Journal articles on the topic 'Energy anomaly detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Energy anomaly detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jiang, Chao, Shengze Chen, Zhijing Zhang, and Rui Li. "Energy Meter Patch Resistance and Welding Spot Anomaly Detection Method Based on Machine Vision." Journal of Physics: Conference Series 2428, no. 1 (2023): 012045. http://dx.doi.org/10.1088/1742-6596/2428/1/012045.
Full textZhang, Zhe, Yuhao Chen, Huixue Wang, Qiming Fu, Jianping Chen, and You Lu. "Anomaly detection method for building energy consumption in multivariate time series based on graph attention mechanism." PLOS ONE 18, no. 6 (2023): e0286770. http://dx.doi.org/10.1371/journal.pone.0286770.
Full textHu, Min, Fan Zhang, and Huiming Wu. "Anomaly Detection and Identification Method for Shield Tunneling Based on Energy Consumption Perspective." Applied Sciences 14, no. 5 (2024): 2202. http://dx.doi.org/10.3390/app14052202.
Full textJin, Hyeonseok, and Kyungbaek Kim. "TCN-USAD for Anomaly Power Detection." Korean Institute of Smart Media 13, no. 7 (2024): 9–17. http://dx.doi.org/10.30693/smj.2024.13.7.9.
Full textKo, Hoon, Kwangcheol Rim, and Isabel Praça. "Influence of Features on Accuracy of Anomaly Detection for an Energy Trading System." Sensors 21, no. 12 (2021): 4237. http://dx.doi.org/10.3390/s21124237.
Full textSavran, Efe, Esin Karpat, and Fatih Karpat. "Energy-Efficient Anomaly Detection and Chaoticity in Electric Vehicle Driving Behavior." Sensors 24, no. 17 (2024): 5628. http://dx.doi.org/10.3390/s24175628.
Full textXiong, Zhangming, Daofei Zhu, Dafang Liu, Shujing He, and Luo Zhao. "Anomaly Detection of Metallurgical Energy Data Based on iForest-AE." Applied Sciences 12, no. 19 (2022): 9977. http://dx.doi.org/10.3390/app12199977.
Full textDo, Kien, Truyen Tran, and Svetha Venkatesh. "Energy-based anomaly detection for mixed data." Knowledge and Information Systems 57, no. 2 (2018): 413–35. http://dx.doi.org/10.1007/s10115-018-1168-z.
Full textZheng, Jianbo, Chao Yang, Tairui Zhang, et al. "Dynamic Spectral Graph Anomaly Detection." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 12 (2025): 13410–18. https://doi.org/10.1609/aaai.v39i12.33464.
Full textLi, Jun, Yongbao Liu, Qiang Wang, Zhikai Xing, and Fan Zeng. "Rotating machinery anomaly detection using data reconstruction generative adversarial networks with vibration energy analysis." AIP Advances 12, no. 3 (2022): 035221. http://dx.doi.org/10.1063/5.0085354.
Full textKulkarni, Keyur. "Anomaly Detection in Smart Electric Meters for Detecting Faults and Misuse of Electric Energy Consumption." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem34689.
Full textWirawan, I. Made, Aji Prasetya Wibawa, and Triyanna Widiyanintyas. "Photovoltaic Energy Anomaly Detection using Transformer Based Machine Learning." International Journal of Robotics and Control Systems 4, no. 3 (2024): 1337–52. http://dx.doi.org/10.31763/ijrcs.v4i3.1260.
Full textIMRAN, T. "Anomaly Detection in ELI-NP Front-End Laser Energy Data Using an Optimized Moving Average Method." Romanian Journal of Physics 70, no. 3-4 (2025): 902. https://doi.org/10.59277/romjphys.2025.70.902.
Full textZhu, Yong, Mingyi Liu, Xiaowei Hao, et al. "Multi-level anomaly detection of lithium battery energy storage system." Journal of Physics: Conference Series 2788, no. 1 (2024): 012040. http://dx.doi.org/10.1088/1742-6596/2788/1/012040.
Full textWen-Jen Ho, Wen-Jen Ho, Hsin-Yuan Hsieh Wen-Jen Ho, and Chia-Wei Tsai Hsin-Yuan Hsieh. "Anomaly Detection Model of Time Segment Power Usage Behavior Using Unsupervised Learning." 網際網路技術學刊 25, no. 3 (2024): 455–63. http://dx.doi.org/10.53106/160792642024052503011.
Full textSolís-Villarreal, José-Alberto, Valeria Soto-Mendoza, Jesús Alejandro Navarro-Acosta, and Efraín Ruiz-y-Ruiz. "Energy Consumption Outlier Detection with AI Models in Modern Cities: A Case Study from North-Eastern Mexico." Algorithms 17, no. 8 (2024): 322. http://dx.doi.org/10.3390/a17080322.
Full textAnitha Kumari, K., Avinash Sharma, R. Barani Priyanga, and A. Kevin Paul. "ENERGY DATA ANOMALY DETECTION USING UNSUPERVISED LEARNING TECHNIQUES." Advances in Mathematics: Scientific Journal 9, no. 9 (2020): 6687–98. http://dx.doi.org/10.37418/amsj.9.9.26.
Full textSalma, Volkan, and Roland Schmehl. "Flight Anomaly Detection for Airborne Wind Energy Systems." Journal of Physics: Conference Series 1618 (September 2020): 032021. http://dx.doi.org/10.1088/1742-6596/1618/3/032021.
Full textXu, Xiang, Zhen-Dong Qian, Qiao Huang, Yuan Ren, and Bin Liu. "Probabilistic anomaly trend detection for cable-supported bridges using confidence interval estimation." Advances in Structural Engineering 25, no. 5 (2022): 966–78. http://dx.doi.org/10.1177/13694332211056108.
Full textYu, Zhuchao, Gaixia Chu, Yuanzheng Zhang, Siyuan Zhou, Shaowei He, and Jing Li. "Abnormal Detection Model of Energy Consumption Data in Beneficiation and Metallurgy Enterprises based on Transfer Learning." Journal of Physics: Conference Series 2205, no. 1 (2022): 012012. http://dx.doi.org/10.1088/1742-6596/2205/1/012012.
Full textDeng, Shuixin, Lei Deng, Ting Sun, et al. "EEDD: Edge-Guided Energy-Based PCB Defect Detection." Electronics 12, no. 10 (2023): 2306. http://dx.doi.org/10.3390/electronics12102306.
Full textGayathri, B., A. Abhinav, C. Harishwar Reddy, and G. Praneeth. "ANOMALY XPERT: A Deep Learning Approach to Anomaly Detection." International Journal for Research in Applied Science and Engineering Technology 12, no. 3 (2024): 1481–85. http://dx.doi.org/10.22214/ijraset.2024.59081.
Full textSaganowski, Łukasz, and Tomasz Andrysiak. "Snort IDS Hybrid ADS Preprocessor." Image Processing & Communications 17, no. 4 (2012): 17–22. http://dx.doi.org/10.2478/v10248-012-0024-0.
Full textBranco, Pedro, Francisco Gonçalves, and Ana Cristina Costa. "Tailored Algorithms for Anomaly Detection in Photovoltaic Systems." Energies 13, no. 1 (2020): 225. http://dx.doi.org/10.3390/en13010225.
Full textPan, Haipeng, Zhongqian Yin, and Xianzhi Jiang. "High-Dimensional Energy Consumption Anomaly Detection: A Deep Learning-Based Method for Detecting Anomalies." Energies 15, no. 17 (2022): 6139. http://dx.doi.org/10.3390/en15176139.
Full textNaz, Laviza Falak, Rohail Qamar, Raheela Asif, Saman Hina, Muhammad Imran, and Saad Ahmed. "Intelligent energy management in IoT-enabled smart homes: Anomaly detection and consumption prediction for energy-efficient usage." Mehran University Research Journal of Engineering and Technology 44, no. 1 (2025): 113. https://doi.org/10.22581/muet1982.3291.
Full textLiu, Dan, DongHong Huang, Xinyu Ye, and XinLi Dong. "Anomaly identification model of gas boiler heating energy based on anomaly detection algorithm." Journal of Physics: Conference Series 2030, no. 1 (2021): 012045. http://dx.doi.org/10.1088/1742-6596/2030/1/012045.
Full textSong, Chuancheng, Xixun Lin, Hanyang Shen, Yanmin Shang, and Yanan Cao. "UniFORM: Towards Unified Framework for Anomaly Detection on Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 12 (2025): 12559–67. https://doi.org/10.1609/aaai.v39i12.33369.
Full textGuo, Wei, Shengbo Sun, Chenkang Tang, Gang Li, Xinlei Bai, and Zhenbing Zhao. "Classification of Anomaly Patterns in Integrated Energy Systems Based on Conditional Variational Autoencoder and Attention Mechanism." Energies 16, no. 11 (2023): 4367. http://dx.doi.org/10.3390/en16114367.
Full textCooper, Austin, Arturo Bretas, and Sean Meyn. "Anomaly Detection in Power System State Estimation: Review and New Directions." Energies 16, no. 18 (2023): 6678. http://dx.doi.org/10.3390/en16186678.
Full textLiu, Chunde, Xianli Su, and Chuanwen Li. "Edge Computing for Data Anomaly Detection of Multi-Sensors in Underground Mining." Electronics 10, no. 3 (2021): 302. http://dx.doi.org/10.3390/electronics10030302.
Full textRevathy, Dr A. "TinyML Autoencoder for Transmission Line Anomaly Detection." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem44994.
Full textMishra, Deviprasad, Partha Roy, and Anil Mishra. "TRAP BASED ANOMALY DETECTION MECHANISM FOR WIRELESS SENSOR NETWORK." ASEAN Engineering Journal 14, no. 2 (2024): 167–72. http://dx.doi.org/10.11113/aej.v14.20997.
Full textKatamoura, Suzan MohammadAli, and Mehmet Sabih Aksoy. "Anomaly Detection in Renewable Energy Big Data Using Deep Learning." International Journal of Intelligent Information Technologies 19, no. 1 (2023): 1–28. http://dx.doi.org/10.4018/ijiit.331595.
Full textHuang, Shaonian, Dongjun Huang, and Xinmin Zhou. "Learning Multimodal Deep Representations for Crowd Anomaly Event Detection." Mathematical Problems in Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/6323942.
Full textEdelen, Jonathan P., and Christopher C. Hall. "Autoencoder Based Analysis of RF Parameters in the Fermilab Low Energy Linac." Information 12, no. 6 (2021): 238. http://dx.doi.org/10.3390/info12060238.
Full textJadhav Girish Vasantrao. "Autoencoder Based Anomaly Detection of Electricity Theft in House Hold Consumer side of the smart grid." Journal of Information Systems Engineering and Management 10, no. 34s (2025): 989–1007. https://doi.org/10.52783/jisem.v10i34s.5905.
Full textPark, Cheong Hee, and Taegong Kim. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection." Energies 13, no. 15 (2020): 3832. http://dx.doi.org/10.3390/en13153832.
Full textShchetinin, Eugeny Yu, and Tatyana R. Velieva. "Detection of cyber-attacks on the power smart grids using semi-supervised deep learning models." Discrete and Continuous Models and Applied Computational Science 30, no. 3 (2022): 258–68. http://dx.doi.org/10.22363/2658-4670-2022-30-3-258-268.
Full textWang, Lin, Shuqiao Zhou, Tianhao Zhang, Chao Guo, and Xiaojin Huang. "An Unsupervised Anomaly Detection Method for Nuclear Reactor Coolant Pumps Based on Kernel Self-Organizing Map and Bayesian Posterior Inference." Energies 18, no. 11 (2025): 2887. https://doi.org/10.3390/en18112887.
Full textPaul, Ankita, Md Abu Saleh Tajin, Anup Das, William M. Mongan, and Kapil R. Dandekar. "Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants." Electronics 11, no. 5 (2022): 682. http://dx.doi.org/10.3390/electronics11050682.
Full textErla, Nithin Reddy, Sai Teja Gaddi, Vasu Chillara, and Dr Vikas Maheshwari. "Anomaly detection for electric energy consumption in smart farms." International Journal of Advances in Electrical Engineering 5, no. 1 (2024): 116–21. http://dx.doi.org/10.22271/27084574.2024.v5.i1b.62.
Full textMarchioni, Alex, Mauro Mangia, Fabio Pareschi, Riccardo Rovatti, and Gianluca Setti. "Subspace Energy Monitoring for Anomaly Detection @Sensor or @Edge." IEEE Internet of Things Journal 7, no. 8 (2020): 7575–89. http://dx.doi.org/10.1109/jiot.2020.2985912.
Full textChen, Tianyu, Chunping Hou, Zhipeng Wang, and Hua Chen. "Anomaly detection in crowded scenes using motion energy model." Multimedia Tools and Applications 77, no. 11 (2017): 14137–52. http://dx.doi.org/10.1007/s11042-017-5020-3.
Full textSimpson, C. J., J. R. Wilford, L. F. Macias, and R. J. Korsch. "SATELLITE DETECTION OF NATURAL HYDROCARBON SEEPAGE: PALM VALLEY GAS FIELD, AMADEUS BASIN, CENTRAL AUSTRALIA." APPEA Journal 29, no. 1 (1989): 196. http://dx.doi.org/10.1071/aj88019.
Full textSatheesh, Dr Kavuri K. S. V. A., Sk Waaheda Zeenathul Quraan, G. Mercy Jasper, Ch Sai Teja, Ch Sai Vignesh, and V. Lohith. "Crowd Anomaly Detection Using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 12, no. 4 (2024): 544–47. http://dx.doi.org/10.22214/ijraset.2024.59849.
Full textGuo, Qiang, Fenghe Li, Hengwen Liu, and Jin Guo. "Anomaly Detection and Root Cause Analysis for Energy Consumption of Medium and Heavy Plate: A Novel Method Based on Bayesian Neural Network with Adam Variational Inference." Algorithms 18, no. 1 (2025): 11. https://doi.org/10.3390/a18010011.
Full textMao, Zhenghui, Bijun Zhou, Jiaxuan Huang, Dandan Liu, and Qiangqiang Yang. "Research on Anomaly Detection Model for Power Consumption Data Based on Time-Series Reconstruction." Energies 17, no. 19 (2024): 4810. http://dx.doi.org/10.3390/en17194810.
Full textChugh, Neeraj, Geetam Singh Tomar, Robin Singh Bhadoria, and Neetesh Saxena. "A Novel Anomaly Behavior Detection Scheme for Mobile Ad Hoc Networks." Electronics 10, no. 14 (2021): 1635. http://dx.doi.org/10.3390/electronics10141635.
Full textDai, Yaoyang, Shukai Sun, and Liang Che. "Improved DBSCAN-based Data Anomaly Detection Approach for Battery Energy Storage Stations." Journal of Physics: Conference Series 2351, no. 1 (2022): 012025. http://dx.doi.org/10.1088/1742-6596/2351/1/012025.
Full text