson. "Passivhusguiden : Guidning av skissarbetet för passivhus." Thesis, Jönköping University, JTH, Civil Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-6749.
Full textDetta examensarbete beskriver arbetsprocessen med att ta fram ett webbverktyg som ska hjälpa arkitekter som är i skisskedet av ett passivhusprojekt att förverkliga sitt projekt på bästa sätt.
Det politiska klimat som råder i världen och framförallt Sverige idag manar tillen kraftig sänkning av energiförbrukningen och därigenom koldioxidutsläppen. Detta gäller inte minst för den svenska bostadssektorn som normalt sägs stå för 40 % av Sveriges totala energiförbrukning. Ett av medlen för att sänka denna energiförbrukning är att bygga fler passivhus samt att omvandla befintliga hus till passivhus. Problemet är att många arkitekter och byggherrar inte har någon erfarenhet av passivhus och vågar därför inte starta upp denna typ av projekt. Detta examensarbete syftar till att ta fram ett verktyg som hjälper arkitekter m.m. att utforma denna typ av byggnad, tyngdpunkten ligger på skisskedet.
För att få fram lämplig utformning på verktyget så gjordes litteraturstudier,studier av genomförda passivhusprojekt i Sverige samt intervjuer med folk ibyggbranschen som alla har olika erfarenheter av passivhus.
Resultatet av detta arbete mynnade ut i en checklista med frågor som arkitekten bör ställa sig i skisskedet av ett passivhus, ett guidedokument som ger tips, råd och till viss del svar på de frågor som ställs i checklistan samt enenergiberäkning. Detta omformades sedan till ett webbaserat verktyg, Passivhusguiden.
Det verkliga resultatet av detta arbete är för tidigt för att sia om eftersom detinte går att utvärdera än i vilken omfattning arkitekter kommer att använda sig av det samt vilken påverkan det får för antalet byggda passivhus samtkvaliteten på dessa. I övrigt så uppfyller resultatet till stor del det förväntade.
This final thesis describes the work process to develop a Web Tool that willhelp architects who are in the sketch stage of a passivehouse-project to realisetheir project in the best possible way.
The political climate that is prevailing in the world today, especially in Swedencalls for a sharp reduction of energy consumption and thus carbon dioxideemissions. This applies not least for the Swedish housing sector, whichnormally is said to account for 40% of Sweden's total energy consumption. One of the means to reduce this energy consumption is to build more passive houses and to convert existing house to it. The problem is that many architects and developers have no experience of passive houses and dare not therefore to start up this type of project. This final project aims to develop a tool to help architects, etc. to design this type of buildings, the emphasis is on the sketch stage.
In order to get the appropriate design of the tool was, literature studies, studies of already accomplished passivehouseprojects in Sweden and interviews with people in the construction industry done, which all have different experiences of passive house.
The result of this work resulted in a checklist of questions that the architectshould ask themselves in the sketch stage of a passive house, a guidedocument that provides tips, advice and answers to some of the addressed questions raised in the checklist, and an energy calculation. This was reshaped then into a webbased tool, Passivhusguiden.
The real result of this work is too early to predict because it is not possible toevaluate to which extent the architects will make use of it, and the impact it has on the number built passivehouse´s, and the quality of these.
Perman, Daniel. "Optimal väggisoleringstjocklek på hyresfastighet vid begränsad byggyta." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-26411.
Full textEnvironmental awareness and increased interest in energy-efficient housing have made the buildings more insulated in Sweden. Usually, it is quite easy to calculate a profit from a greater amount of insulation, in the long term. This is usually the seller’s main argument to why the client should choose the thicker insulation. For a client that wants to build a rental property, it is usually the economy that determines whether a project should be started or not. Hopefully this study will be a help to choose the most economic insulation thickness in walls. The purpose of this study is to investigate where the optimum of wall insulation thickness is in an apartment building for renting which is built on a limited area. Quite often there are requirements for a maximum building area from the municipality, which means that the rentable living space will come smaller when the insulation gets thicker. Qualitative interviews were used to determinate the common wall constructions which the insulation would be optimized for. These walls were placed in a theoretical reference building in which the energy use were estimated using hand calculations where mathematical expressions of a variety of insulation thickness were used. Thereafter, the prices of the walls were calculated using a spreadsheet program called Sektionsdata. A life cycle cost analysis was performed in which the historical statistics on rents, energy prices and interest rates were used. Finally, the optimal insulation thickness was found for each wall type. The wall types chosen were a wall of concrete and brick, a wall of concrete and rendering, a wall of wood and brick and a wall of wood and rendering. Optimal insulation thickness of the wall with concrete and brick ended up at 84mm. For the wall of rendered concrete, the optimal insulation thickness ended up at 88mm. The optimal insulation thickness of the walls of wood could not be found as the wall structure with two and three insulation layers made the walls too isolated in an economic perspective even at a minimal thickness of the layer that was going to be optimized. The study shows that with current building codes in Sweden it is profitable to keep down the wall insulation thickness in an apartment building for renting, built on a limited area.
Mede, Sandra, and Patrik Rosdal. "Jämförelse av energiberäkningsmodeller : Dynamiskberäkningsmodell mot statisk beräkningsmodell." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31519.
Full textThe report is a comparative study between a static, simplified model for energy calculations against a more complex and dynamic model. To be able to compare these two models against each other the same set of variables have been chosen. The static model has been done by hand and the dynamic model has been calculated in a software meant for this. The previous research mainly deals with how well the calculation program performs in comprising to the real world or against other similar programs. Energy calculations, regardless of whether a static model or dynamic model is used, should be executed in accordance with the international standards setup for calculating a building's energy performance and the factors that affect it. The report does not take into account whether the construction as such meets the requirements of BBR, but only study the calculation methods and results. The report does not take into account whether the design as such meets the requirements of BBR, but only looks at the calculations as such. The work of making detailed and accurate energy calculations is time-consuming and requires relatively large amounts of data, which makes it ineffective to do these by hand. Thereto it is time-consuming to correct or change in hand calculations. However, there might be interesting to expand the study to include a case from the real world, and set the two calculation models against it and see which is more applicable to reality.
Betyg 170707, H14.
Nilsson, Ted, and Johan Jansson. "Energieffektivisering av rekordårensflerbostadshus." Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-12653.
Full textSandviksvägen 38 is one of many apartment buildings built during the years 1961 - 1975. The building faces a major renovation, which provides good opportunities to reduce building energy consumption. The study examines and describes energy saving actions that can be implemented. The goal is to propose actions that reduce the building's specific energy consumption by 20 or 50 percent compared to current use. Energy calculations of the actions have been examined with the program VIP-Energy and a simpler form of LCC-analysis have been performed to examine the actions total energy saving potential. The result can be used as a basis for future investment calculations.
Revholm, Johan. "Energisimulering av kvarteret Hästskon 9 och 12 med ombyggnad och termiskt akviferlager." Thesis, KTH, Uthålliga byggnadssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124630.
Full textThis thesis investigates the viability of a system solution for aquifer thermal energy storage along with new HVAC technical solutions in real estates Hästskon 9 and 12 at a proposed future renovation. It also explores opportunities for certification in the Swedish energy and environmental certification system Miljöbyggnad (Environmental Building) regarding energy consumption, daylight comfort, solar heat load and thermal comfort for the renovation and extension proposal of Hästskon 12 with the goal of the GOLD level. By exploiting the aquifer in the properties Hästskon 9 and 12 today, very low energy consumption is achievable with seasonal energy efficiency via chillers for heating and cooling supply of 5.6. The LCC analysis shows that there are energy cost savings for property owner Vasakronan of about 3.65 million SEK per year compared to the current situation, if the described aquifer thermal energy storage solution is used. This gives a payback time of approximately 4.5 years in the investment to be made. Certification in the Miljöbyggnad system for existing buildings is probably possible with the aquifer thermal energy storage, but with BRONZE or possibly SILVER level. In the future refurbishment and extension proposal, the property owner adds about 13 000 m² of additional rentable commercial premises and offices. Nevertheless, the energy use of the properties decreases further owing to a seasonal energy efficiency via chillers for heating and cooling supply of 7.0 when the data centre refrigeration equipment for tenant SEB persists with heat recovery on the properties' heating systems, heating and cooling systems are adapted for low heat carrier temperature and high brine water temperature, ventilation systems are designed for low fan electricity demand and high heat recovery rate, glass solutions chosen are based on limited solar radiation and the building envelope is additionally insulated to some extent. Energy cost savings are furthered to 4.8 million SEK per year compared to the current situation. Even if the data centre refrigeration equipment for tenant SEB is closed down in a future refurbishment scenario, there is possibility to independently supply the property with its own heat produced by an additional heat pump, which removes the dependence of tenant SEB's data centre for heat supply and yet provides an energy saving of 4.25 million SEK per year compared the current situation. Such a solution will result in specific energy with the BBR 2012 (Swedish building regulations) definition of only about 30 kWh / m² Atemp, year. This figure is much lower than new construction requirements of BBR 2012 and on par with virgin buildings with borehole energy storage system. Based on the analysis of the Miljöbyggnad system indicators for energy, solar thermal load, daylight comfort and thermal comfort it is possible to certify Hästskon 12 and 9 in a future refurbishment and extension at GOLD level with some changes in the refurbishment proposal. In order to achieve GOLD level with respect to daylight comfort and solar heat load, special adaptation of the glazing on the S building, M building's facade facing Malmskillnadsgatan, and a large atrium in the H-building is required to let in enough natural light while still providing effective solar shading.
Wangmo, Sebastian. "Energiberäkningar för passivhus." Thesis, Jönköping University, JTH, Civil Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-853.
Full textAbstract
Climate and environmental issues are of paramount importance. Researchers agree
that we must all contribute to a reduction of gases that contribute to climate
change. Energy consumption must decrease within all sectors and the promotion
of renewable sources of energy must be introduced.
Each sector should aspire to decrease its energy consumption. Energy
consumption is strongly linked to waste gases that contribute to climate change.
Passive houses are a part of the construction industry's methods to attain energy
conservation.
Passive houses are derived from low energy houses and super insulated houses. A
passive house is intended to obtain heat from the inhabitants and through their
activities. The house is built so that heat losses through the climate shell (doors,
windows, walls, floors and ceilings) and the ventilation system are decreased. In
order to get a good indoor environment it is important that the ventilation and
heat recycling system working together, hold the energy consumption down. This
is how faculty people usually present a passive house to someone who has not
considered the concept before.
I would like to turn the focus from heating to cooling. Houses with large glass
facades facing south and a closed climate shell risk too high an indoor
temperature. How do we plan houses so that they don’t need a cooling system? Is
protection from the sun enough?
During the planning of a passive house, efforts are made in order to let the house
be dependent on a small heat battery during the coldest parts of the year. My
approach to passive houses became an effort to see how solar radiation influences
closed and highly insulated units.
The heating of houses in my calculations was not influenced to any extent by the
rotation of the building. When heating buildings the sun’s radiation only plays a
small part. When the sun’s radiation is most concentrated no active heating is
required. It is important to note that solar radiation cannot be depended upon at
all times especially in winter. Of course, with sun protection, energy needed for
heating will increase but energy for cooling will decrease.
Sun radiation influences active cooling as shown in my software program.
Increased sun radiation requires increased active cooling for alternatives in my
study without sun protection. The alternatives with sun protection are not
influenced as much by solar radiation as those without.
Alternatives with strong sun protections are not as sensetive how the house is
placed among the point of the compass. Solar radiation does not become equally
considerable and impact to be decreased therefore.
Markusson, Erik. "Precision av indata vid energiberäkningar : Hur påverkas energiberäkningar vid valet av indata?" Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33555.
Full textGustafsson, Sebastian, and Gösta Jansson. "Avvikelser mellan projekterad och verifierad energiprestanda för nyproducerade lågenergibyggnader : En studie av AB Bostäders svårigheter att leva upp till uppsatta energikrav i deras nybyggda flerbostadshus." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12805.
Full textThe energy performance of buildings directive means that all new buildings must be nearly zero energy buildings by 31 December 2020. The current requirements mean that constructor companies must tighten their energy requirements when procuring multi-family houses. Lowenergy buildings as concepts play an important role in achieving sustainable development, and it is of the utmost importance that future construction projects become effective both in the construction process and on further operation. New construction of low-energy buildings has proved to be quite problematic in many aspects, where the measured energy performance in many cases proved to be significantly higher than projected. With the new building practice with better insulation, air tightness and ventilation with recycling – hot water supply and household appliances become the largest energy posts in a building's energy balance. The purpose of this master thesis is to concretize the problems that exist for newly produced multi-family houses with energy requirements for low-energy buildings. Based on this, focus has been on two building that AB Bostäder Borås recently has built – both built to achieve low energy requirements. As expected, this master thesis shows the difficulty to deduce the problem to specific aspects. The construction process itself may be the source of error, where time shortages, inadequate communication and lack of knowledge concerning low energy buildings are present in an industry with difficulties catching up with the demanded volume of new construction. Regarding specific sources of vulnerability to energy performance, our report supports previously published reports where the lack of input data for energy calculations, the impact of the construction process, negligence of losses due to recirculation of hot water and the importance of user behaviour have been highlighted.
Cerps, Adrian, and Samuel Bergvall. "Vädringsvanor och energiberäkningar : En enkätstudie kring vädringsvanor och dess påverkan på energiberäkningar i bostäder." Thesis, Linnéuniversitetet, Institutionen för byggd miljö och energiteknik (BET), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96954.
Full textPersson, Johanna. "Lufttäthetens inverkan på energiberäkningar för byggnader." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-59071.
Full textWith the rising energy prices and the increased awareness about our natural recourses the interest in energy efficiency in all areas has increased. One of the Swedish parliament’s environmental quality objectives states that energy consumption in residential and commercial buildings should be reduced by 20 % until 2020 compared to the consumption in 1995. Until today the consumption has rather increased than decreased, therefore an extensive reform is needed to reach the goal. Transmission is the most important factor in heat loss of buildings. Another loss factor is the unregulated flow of air through cracks in the building envelope. The air leakage is difficult to determine without a measurement of the building air tightness. Since this measurement is time consuming it would be a good thing to be able to estimate the leakage for energy calculations of buildings. The purpose of this project is to develop guidelines for how to choose input data for energy calculations. To find out how to determine or estimate the air leakage for use in energy calculations is also a part of the purpose. The project is divided in three parts; a literature study, a case study of a building where measured and calculated air leakage is compared and where an air tightness measurement is conducted and sensitivity analysis and comparison of two computer calculation programs, RIUSKA and IDA ICE. The results of the sensitivity analysis show that the air leakage plays a larger role in calculations in RIUSKA than in IDA ICE. The calculated heat consumption can increase by up to 30 % in RIUSKA when including air leakage. Thermal bridges can only be taken into account in calculations in IDA ICE and the sensitivity analysis show that thermal bridges has a significant impact on the calculated heat demand, up to 30 %. The air leakage in buildings should, if looking at the studied leakage data, normally be between 0,2 and 2,3 1/h or 0,2-1,5 l/s, m2 Aenv at 50 Pa pressure difference. To link the size of air leakage with type of construction is very hard, it might even be impossible. Some people think that the air leakage is more linked with how the building is built than what type of construction it is. But it seems to be a common view that concrete buildings have higher air tightness than wood constructions. More measurements and follow-ups of energy calculations would give a clearer picture of how realistic the present energy calculations are and how large the air leakage of different buildings is.
Hagblom, Fredrik, and Kaveh Axell. "Klimatfilens och certifieringens roll vid energiberäkningar." Thesis, KTH, Energiteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148063.
Full textThe purpose of this work is to investigate whether Hagaporten III in Solna manages to fullfill the GreenBuilding-certification requirement. It also aims to find new climate files which can give more accurate energy usage-simulations compared to the climate file used today, Bromma 77 and to determine whether Bromma 77 should be changed or not. Climate files that will be used in this study is from Stockholm 2009 (Torkel Knutssongatan), Arlanda-Ashrae and Bromma 77. These will be used to make new energy calculations. The results from the simulations are then compared to see if the results are consistent with measured values and how they are affected by the different climate files. Hagaporten III manages the GreenBuilding-certificate requirements of 85.5kWh/m2 according to BFS 2008:06. The measured value from 2013 was 67.6kWh/m2. According to BFS 2011:26, the new requirement is 67.4kWh/m2, which the building is considered to fulfill. But Because GreenBuilding only looks at energy usage, it cannot be classified as a sustainable certificate among the certificates in Sweden today. The simulations made with the self-made climate file Sthlm 01-12 is similar to the simulations made with the Stockholm 09 climate file. It is hard to evaluate if this is the most suitable file, considering that all of the simulations differed a lot from the measured values. Though it does show that the choice of climate files has a large impact on the outcome of the simulation. Even though temperature is only one of six parameters that are included in a climate file, the climate files temperatures can naturally be connected to the executed simulations and their looks. This is why it is necessary to evaluate if a new climate file can be made to replace Bromma 77 and test the own climate file on more buildings and models.
Lindgren, Emil. "Känslighetsanalys vid energiberäkningar : Analys och tillämpning av metoder för känslighetsanalys av osäkra parametrar vid energiberäkningar i IDA ICE." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160015.
Full textTo build energy efficient buildings are becoming more important and as a response to the Energy Performance of Buildings Directive from the EU, harder requirements have been introduced into Boverket's building regulations (BBR). Higher demands are therefore placed on accuracy in energy calculations during the design phase of a building. When performing the energy calculations several parameter settings and assumptions are made that are linked to the building systems, envelope and the human behaviour inside the building. It is common that uncertainties occur around these parameter settings and this can often cause uncertainties in the calculation result. Different methods of sensitivity analysis can be applied to investigate which impact uncertain parameters have on the calculation results. The purpose of this master thesis was to develop and apply a method for computing a comprehensive sensitivity analysis of uncertain parameters in energy calculations with the simulation tool IDA ICE. Furthermore, an evaluation was made of the role of sensitivity analysis in combination with energy calculations and how the results can be used to explain differences in predicted and actual energy use for a property owner. The initial preparations resulted in a method for global sensitivity analysis for energy calculations in IDA ICE, which was the basis for the most part of this thesis. This method uses the standardized regression coefficients as sensitivity indices, which was calculated by applying Monte Carlo simulations and multiple linear regression. A simpler method for local sensitivity analysis was also investigated. In this thesis, a number of different cases were studied and for all of them, the influence of the parameters on the total energy use and the primary energy number was investigated. A building model was created for a building located in Umeå with district heating as heating source. For this building model, Monte Carlo simulations and sensitivity analysis were executed for the base case, a case with geothermal energy as heating source, and a case where the building was used as office spaces. The importance of climate conditions was investigated by using the same building model in alternative geographical locations and conduct sensitivity analysis with the developed method. Changes in operations, the heating source and the climate, all affected the influence of the parameters on the calculation results. One conclusion that could be made from the results was that uncertainties in parameters linked to the building models' heating and ventilation systems had a great impact on the calculation results compared to the other parameters. Also, the specific heat transfer coefficient of the thermal bridges was among the parameters with the greatest influence. The parameters linked to human behaviour also had a relatively large influence while parameters linked to the building envelope in most cases were found to have less influence than the other parameters examined.
Sällström, David, and André Persson. "Den teoretiska energiåtgången : Två energiberäkningar av Blåsbälgen." Thesis, Linnéuniversitetet, Institutionen för bygg- och energiteknik (BE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-26574.
Full textBergwall, Andreas. "Lönsamhetsanalys för nybyggnad i passivhusutförande." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-25156.
Full textAbstract Östersund fire department is in need of a building where firemen and firewomen can gear and clothing after an exercise. Energy prices are expected torise, and with new technology and knowledge it is possible to build energy-efficient houses. The report therefore examines whether it would beeconomically viable for Östersund fire department to construct the building inpassive house design with respect to the costs during a 20 year period. Theconstruction proposed by Moelven has therefore been set against a revisedmodel with a passive customized envelope. Only walls, roofs, floors (slab),windows and doors have been replaced. Otherwise, the buildings are equal.Energy demand (kWh / m 2 per year) and the construction cost has beencalculated for both models, and set against each other in a 20 years perspective.For the energy calculations, some standard values and simplifications havebeen used when data has been difficult to access or does not exist. Whencalculating the total price for the two buildings the construction cost programBidcon was used. The finished structural members adapted to conform to thebuilding components carrying the energy calculation.The results showed that passive house has about halved the energy demandfor heating against Moelven's proposal. The estimated cost of the twobuildings did not differ so much, and the only reason that passive housingbecame more expensive, its greater area (because of its thick walls). Unit Hourson building parts in Bidcon deemed to disadvantage Moelven's proposals andpassive model should be more expensive than the calculated price.It should therefore be in Östersund fire department interest to construct thebuilding with a performance more like a passive house model, however a moreaccurate calculation should be made.
Clarholm, Anton. "Standardisering av brukarrelaterade indata för energiberäkningar på kommersiella lokaler." Thesis, KTH, Byggnadsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141123.
Full textDelvret, Anton, and Niclas Holmqvist. "Ventilation i förskolor - kostnader och energiprestanda. : Kalkyler och energiberäkningar." Thesis, KTH, Byggteknik och design, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191258.
Full textAhmad, Ban, and Gustav Vieglins. "A energy and cost comparison between a BBR and a passive apartment building." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131976.
Full textBrorsson, Martin, and Erik Danielsson. "Vätskekopplade värme- och kylåtervinningssystem : Utveckling av ett verktyg för energiberäkningar." Thesis, KTH, Installationsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126026.
Full textForell, Jonas. "Fastigheten Maskinbolaget SWECON : - programbaserade och egna energiberäkningar med ekonomisk kalkyl." Thesis, Mälardalen University, School of Sustainable Development of Society and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5355.
Full textSammanfattning
I det följande examensarbetet har två alternativ av installationer jämförts beträffande nybyggnationen Maskinbolaget Swecon, en fastighet med en kontorsbyggnad och tillhörande maskinhall i Uppsala. Alternativen har varit en fjärrvärmeinstallation med en separat kylmaskin, och två bergvärmepumpar med en frikyleslinga. Jämförelser har gjorts mellan dator- och egenberäknade simuleringar av energiförbrukningen [kWh/(m2,år)], och då med olika ändringar i fastighetens konstruktion, där det ursprungliga projekteringsunderlaget har varit utgångspunkt (Inneklimatbyrån, 2008).
Därefter har en nuvärdeskalkylering med en kalkylhorisont på 30 år utförts, som visar på det mest ekonomiska alternativet och simuleringen gällande drifts- och investeringskostnader.
Energiberäkningarna har genomförts med datorprogrammen BV2 och VIP+, och även med egna beräkningar i Excel. Nuvärdeskalkylen har också gjorts i Excel.
♠ ♠ ♠
Resultaten visar att kontorsbyggnaden och maskinhallen uppfyller riktlinjerna från Boverkets byggregler, BBR, avseende U-värde. Kontoret uppfyller även BBR:s direktiv angående energiförbrukning [kWh/(m2,år)], något som däremot inte gäller för maskinhallen.
Alternativet med bergvärmepumparna är ekonomiskt fördelaktigast i ett perspektiv på 30 år. Jämförelserna mellan de olika simuleringarna ger vidare att störst förtjänst erhålls då maskinhallen utrustas med vikportar som har ett lägre U-värde än de ursprungliga, och även att luftflödet till samma lokal sänks med tio procent. Med dessa förändringar uppfyller även maskinhallen BBR:s direktiv enligt ovan.
De egna beräkningarna i Excel anses här ge ett lika tillförlitligt resultat på fastighetens energiförbrukning som med datorprogrammen BV2 och VIP+, förbehållet att vissa justeringar görs på ingående ekvationer.
Abstract
In this degree project a comparison between two alternatives of heating and cooling systems has been made, regarding not yet constructed buildings on the property Maskinbolaget Swecon in Uppsala, consisting of an office and a machine room. The alternatives of choice have been a district heating installation with a separate refrigerating machine, and two heat pumps with the bedrock as a heat source, the latter equipped with a circuit of directly transferred cold water from the bedrock as a cooling system. A number of simulations of the buildings' energy consumption [kWh /(m2,år)] have also been performed, and this with a variety of comparisons containing of certain changes of the construction of the buildings vis-à-vis the original planning data.
After that a calculation of present value with a perspective of 30 years has been executed, a calculation which shows the most economical alternative and simulation concerning the costs of operation and investment.
The simulations of the energy consumption have been computed with the programmes BV2 and VIP+, and also with a matrix in Excel by the writer's own design. The calculation of present value has been performed in Excel.
♠ ♠ ♠
The results indicate that the office and the machine hall fulfil the guidelines of U-value from BBR. The office also comply with BBR regarding the energy consumption [kWh/(m2,år)]; this, however, is not the case with the machine hall.
The alternative with the heat pumps is the economically most sound, viewed in the perspective of 30 years. Furthermore, the comparisons of the different simulations yield that the largest profit occur when the machine hall is equipped with entrance gates that have a lower U-value than the originally planned, and also that the air flow to the mentioned hall is decreased with ten per cent. With these changes, even the machine hall fulfil the requirements of energy consumption from BBR.
The results from the computations with the matrix in Excel, is in this degree project considered to be as accurate as those derived from the programmes BV2 and VIP+, on condition that certain adjustements are made in the equations of the matrix.
Nordström, Henrik. "Malingsbo Herrgård : Energiberäkningar och åtgärdsförslag för en karolinsk 1700-talsgård." Thesis, Uppsala universitet, Byggteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326351.
Full textDahlberg, Hanna, and Sofie Flodin. "Modern energisnål bostadsbebyggelse för landsbygden, i svensk tradition." Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-6180.
Full textPisano, Christian, and Rikard Hellgren. "Jordtäckta hus : Energiberäkningar och kostnadskalkyler på ett jordtäckt hus i Malmö." Thesis, KTH, Byggvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102465.
Full textLarsson, Jonas. "Studie om hur Boverkets bestämmelser för nära-nollenergibyggnader kan komma att påverka kraven för klimatskalet i flerbostadshus." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-28835.
Full textThe whole of Europe must move towards more energy-efficient buildings and from 2021, 2019 for publicly owned buildings, all new buildings built need to meet the requirements of near-zero energy buildings. Sweden must make clear what the near-zero energy means with our climate. Boverket has been tasked to develop a new law that goes for more stringent requirements in terms of energy consumption. It will put more demands on the knowledge and increase the need for development in the construction industry to meet these requirements. By collecting a large amount of information from books, web pages, email contacts and discussions with experts, research questions answered. The study is largely based on quantitative data collection. While this allows tighter and more energy-efficient buildings will be needed if the requirements to be met. In Sweden, we have different climatic zones that set the tone for how we can build and what requirements must be met. These conditions will still be the basis for tougher legislation. The author has carried out energy calculations on a reference objects where its areas was used for new estimated U- values that will be the new requirements. This resulted in U-values calculations for slab, attic/roofs and different kind of wall types that met the requirements of less than 80 [kWh / m2 Atemp year], with conditions similar to the reference object. As well as the cost differences were compared to today's requirements. To meet these requirements, then the building envelope, the building's foundation, walls, windows, doors and roofs need to be tighter and better insulated. By doing this you can reduce transmission losses and thermal bridges are minimized and that ventilation with recycling can use more already heated indoor air to heat the outside air.
Lindmark, Jakob, and Daniel Medlöv. "Analys av Kv. Släggan med gestaltningsförslag : Innehållande konstruktionslösningar, energiberäkningar, volymstudier och förbättringsåtgärder." Thesis, KTH, Byggteknik och design, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192181.
Full textEriksson, Nygren Karl. "Energianvändande i bostadshus : En studie i byggnaders energibalans." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-19882.
Full textEklund, Simon. "Energiberäkningar på unikt lågenergihus : Beräkningar av elenergibehov, tankar kring självförsörjning och frågor om klimatpåverkan." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163739.
Full textAbout two years ago Laura and Erik Vidje began building their very own home just outside the city of Umeå. This building project would later turn out to become a unique and well noticed project with many involved and interested parties. The building project involved an entire estate with a residence, guest house, cold storage cellar and a PV (photovoltaic) system, and Laura and Erik were planning on doing as work as possible by themselves. What made this estate so unique was the choice of designing it according to the passive house requirements and at the same time be using unconventional and recyclable building materials, among other things was that the isolating material was going to be entirely made up of straw and the base plate would be made of recycled foam glass. The construction was going to be very well thought through, with large window facing south and a long roof overhang that will protect against insolation during summer but optimizes the insolation during winter. The walls would be built almost one meter thick to make great isolation and the entire building envelope were going to be extremely dense to minimize heat loss, but the most obvious unique attribute about the residence were going to be its round shape. By today the estate is nearly finished, but before a few technical instalments is executed the Vidje couple wanted to know what energy related needs the estate will have and how it will perform relative to official requirements. This specifically turned out to be only positive for them because the estate is now estimated to have a total need of electricity at about 23,1 kWh/m2 Atemp and year, which is almost one third lower than the standard value only for household energy. Also, the BBR-requirement for EPpet (primärenergital) turned out to be more than twice as high as the actual EPpet for the estate, which proves how well thought out the building project is and its high quality. In addition to this there were an interest in learning about knew technologies within sustainable housing and whether it was possible to implement these to their home. An important question to the Vidje couple was the possibilities regarding the PV system combined with a battery storage system. They would want to use as much of their own solar electricity as possible. What this project found out was that the 5 kWp (kilowattpeak) PV system would be able to cover around 70% of the estates yearly electricity needs, but that they would only be able to personally use no more than half of all that produced electricity. The rest would have to be sold and transferred out on the grid or possibly be saved in a battery storage unit. What became obvious while calculating the profitability of a battery storage system was that, with today’s electricity pricing, to sell the surplus PV production out on the grid will always be the most economically profitable option. Economic profitability was a reoccurring theme, especially for the PV- and battery storage system. Most of the focus regarding the PV system was between the options of renting it or buying it. In the end it turned out not to be a very significant difference 5 between the two options, the most decisive aspect when choosing will most likely be the difference of overall comfortability between the two. Analysing the PV system became a larger part of this project than expected when another request was to figure out how big of a climate impact the system would have compared to if the same amount of electricity was used from Umeå Energis grid. This analysis came up with probably one of the most interesting results of this entire project. Because PV panels require a lot of energy to produce and a large proportion of all panels in the world are produced in countries with a high carbon footprint, it means that PV systems has one of the worst climate impacts of all renewable energy sources. According to Umeå Energi 100% of their electricity are produced from renewable sources where solar power is not one of them. Because of this it turned out that during the 25-year lifespan of the PV system it would have more than twice the climate impact rather than if the electricity came from the power grid. The Vidje couple also wanted to know more about newly developed technologies related to energy, among things like V2G, self-sustaining homes, hydrogen energy storage, direct current grids and electric vehicle charging, to be able to establish whether any of these would be possible to integrate with their home in the near future. V2G, Vehicle-to- Grid, is still very much under development and therefore are not available for any person to use. Self-sustainability is definitely possible with today’s standards, but the only method that seems to work well enough is hydrogen energy storage which is still not very well established on the market and therefore also very expensive. Readjusting your home to work with a direct current grid is an interesting trend that some knowledgeable people have been doing lately, but it seems to be just that, something only a person who is interested and knowledgeable in the area are capable to perform at this stage. There are now established technique for easily changing your home to be able to run on direct current. Because the Vidje couple are planning on getting an electric car it made them curious about what options there were to be able to charge it at home. The most critical question was if a charging box is a requirement or not. The answer is pretty simple, a charging box is technically not a requirement, but using a 230 V power outlet as standard is a very bad and sometimes even considered as dangerous. It is also a very inefficient method because regular outlets can only put out a relatively low power charge and therefore would mean unreasonably long charging times. An 11 kW charger box seems to be the best option right now be able to charge your electric car at home. Quick chargers above 22 kW to exist but are usually expensive and only lowers the charging time a little bit which for most households are quite unnecessary.
Mamic, Mario. "Energiuppföljning i Swecohuset : Hur väl stämmer energiberäkningar från ursprunglig energisimulering överens med verkligt utfall?" Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188599.
Full textEfter förlängning av hyresavtalet mellan Sweco och AMF Fastigheter om Swecohuset i Marieberg, Stockholm beslutades det att fastigheten skulle totalrenoveras för att kunna rymma Swecos alla medarbetare i Stockholm under ett tak. Målet efter renoveringen var att miljöcertifiera Swecos delar av fastigheten enligt Miljöbyggnad nivå GULD. För att erhålla miljöcertifieringen krävdes en energisimulering på Swecohuset som visade att fastighetens framtida energibehov uppfyller kraven för nivå GULD enligt Miljöbyggnad. I examensarbetet utförs en energiuppföljning på Swecos delar av Swecohuset för att se hur välresultatet från ursprunglig energisimulering stämmer överens med fastigheten i verkligt drift. Syftet med examensarbetet är att skapa en överblick och bättre bild av framtida energibehov i fastigheten. Efter kartläggning och analys av Swecohusets tekniska installationer och ingående systemensdrift och styrning har beräkning av fastighetens energianvändning genomförts och jämförts med vad som beräknats fram i ursprunglig energisimulering. Ytterligare har andelen köptenergi och energi från fastighetens geolager beräknats fram. Jämförelsen mellan ursprunglig energisimulering och fastighetens verkliga energianvändningvisar att fastigheten presterar marginellt bättre i verklig drift. Feluppskattning av några faktorer gjordes men genom medvetna val i andra faktorer skapades en säkerhetsmarginal för eventuella feluppskattningar. Svårigheter vid uppskattning av flera faktorer finns och resultatet i examensarbetet visar på den komplexitet arbetet med energisimuleringar kan innehålla och vikten av rätt indata för att energisimuleringar ska vara ett kraftfullt verktyg för uppskattning av en fastighets framtida energibehov.
Gärde, Viktor. "Uppföljning av idrifttagning och energiprestanda för två egenvärmehus i Hammarby Sjöstad." Thesis, KTH, Tillämpad termodynamik och kylteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-62725.
Full textAL, Hasan Sheraz. "Energieffektivisering i befintliga byggnader : Möjligheter för Mimer att skapa lågenergihus vid ombyggnation." Thesis, Mälardalen University, School of Sustainable Development of Society and Technology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-10200.
Full textDetta examensarbete fokuserar på energieffektivisering av flerbostadshus som är uppförda under 1960-talet. Eftersom sektorn bostäder och service står nuförtiden för cirka 40 % av landets totala energianvändning, så är det värt att försöka åtgärda befintliga byggnader som läcker onödig stor energi. I den här rapporten redogörs för vilka möjligheter som kan leda till minskad energianvändning i byggnader vid omfattande ombyggnation. Det finns två viktiga anledningar till varför fastighetsbolagen bör satsa på energieffektivisering vilka är ekonomin och miljön. Syftet med detta arbete är att fokusera på att minska energianvändningen i ett flerbostadshus som är beläget i Skultuna. Boendesvanor gällande hushållsel kommer inte att tas upp i denna rapport. De föreslagna åtgärderna berör endast byggnadsteknik och installationsteknik. Nybyggnation av passivhus i kvarteret Berggrottan har redovisats för att ge insikt om de olika byggnadstyperna gällande energiförbrukning och byggnadsteknik. Passivhuskonceptet har diskuterats för att ge inspiration och vetskap om hur man kan applicera passivhustekniken vid ombyggnation och för att se om det är möjligt att skapa ett lågenergihus vid ombyggnation eller inte. Den undersökta byggnaden är en av de typiska trevåningars lamellhus som har producerats i stort antal under perioden 1960-1975. Detta arbete ska fungera som ett utvecklingsunderlag för Mimer som satsar på energifrågorna och vill göra besparingsåtgärder i sina gamla flerbostadshus särskilt de som förbrukar mycket energi. De studerade förslagen har indelats i två kategorier. Den ena handlar om byggnadstekniska åtgärder, vilka är tilläggsisolering av fasader, tilläggsisolering av vindsbjälklaget och byte av fönster. Den andra handlar om installationstekniska lösningar, vilka är montering av Wanpan golvlist och installering av solfångare. Resultatet från utförda energiberäkningar visar att transmissionsförlusterna minskas från 47 % till 24 % om de föreslagna byggnadstekniska åtgärderna följs. Dessutom besparas totalt 116 700 kr/år . Till slut kan konstateras att möjligheten att skapa lågenergihus finns, men om ytterligare åtgärder införs. Det är svårt att bestämma vilka åtgärder är effektivast eftersom det beror i första hand på vilka förutsättningar som finns. Varje byggnad är unik och har sina speciella förutsättningar, så därför är det viktigt att studera den som ett helt system.
Törngren, Jesper. "Modulhus som passivhus : Undersökning på modulhus lämplighet att uppnå passivhusstandard med hjälp av byggnadstermografi och energiberäkningar." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-48273.
Full textBergwaahl, Johannes. "Orsaker till differens mellan beräknad och uppmätt energianvändning för flerbostadshus." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-121877.
Full textKilman, Morgan. "Kvalitetssäkrad projektering av lågenergibyggnader." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-6975.
Full textKarlstad City has agreed to participate in a global climate strategy to implement the EU's climate ambitions. One effect of this is that the municipality of Karlstad has adopted general requirements for lower energy use in facilities and buildings. It shall not exceed 80 kWh/m 2/ year. This report has been made in cooperation with Karlstad Municipality technology and property management with the purpose to identify the problems that arise in the design process. The aim is also to propose measures to improve this process and to find out whether an energy coordinator could be part of the solution. The basis for this report is a number of interviews with project managers on the technology and property management, and with designers that they cooperate with. Project managers at Landstingsfastigheter were interviewed in order to make a comparison how these two organizations work. During the interview process several reasons were identified why the work didn’t work satisfactionally in the construction process. Processed interviews, literature studies and seminars on the subject resulted in a number of proposed measures aimed at providing an improved planning process. The major problem recurrent in the report is the lack of a structured work process. The work methods of the design process must be changed so that the various actors interact, at an early stage, with each other in an integrated process. There is a request for a method in which the building along with energy and business needs is simultaneously developed. Procedures to follow up and evaluate work and the objective needs to be improved. Changing business requirements and abandoning the project model to advance the project has consequences. Lack of skills and a better control of the follow-up work of energy requirements are additional requirements identified high-profile issues in the design. Overall, energy issues are given a small weight in design. An improved design process is provided by a combination of actions. An integrated form of cooperation which puts the project in focus and is becoming a common task is proposed which characterises the seat. The energy pilot is the systemic tutoring for energy needed and requested. Energiverifikat 09 show management's objectives and will. Verifikatet also offers a systematic process of arrangements and procedures for ensuring that the different systems work together and that when strategically important stages takes place energy analyses. The document also provides the documentation of energy issues in various stages of the project requested. Depending on the level of ambition chosen for the building's energy and indoor climate issues action proposals should be adapted according to Technology and real estate management opportunities. Operational and energy issues should be a separate issue on the agenda that the energy coordinator and the business representative are responsible for. Operational issues and the requirements for lower energy use different conditions should be reconciled at an early stage.