Academic literature on the topic 'Energisimulering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energisimulering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Energisimulering"

1

Flygare, Kristoffer. "Energisimulering av Fortifikationsverkets Kontorsbyggnad 1 : Energisimulering och utvärdering av renovering." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-109540.

Full text
Abstract:
Detta projekt har som syfte att analysera en kommande renovering av en kontorsbyggnad i Boden under Fortifikationsverkets ägo. Projektet använder sig av programvarorna IDA Indoor Climate and Energy och Revit för att simulera byggnaden som den kommer att se ut efter att renoveringen är utförd. På detta sätt kan Fortifikationsverket utvärdera den utförda renoveringen med referensvärden tillhandahållna av detta projekt. Projektet introducerar läsaren till Revit samt simuleringsprogrammet IDA ICE och visar hur energianvändning kan simuleras för byggnader man önskar renovera. Ritningar, en energibesiktning av huset och uppmätta värden för tidigare år utgör underlaget för simuleringen och där värden inte finns tillgängliga görs antaganden. Den stundande renoveringen består av ett nytt ventilationssystem och strikta riktlinjer satta av Fortifikationsverket följs då renovering utförs. Renoveringen kommer att beröra tätning av byggnaden, sänkning av rumstemperaturer, effektivisering av belysning samt installation av effektivare fläktar, kylaggregat och värmeväxlare. Projektet finner att den stundande renoveringen sänker byggnadens årliga energianvändning med ca 31 %, uppvärmning och elförbrukning ingår i denna energianvändning och sänks med ca 29 % respektive 33 %. Byggnadens årliga uppvärmning och elförbrukning efter renovering fås till 409 009 kWh respektive 446 905 kWh. Av renoveringens olika åtgärder finner projektet att värmeåtervinning i ventilationssystemet hade överlägset störst verkan på uppvärmningen. Angående elförbrukningen hade effektivare belysning och effektivare fläktar störst verkan.
The purpose of this project is to analyze an upcoming renovation of an office building in Boden, owned by Fortifikationsverket. The project makes use of the software IDA Indoor Climate and Energy and Revit to simulate the building as it will function after completed renovation. This way Fortifikationsverket has a reference value to use when evaluating the actual performance of the building. The project introduces the reader to Revit as well as to the simulation program IDA ICE and shows how energy consumption may be simulated when one wishes to renovate a building. Drawings, an energy report and measured energy consumption act as the basis for the simulation and where values are not available assumptions are made. The upcoming renovation consists of a new HVAC system and rules set forth by Fortifikationsverket which are to be followed when a building under their regime is renovated. These rules consists of reducing air leakage, lowering room temperature and installing more effective lightning, fans, heat exchangers and air cooling. The project finds that the upcoming renovation lowers the yearly energy consumption of the building by approximately 31 %, heating and electricity are included in this energy consumption and are lowered by approximately 29 % and 33 % respectively. The yearly use of heating and electricity is found to be 409 009 kWh and 446 905 kWh respectively. Of the various measures taken by the renovation the heat recovery is found to be the most effective. The electricity consumption was lowered most by more effective lightning and fans.
APA, Harvard, Vancouver, ISO, and other styles
2

Jutengren, Fredrik. "Energisimulering av Lammhults avloppsreningsverk : En jämförelse av energieffektiviserande åtgärder." Thesis, Linnéuniversitetet, Institutionen för byggd miljö och energiteknik (BET), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53261.

Full text
Abstract:
Detta examensarbete jämför fyra olika energieffektiviserande åtgärders effekt på Lammhults avloppsreningsverk. Anläggningen har simulerats i energiberäkningsprogrammet VIP- Energy och resultatet indikerar att isolering av anläggningens tak är den lämpligaste åtgärden.
APA, Harvard, Vancouver, ISO, and other styles
3

Andersson, Simon. "Analys av energisimulering från projekteringsskede och verklig energianvändning i lokalbyggnad." Thesis, KTH, Energiteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136736.

Full text
Abstract:
Idag sker ett kontinuerligt arbete med att reducera energianvändningen i byggnader under desslivscykel för att minska miljöbelastningen och utnyttjandet av fossila energikällor. En reduceringav energianvändningen utgör även ett ekonomiskt incitament genom minskade energikostnader.Inom byggsektorn arbetar flertalet företag med olika former av miljöcertifieringar såsomMiljöbyggnad, LEED och BREAM. En viss del av bedömningen bygger på en energisimuleringav projekterad byggnad, ett scenario av framtida energianvändning. Energisimuleringar utgör ett beslutsunderlag och kan användas under hela byggprocessen menlämpar sig främst under projektering då flertalet beslut rörande olika faktorer såsom klimatskal,ventilationssystem, värme och kyla samt framtida drift och styrning behandlas. I detta examensarbete analyseras energianvändningen i fastighet BioCentrum i Uppsala utifråndriftår 2012 och jämförs mot projekterade värden från tidigare energisimulering. En jämförelsegörs även mellan indata och antaganden samt projekterade energiflöden för värme, komfortkyla,processkyla och el. Att arbeta med energisimuleringar under projektering är en kontinuerligprocess och på vilket sätt detta verktyg kan förbättras i projekteringsarbetet diskuteras. Tre faktorer har behandlats, vilka är utomhusklimatets påverkan på energianvändningen, drift ochstyrning av olika system inom fastigheten samt brukarens beteende och verksamhet. Med hjälp avunderlag från driftår 2012 genomförs en uppdaterad energisimulering för analys och jämförelse. För fastighet BioCentrum syns en tydlig ökning av både värme och kyla samt el i jämförelse medprojekterade värden. Orsak till detta är i många fall verksamhetsanknutet genom ökade driftstider,förhöjda luftflöden i ventilationssystem samt en varierande verksamhet inom byggnadensom kräver ett stort behov av el, men även kylning av dess interna laster. Störst påverkan påresultatet från energisimulering har bedömningen av den verksamhetsanknutna internvärmensamt luftflöden i laborationslokaler. Tre resultat som verifieringsprocessen sammanställer är hur mätarstrukturen i drift fungerar, vilkaförändringar som skett under produktion i förhållande till projektering samt hur verksamhetenidag utnyttjar och styr de tekniska systemen. Till stor del en verifiering av projekterad data. Genom uppföljning och verifiering skapas en nulägesbild över energianvändningen, vilkettillsammans med identifierade energieffektiviserande åtgärder skapar ett bra beslutsunderlag förframtida investeringar. För att förbättra projekteringsprocessen av framtida energianvändning och verifieringsprocessenär det viktigt att tydligt definiera vilka antaganden som genomförts under projektering samt vilkaprocesser som ingår i bedömning av specifik energianvändning. Att samredovisa underlag ochresultat möjliggör för en bättre uppföljning av nyckeltal och underlättar för förvaltning attoptimera och följa upp olika processer och system inom fastigheten. Sammanfattningsvis är hjälpmedel såsom energisimuleringar ett viktigt verktyg underprojekteringsprocessen och skapar ett scenario över framtida energianvändning. Detta arbetevisar på den komplexitet som finns vid uppföljning av energianvändningen inom lokalbyggnaderoch att ett bra samarbete mellan konsulter, beställare/fastighetsägare och hyresgäst är nödvändigtför att uppnå ett bra energiarbete under projektering och sedermera drift av fastigheten.
APA, Harvard, Vancouver, ISO, and other styles
4

Tapper, Martin. "Energisimulering för optimala förhållanden för fritidshus : Simulering genomförd med IDA ICE." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-20947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aziz, Pola, and Kelvin Huynh. "Energieffektivisering av miljonprogrammet i samband med våningspåbyggnad : Energisimulering i IDA ICE." Thesis, KTH, Byggteknik och design, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231549.

Full text
Abstract:
En stor del av alla bostäder som byggdes mellan 1965-1974 brukar betecknas miljonprogrammet. Efter 40-50 års förbrukning har byggnaderna uppnått sin tekniska livslängd och är därför i behov av renovering. Detta samtidigt som bostadsbristen återstår och energikraven från myndigheter blir allt strängare i syfte att reducera bostadssektorns energianvändning samt för att uppnå ett hållbart samhälle.  Studien är baserad på ett flerbostadshus, Barytongatan 4 som är belägen i Göteborg och som är en del av projektet Kaverös etapp II. I denna studie undersöks energibesparingsåtgärder i samband med våningspåbyggnad och de regelverk som gäller vid om- och tillbyggnad enligt BBR och PBL. I simuleringsprogrammet IDA ICE kunde olika energibesparingsåtgärder studeras. Resultatet från varje enskild åtgärd och en sammansättning av dessa jämfördes därefter med den befintliga byggnadens energideklaration och statisk. Studien är koncentrerad till energisimuleringar och behandlar inga ekonomiska beräkningar. Rapporten fastställer att en våningspåbyggnad, som ökar byggnadsvolymen, är en tillbyggnad samt att allt för stora åtgärder i en befintlig byggnad klassas som en ombyggnad enligt BBR och PBL. Studien berör energibesparingsåtgärder gällande FX-system, FTX-system, balkonginglasning och solpaneler på tak. Resultatet visar att med endast få ingrepp i referenshuset, i enlighet med regelverken, kunde energianvändningen reduceras från 147 kWh/m² till 104,8 kWh/m², vilket motsvarar 28,8 procent.
A majority of houses that were built during the years 1965-1974 is usually referred to as the million program. After 40-50 years of use, the buildings have reached their technical life expectancy and need to be renovated. At the same time, the lack of housing shortage continues to exist while energy requirements from the government are becoming increasingly strict. The government maintains and run a strict policy to reduce the energy consumption of the housing sector in hope of achieving a more sustainable society. The study is based on a multi-family house located in Kaverös, Gothenburg at Barytongatan 4, which is part of the Kaverös Stage II project. In this study, energy conservation measures are investigated in connection with story extension and the applicable regulations when it comes to rebuilding and upgrading in accordance with BBR and PBL. Using the IDA ICE simulation program, different energy conservation measures could be studied. The result of each individual energy conservation measure, and a combination of these were then compared with the existing building's energy declaration and static. This study is limited to energy calculation and no financial calculations are presented The result shows that only a few interventions in the reference housing, according to the regulations BBR and PBL, can affect the energy consumption and reduce it from 147 kWh/m² to 104.8 kWh/m², which corresponds to 28.8 percent.
APA, Harvard, Vancouver, ISO, and other styles
6

Henriksen, Theodor. "Energisimulering av ett nordsvenskt plusenergihus med kombination av bergvärme och solceller." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-35985.

Full text
Abstract:
Energianvändningen i världen växer för varje år, vilket i sin tur bidrar med ökade mängder utsläpp av växthusgaser till atmosfären. På grund av den ökade energianvändningen blir intresset för energisnåla byggnader allt högre med tiden. I detta projekt har en nordligt placerad fastighet med en Atemp på 716 m2 i Gnarp simulerats med hjälp av IDA Indoor Climate and Energy (IDA ICE) samt WINSUN. Fastigheten har två våningar med åtta lägenheter totalt och är uppvärmd med bergvärme då fjärrvärmenätet ligger för långt ifrån området. Tanken med byggnaden är att den ska uppnå kriterierna för ett plusenergihus, vilket innebär att fastigheten ska generera mer energi än vad den gör av med via en solcellsanläggning som monteras på taket. Enligt de teoretiska resultat som simuleringen visar så kan fastigheten klassas som ett plusenergihus, då solcellsanläggningen på taket producerar mer energi än vad som används årligen. Det innebär att möjligheterna för byggnation av ett plusenergihus i nordligare områden i Sverige finns, där temperaturer varierar kraftigt under årets gång och kan gå lägre än -30°C under vintertid. Den årliga elproduktionen ligger över 26 700 kWh/år och elanvändningen hamnar på 16 400 kWh/år, där tappvarmvattnet står för den största delen använt el. Det innebär att den genererar ungefär 10 300 kWh/år i överskott relativt till inköpt el-energi. Huset är välisolerat och har smart placerade glasytor för värmeinsläpp. Det inkluderar en effektiv värmepump, ett FTX-System för värmeåtervinning via ventilationssystemet samt ett solcellssystem på taket som i sin tur bidrar till möjligheten för en energiproducering som är högre än energianvändningen, därav en plusenergihus-klassning. Under energianvändningsprocessen så har den årliga uppvärmningen, tappvarmvattnet samt fastighetselen tagits till godo i beräkningarna för bedömning av byggnadens energiprestanda. Eftersom solcellerna producerar mer energi under sommaren, vilket medföljer att överskott på elproduktionen uppstår under vissa perioder av året, så innebär det att el kan säljas via elnätet till en elhandlare.
The interest in low-energy-houses has risen in recent years as the energy usage around the globe is constantly increasing, resulting in ever-increasing amounts of greenhouse gases in the atmosphere. In this project, the energy consumption of a building in a northern area of Sweden, Gnarp, with an Atemp of 716m2 was simulated using IDA indoor Climate and Energy (IDA ICE) and WINSUN. The building has two floors and is comprised of eight apartments. It is heated using geothermal heating since it is not located close enough to a district heating area. The goal of the simulation was to determine if this building is an energy-plus-house, whereby a PV-system mounted on the rooftop allows for the energy production-value of the building to be higher than the energy-usage. The theoretical results of the simulation show that this building is indeed an energy-plus-house since the PV-system is generating more energy than the yearly usage of the building. This simulation shows that it is possible to build an energy-plus-house in northern areas of Sweden where temperatures are highly variable and can go below -30°C during winter season. It indicates a yearly electricity-production of over 26 700 kWh/year and a usage of approximately 16 400 kWh/year, where the domestic hot water accounts for the highest usage of electricity. This means that the building generates an electricity surplus of approximately 10 300 kWh/year. The building is well isolated and has well placed windows for heat generation via the sun. It includes an effective heat pump, an FTX-system, and solar panels on the roof which gives the opportunity for an energy-production that is larger than the energy-usage, which in turn gives the opportunity for an energy-plus-house classification. The heating, domestic hot water, and the building electricity were all considered when calculating the estimation of the energy-quality of the property. The PV-system generates more energy during the summer, which results in an overproduction of electricity at certain times of the year. The extra electricity produced can be sold to the electric utility.
APA, Harvard, Vancouver, ISO, and other styles
7

Revholm, Johan. "Energisimulering av kvarteret Hästskon 9 och 12 med ombyggnad och termiskt akviferlager." Thesis, KTH, Uthålliga byggnadssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124630.

Full text
Abstract:
Detta examensarbete utreder lönsamheten i en systemlösning för termiskt akviferenergilager tillsammans med ny VVS-teknisk lösning i fastigheterna kv Hästskon 9 och 12 vid en föreslagen framtida helrenovering. Dessutom utreds förutsättningar för miljöklassning i energi- och miljöcertifieringssystemet Miljöbyggnad avseende energianvändning, dagsljuskomfort, solvärmelast och termisk komfort för om- och tillbyggnadsförslaget med målsättning på nivå GULD. Genom att utnyttja akviferen under fastigheterna kvarteret Hästskon 9 och 12 idag kan man åstadkomma mycket låg energianvändning med en säsongsenergiverkningsgrad via kylmaskiner för värme- och kylaförsörjning på 5,6. En LCC-kalkyl visar att det finns en energikostnadsbesparing för fastighetsägaren Vasakronan omkring 3,65 MSEK per år jämfört med dagens situation om den beskrivna akviferlösningen används. Det ger en återbetalningstid om cirka 4,5 år på investeringen som måste göras. Energiklassning i Miljöbyggnadssystemet för befintliga fastigheter är troligtvis möjlig utan andra åtgärder än akviferlagersystemet, men då med BRONS eller möjligtvis SILVER nivå. Vid ett framtida om- och tillbyggnadsförslag får fastighetsägaren cirka 13 000 m² ytterligare uthyrbar lokalyta för handelslokaler och kontor. Trots detta kan energianvändningen minska ännu mer tack vare en säsongsenergiverkningsgrad via kylmaskiner för värme- och kylaförsörjning på 7,0 då SEB:s datakylanläggning kvarstår med värmeåtervinning på fastigheternas värmesystem, värme- och kylsystem byggs om för låg värmebärartemperatur och hög köldbärartemperatur, luftbehandlingssystem optimeras för låg fläktelenergi och hög värmeåtervinningsgrad, glaslösningar väljs med hänsyn till begränsad solinstrålning och byggnadens klimatskärm tilläggsisoleras i viss omfattning. Energikostnadsbesparingen ökar då ytterligare framåt 4,8 MSEK per år jämfört med dagens situation. Även om SEB:s datakylanläggning faller bort vid en ombyggnad finns ändå möjligheten att självständigt försörja fastigheten med egenproducerad värme via ytterligare en värmepump, vilket avlägsnar beroendet av SEB IT:s datahall för värmeproduktion och ändå ger en energikostnadsbesparing på 4,25 MSEK per år jämfört med dagens situation. Vid en sådan lösning blir den specifika energianvändningen enligt BBR 2012:s definition endast cirka 30 kWh/m² Atemp, år. Denna siffra är mycket lägre än nybyggnadskraven i BBR 2012 och i klass med nyproducerade byggnader med borrhålsenergilager. Utifrån analysen av Miljöbyggnadssystemets indikatorer för energianvändning, solvärmelast, dagsljuskomfort och termisk komfort bedöms det möjligt att klassa kvarteret Hästskon 12 och 9 vid om- och tillbyggnad i klass GULD med vissa förändringar av om- och tillbyggnadsförslaget. För att uppnå klass GULD med hänsyn till dagsljuskomfort och solvärmelast krävs särskild anpassning av glasning på S-huset, M-husets fasad mot Malmskillnadsgatan, samt en stor ljusgård i H-huset för att släppa in tillräckligt mycket dagsljus samtidigt som man åstadkommer effektiv solavskärmning.
This thesis investigates the viability of a system solution for aquifer thermal energy storage along with new HVAC technical solutions in real estates Hästskon 9 and 12 at a proposed future renovation. It also explores opportunities for certification in the Swedish energy and environmental certification system Miljöbyggnad (Environmental Building) regarding energy consumption, daylight comfort, solar heat load and thermal comfort for the renovation and extension proposal of Hästskon 12 with the goal of the GOLD level. By exploiting the aquifer in the properties Hästskon 9 and 12 today, very low energy consumption is achievable with seasonal energy efficiency via chillers for heating and cooling supply of 5.6. The LCC analysis shows that there are energy cost savings for property owner Vasakronan of about 3.65 million SEK per year compared to the current situation, if the described aquifer thermal energy storage solution is used. This gives a payback time of approximately 4.5 years in the investment to be made. Certification in the Miljöbyggnad system for existing buildings is probably possible with the aquifer thermal energy storage, but with BRONZE or possibly SILVER level. In the future refurbishment and extension proposal, the property owner adds about 13 000 m² of additional rentable commercial premises and offices. Nevertheless, the energy use of the properties decreases further owing to a seasonal energy efficiency via chillers for heating and cooling supply of 7.0 when the data centre refrigeration equipment for tenant SEB persists with heat recovery on the properties' heating systems, heating and cooling systems are adapted for low heat carrier temperature and high brine water temperature, ventilation systems are designed for low fan electricity demand and high heat recovery rate, glass solutions chosen are based on limited solar radiation and the building envelope is additionally insulated to some extent. Energy cost savings are furthered to 4.8 million SEK per year compared to the current situation. Even if the data centre refrigeration equipment for tenant SEB is closed down in a future refurbishment scenario, there is possibility to independently supply the property with its own heat produced by an additional heat pump, which removes the dependence of tenant SEB's data centre for heat supply and yet provides an energy saving of 4.25 million SEK per year compared the current situation. Such a solution will result in specific energy with the BBR 2012 (Swedish building regulations) definition of only about 30 kWh / m² Atemp, year. This figure is much lower than new construction requirements of BBR 2012 and on par with virgin buildings with borehole energy storage system. Based on the analysis of the Miljöbyggnad system indicators for energy, solar thermal load, daylight comfort and thermal comfort it is possible to certify Hästskon 12 and 9 in a future refurbishment and extension at GOLD level with some changes in the refurbishment proposal. In order to achieve GOLD level with respect to daylight comfort and solar heat load, special adaptation of the glazing on the S building, M building's facade facing Malmskillnadsgatan, and a large atrium in the H-building is required to let in enough natural light while still providing effective solar shading.
APA, Harvard, Vancouver, ISO, and other styles
8

Carlsson, Johan. "Osäkerhet i energisimuleringar av flerbostadshus : Analys av fem nybyggnationer." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-167944.

Full text
Abstract:
Since energy simulations are used to verify that projected residential buildings will reach the current energy requirements it is important that the results are reliable.This report investigates the extent of uncertainty in energy simulations, estimates the causes of the uncertainty and its economic and environmental consequences. The method used in this report is based on three validation methods; empirical validation, analytical validation and comparative validation. The analysis was carried out for five multi-family dwellings in Uppsala with installed meters for energy measurements. One of these objects, Klockarlunden, was studied in more detail than the others. The results show that the deviations are between 10 and 29% for the studied objects, which means that the uncertainty is estimated to be at least 29%. All simulations underestimate the buildings need of energy. The simulation for Klockarlunden can predict the energy consumption to be within the range of 46-98 kWh/m2year with 90% confidence level based on the current uncertainty. The range equals a standard deviation of 28% of the mean. The origin of the uncertainty for the studied objects was shown to be due to weak estimations of hot water consumption, ventilation flow rates, leakage and household electricity. The consequences of the difference between simulated and measured energy consumption can be translated to SEK 8.5 million and 4.5 thousand tons of carbon emissions over the estimated economic lifespan of the buildings.
APA, Harvard, Vancouver, ISO, and other styles
9

Aljaberi, Saif, and Aram Majeed. "Energisimulering i modulhus : Fallstudie för uppskattning av energiprestanda och därefter energieffektivisera enligt passivhusstandaren." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-29781.

Full text
Abstract:
Abstract The Building sector is today an important sector in our society, which means that more people move from the urban area to the big cities, which in turn increases building production. The building and service sector is the largest energy waste in Sweden and internationally, which is about 40% of Sweden's total energy use and 60% of that energy goes to heating. The EU Directive Energy Performance of Buildings Directive (EPBD), implemented the concept of near zero-energy houses, which comes into full force in 2020, which means that all newly-built buildings must be energy-efficient with better energy performance than todays buildings. This is in connection with the need of houses/buildings and rental costs continuing to increase. For this reason, Ljusbo Hyreshus AB has invented a solution that includes both climatesmart rental apartments and cheap rental costs, which has attracted more than 20 communes (kommuner in Sweden) to offer land for these apartments. The purpose of this thesis is to find out the energy performance of one of Ljusbo Hyreshus AB's prototype module houses. Furthermore, improvement proposals would be developed to make the module house more energy efficient. The prototype house consisted of a single-storey modularhouse that stay in Söderhamn, which has been chosen in this thesis for further investigations. The house had a total area of 45 m2 and consisted of 3 rooms and kitchen. In this case study, the energy performance has been developed using analysis methods in the form of hand calculations and the energy signature method. Subsequently, the result of the analysis would be validated and would form the basis for later identification of various energy efficiency measures that contributed to the reduction of energy performance in the house and thereby achieved the passive house standard. The result shows that the modularhouse does not fullfil BBR's requirements at present, because the house misses important components which is important for energy performance. For this reason, improvement proposals, specifically regarding the climate shell, on energy efficiency measures have been developed in this report. With the help of these energy efficiency measures, which mainly consist of additional insulation and energy-efficient windows and with an energy-efficient ventilation system with heat recovery (FTX) and an installed air-water heat pump, the passive house standard has been possible to achieve. Future measures, such as the installation of solar cells, have also been examined in the report. This is due to converting the building from a passive house to a plus energy house.
APA, Harvard, Vancouver, ISO, and other styles
10

Mamic, Mario. "Energiuppföljning i Swecohuset : Hur väl stämmer energiberäkningar från ursprunglig energisimulering överens med verkligt utfall?" Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188599.

Full text
Abstract:
After extension of the lease contract between Sweco and AMF Fastigheter concerning the head office Swecohuset in Marieberg, Stockholm a decision was made stating that the building would be fully renovated to accommodate all of Sweco’s employees in Stockholm under the same roof. After the renovation was complete the company wanted to certificate Sweco’s part of the property according to Miljöbyggnad level GOLD. To obtain the classification the company was required to perform an energy simulation of the property showing that the energy demand of the property in the future will be according to level GOLD of Miljöbyggnad. In this thesis, an energy follow-up on Sweco’s part of Swecohuset is performed to see howwell the results obtained from the initial energy simulation compare with the property inactual operation. The purpose of the project is to create an overview and a better picture of the property’s future energy demand. After a case study and analysis of Swecohuset’s operation and control system and technical components was performed, the calculation of the property’s energy demand was carried out and compared with the results from the initial energy simulation. Furthermore, the ratio between purchased energy and geothermal energy is calculated. The comparison between the initial energy simulation and the property’s actual energy demand shows that the property performs slightly better in real life. Estimation of a couple of factors were inaccurately made but through conscious decisions for other factors created a safety margin in case of any errors. Difficulties in estimation of several factors are common and the outcome of this work demonstrates the complexity of the work with energy simulations and the importance of correct input data for energy simulations to be a powerful tool for estimation of energy demand of a property.
Efter förlängning av hyresavtalet mellan Sweco och AMF Fastigheter om Swecohuset i Marieberg, Stockholm beslutades det att fastigheten skulle totalrenoveras för att kunna rymma Swecos alla medarbetare i Stockholm under ett tak. Målet efter renoveringen var att miljöcertifiera Swecos delar av fastigheten enligt Miljöbyggnad nivå GULD. För att erhålla miljöcertifieringen krävdes en energisimulering på Swecohuset som visade att fastighetens framtida energibehov uppfyller kraven för nivå GULD enligt Miljöbyggnad. I examensarbetet utförs en energiuppföljning på Swecos delar av Swecohuset för att se hur välresultatet från ursprunglig energisimulering stämmer överens med fastigheten i verkligt drift. Syftet med examensarbetet är att skapa en överblick och bättre bild av framtida energibehov i fastigheten. Efter kartläggning och analys av Swecohusets tekniska installationer och ingående systemensdrift och styrning har beräkning av fastighetens energianvändning genomförts och jämförts med vad som beräknats fram i ursprunglig energisimulering. Ytterligare har andelen köptenergi och energi från fastighetens geolager beräknats fram. Jämförelsen mellan ursprunglig energisimulering och fastighetens verkliga energianvändningvisar att fastigheten presterar marginellt bättre i verklig drift. Feluppskattning av några faktorer gjordes men genom medvetna val i andra faktorer skapades en säkerhetsmarginal för eventuella feluppskattningar. Svårigheter vid uppskattning av flera faktorer finns och resultatet i examensarbetet visar på den komplexitet arbetet med energisimuleringar kan innehålla och vikten av rätt indata för att energisimuleringar ska vara ett kraftfullt verktyg för uppskattning av en fastighets framtida energibehov.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography