Contents
Academic literature on the topic 'Energisimulering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energisimulering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Energisimulering"
Flygare, Kristoffer. "Energisimulering av Fortifikationsverkets Kontorsbyggnad 1 : Energisimulering och utvärdering av renovering." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-109540.
Full textThe purpose of this project is to analyze an upcoming renovation of an office building in Boden, owned by Fortifikationsverket. The project makes use of the software IDA Indoor Climate and Energy and Revit to simulate the building as it will function after completed renovation. This way Fortifikationsverket has a reference value to use when evaluating the actual performance of the building. The project introduces the reader to Revit as well as to the simulation program IDA ICE and shows how energy consumption may be simulated when one wishes to renovate a building. Drawings, an energy report and measured energy consumption act as the basis for the simulation and where values are not available assumptions are made. The upcoming renovation consists of a new HVAC system and rules set forth by Fortifikationsverket which are to be followed when a building under their regime is renovated. These rules consists of reducing air leakage, lowering room temperature and installing more effective lightning, fans, heat exchangers and air cooling. The project finds that the upcoming renovation lowers the yearly energy consumption of the building by approximately 31 %, heating and electricity are included in this energy consumption and are lowered by approximately 29 % and 33 % respectively. The yearly use of heating and electricity is found to be 409 009 kWh and 446 905 kWh respectively. Of the various measures taken by the renovation the heat recovery is found to be the most effective. The electricity consumption was lowered most by more effective lightning and fans.
Jutengren, Fredrik. "Energisimulering av Lammhults avloppsreningsverk : En jämförelse av energieffektiviserande åtgärder." Thesis, Linnéuniversitetet, Institutionen för byggd miljö och energiteknik (BET), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53261.
Full textAndersson, Simon. "Analys av energisimulering från projekteringsskede och verklig energianvändning i lokalbyggnad." Thesis, KTH, Energiteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136736.
Full textTapper, Martin. "Energisimulering för optimala förhållanden för fritidshus : Simulering genomförd med IDA ICE." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-20947.
Full textAziz, Pola, and Kelvin Huynh. "Energieffektivisering av miljonprogrammet i samband med våningspåbyggnad : Energisimulering i IDA ICE." Thesis, KTH, Byggteknik och design, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231549.
Full textA majority of houses that were built during the years 1965-1974 is usually referred to as the million program. After 40-50 years of use, the buildings have reached their technical life expectancy and need to be renovated. At the same time, the lack of housing shortage continues to exist while energy requirements from the government are becoming increasingly strict. The government maintains and run a strict policy to reduce the energy consumption of the housing sector in hope of achieving a more sustainable society. The study is based on a multi-family house located in Kaverös, Gothenburg at Barytongatan 4, which is part of the Kaverös Stage II project. In this study, energy conservation measures are investigated in connection with story extension and the applicable regulations when it comes to rebuilding and upgrading in accordance with BBR and PBL. Using the IDA ICE simulation program, different energy conservation measures could be studied. The result of each individual energy conservation measure, and a combination of these were then compared with the existing building's energy declaration and static. This study is limited to energy calculation and no financial calculations are presented The result shows that only a few interventions in the reference housing, according to the regulations BBR and PBL, can affect the energy consumption and reduce it from 147 kWh/m² to 104.8 kWh/m², which corresponds to 28.8 percent.
Henriksen, Theodor. "Energisimulering av ett nordsvenskt plusenergihus med kombination av bergvärme och solceller." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-35985.
Full textThe interest in low-energy-houses has risen in recent years as the energy usage around the globe is constantly increasing, resulting in ever-increasing amounts of greenhouse gases in the atmosphere. In this project, the energy consumption of a building in a northern area of Sweden, Gnarp, with an Atemp of 716m2 was simulated using IDA indoor Climate and Energy (IDA ICE) and WINSUN. The building has two floors and is comprised of eight apartments. It is heated using geothermal heating since it is not located close enough to a district heating area. The goal of the simulation was to determine if this building is an energy-plus-house, whereby a PV-system mounted on the rooftop allows for the energy production-value of the building to be higher than the energy-usage. The theoretical results of the simulation show that this building is indeed an energy-plus-house since the PV-system is generating more energy than the yearly usage of the building. This simulation shows that it is possible to build an energy-plus-house in northern areas of Sweden where temperatures are highly variable and can go below -30°C during winter season. It indicates a yearly electricity-production of over 26 700 kWh/year and a usage of approximately 16 400 kWh/year, where the domestic hot water accounts for the highest usage of electricity. This means that the building generates an electricity surplus of approximately 10 300 kWh/year. The building is well isolated and has well placed windows for heat generation via the sun. It includes an effective heat pump, an FTX-system, and solar panels on the roof which gives the opportunity for an energy-production that is larger than the energy-usage, which in turn gives the opportunity for an energy-plus-house classification. The heating, domestic hot water, and the building electricity were all considered when calculating the estimation of the energy-quality of the property. The PV-system generates more energy during the summer, which results in an overproduction of electricity at certain times of the year. The extra electricity produced can be sold to the electric utility.
Revholm, Johan. "Energisimulering av kvarteret Hästskon 9 och 12 med ombyggnad och termiskt akviferlager." Thesis, KTH, Uthålliga byggnadssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124630.
Full textThis thesis investigates the viability of a system solution for aquifer thermal energy storage along with new HVAC technical solutions in real estates Hästskon 9 and 12 at a proposed future renovation. It also explores opportunities for certification in the Swedish energy and environmental certification system Miljöbyggnad (Environmental Building) regarding energy consumption, daylight comfort, solar heat load and thermal comfort for the renovation and extension proposal of Hästskon 12 with the goal of the GOLD level. By exploiting the aquifer in the properties Hästskon 9 and 12 today, very low energy consumption is achievable with seasonal energy efficiency via chillers for heating and cooling supply of 5.6. The LCC analysis shows that there are energy cost savings for property owner Vasakronan of about 3.65 million SEK per year compared to the current situation, if the described aquifer thermal energy storage solution is used. This gives a payback time of approximately 4.5 years in the investment to be made. Certification in the Miljöbyggnad system for existing buildings is probably possible with the aquifer thermal energy storage, but with BRONZE or possibly SILVER level. In the future refurbishment and extension proposal, the property owner adds about 13 000 m² of additional rentable commercial premises and offices. Nevertheless, the energy use of the properties decreases further owing to a seasonal energy efficiency via chillers for heating and cooling supply of 7.0 when the data centre refrigeration equipment for tenant SEB persists with heat recovery on the properties' heating systems, heating and cooling systems are adapted for low heat carrier temperature and high brine water temperature, ventilation systems are designed for low fan electricity demand and high heat recovery rate, glass solutions chosen are based on limited solar radiation and the building envelope is additionally insulated to some extent. Energy cost savings are furthered to 4.8 million SEK per year compared to the current situation. Even if the data centre refrigeration equipment for tenant SEB is closed down in a future refurbishment scenario, there is possibility to independently supply the property with its own heat produced by an additional heat pump, which removes the dependence of tenant SEB's data centre for heat supply and yet provides an energy saving of 4.25 million SEK per year compared the current situation. Such a solution will result in specific energy with the BBR 2012 (Swedish building regulations) definition of only about 30 kWh / m² Atemp, year. This figure is much lower than new construction requirements of BBR 2012 and on par with virgin buildings with borehole energy storage system. Based on the analysis of the Miljöbyggnad system indicators for energy, solar thermal load, daylight comfort and thermal comfort it is possible to certify Hästskon 12 and 9 in a future refurbishment and extension at GOLD level with some changes in the refurbishment proposal. In order to achieve GOLD level with respect to daylight comfort and solar heat load, special adaptation of the glazing on the S building, M building's facade facing Malmskillnadsgatan, and a large atrium in the H-building is required to let in enough natural light while still providing effective solar shading.
Carlsson, Johan. "Osäkerhet i energisimuleringar av flerbostadshus : Analys av fem nybyggnationer." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-167944.
Full textAljaberi, Saif, and Aram Majeed. "Energisimulering i modulhus : Fallstudie för uppskattning av energiprestanda och därefter energieffektivisera enligt passivhusstandaren." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-29781.
Full textMamic, Mario. "Energiuppföljning i Swecohuset : Hur väl stämmer energiberäkningar från ursprunglig energisimulering överens med verkligt utfall?" Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188599.
Full textEfter förlängning av hyresavtalet mellan Sweco och AMF Fastigheter om Swecohuset i Marieberg, Stockholm beslutades det att fastigheten skulle totalrenoveras för att kunna rymma Swecos alla medarbetare i Stockholm under ett tak. Målet efter renoveringen var att miljöcertifiera Swecos delar av fastigheten enligt Miljöbyggnad nivå GULD. För att erhålla miljöcertifieringen krävdes en energisimulering på Swecohuset som visade att fastighetens framtida energibehov uppfyller kraven för nivå GULD enligt Miljöbyggnad. I examensarbetet utförs en energiuppföljning på Swecos delar av Swecohuset för att se hur välresultatet från ursprunglig energisimulering stämmer överens med fastigheten i verkligt drift. Syftet med examensarbetet är att skapa en överblick och bättre bild av framtida energibehov i fastigheten. Efter kartläggning och analys av Swecohusets tekniska installationer och ingående systemensdrift och styrning har beräkning av fastighetens energianvändning genomförts och jämförts med vad som beräknats fram i ursprunglig energisimulering. Ytterligare har andelen köptenergi och energi från fastighetens geolager beräknats fram. Jämförelsen mellan ursprunglig energisimulering och fastighetens verkliga energianvändningvisar att fastigheten presterar marginellt bättre i verklig drift. Feluppskattning av några faktorer gjordes men genom medvetna val i andra faktorer skapades en säkerhetsmarginal för eventuella feluppskattningar. Svårigheter vid uppskattning av flera faktorer finns och resultatet i examensarbetet visar på den komplexitet arbetet med energisimuleringar kan innehålla och vikten av rätt indata för att energisimuleringar ska vara ett kraftfullt verktyg för uppskattning av en fastighets framtida energibehov.