Academic literature on the topic 'Energy band gap'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy band gap.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy band gap"
Zhanabaev, Z. Zh. "WIDTH OF ENERGY BAND GAP OF NANOPOROUS SEMICONDUCTOR FILMS." Eurasian Physical Technical Journal 17, no. 2 (December 24, 2020): 39–44. http://dx.doi.org/10.31489/2020no2/39-44.
Full textPlekhanov, V. G., and N. V. Plekhanov. "Isotope dependence of band-gap energy." Physics Letters A 313, no. 3 (June 2003): 231–37. http://dx.doi.org/10.1016/s0375-9601(03)00760-6.
Full textNag, B. R. "Direct band-gap energy of semiconductors." Infrared Physics & Technology 36, no. 5 (August 1995): 831–35. http://dx.doi.org/10.1016/1350-4495(95)00023-r.
Full textEt. al., Sharibayev Nosirjon Yusufjanovich,. "Temperature Dependence Of Energy States And Band Gap Broadening." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 4 (April 11, 2021): 53–60. http://dx.doi.org/10.17762/turcomat.v12i4.471.
Full textPatidar, Dinu, K. S. Rathore, N. S. Saxena, Kananbala Sharma, and T. P. Sharma. "Energy Band Gap Studies of CdS Nanomaterials." Journal of Nano Research 3 (October 2008): 97–102. http://dx.doi.org/10.4028/www.scientific.net/jnanor.3.97.
Full textBoakye, F., and D. Nusenu. "The energy band gap of cadmium sulphide." Solid State Communications 102, no. 4 (April 1997): 323–26. http://dx.doi.org/10.1016/s0038-1098(97)00012-4.
Full textPaduano, Qing S., David W. Weyburne, Lionel O. Bouthillette, Shen-Qi Wang, and Michael N. Alexander. "The Energy Band Gap of AlxGa1-xN." Japanese Journal of Applied Physics 41, Part 1, No. 4A (April 15, 2002): 1936–40. http://dx.doi.org/10.1143/jjap.41.1936.
Full textZhong, Shuying, Musheng Wu, and Xueling Lei. "First-principle calculations of effective mass of silicon crystal with vacancy defects." Materials Science-Poland 34, no. 4 (December 1, 2016): 916–23. http://dx.doi.org/10.1515/msp-2016-0128.
Full textIndriani, Devi, Helga Dwi Fahyuan, and Ngatijo Ngatijo. "UJI UV-VIS LAPISAN TiO2/N2 UNTUK MENENTUKAN BAND GAP ENERGY." JOURNAL ONLINE OF PHYSICS 3, no. 2 (November 13, 2018): 6–10. http://dx.doi.org/10.22437/jop.v3i2.5142.
Full textDiwan, Bhoopendra Dhar, and Vinod Kumar Dubey. "Influence of Size on Effective Band Gap of Silicon Nano-Wire." Advanced Materials Research 938 (June 2014): 322–26. http://dx.doi.org/10.4028/www.scientific.net/amr.938.322.
Full textDissertations / Theses on the topic "Energy band gap"
Ji, Zhonghang. "Strain-induced Energy Band-gap Opening of Silicene." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1432635166.
Full textCammisa, Eduardo G. "Synthesis of low band gap polymers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0019/MQ55489.pdf.
Full textSodipe, Olukayode O. "Wide-band Gap Devices for DC Breaker Applications." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1529.
Full textKammler, Marvin. "MD simulations of atomic hydrogen scattering from zero band-gap materials." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0003-C17A-A.
Full textNisar, Jawad. "Atomic Scale Design of Clean Energy Materials : Efficient Solar Energy Conversion and Gas Sensing." Doctoral thesis, Uppsala universitet, Materialteori, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179372.
Full textHughes, Alison Frances. "A new theory of lasers with application to photonic band gap materials." Thesis, King's College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368127.
Full textKevin, Punarja. "On the synthesis, measurement and applications of solar energy materials and devices." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/on-the-synthesis-measurement-and-applications-of-solar-energy-materials-and-devices(9273d60d-cc5a-4992-8fae-ac9ddefa506b).html.
Full textPiazzetta, Rubyan Lucas Santos. "COMPORTAMENTO ÓPTICO E TÉRMICO EM FUNÇÃO DA ESTRUTURA DO SISTEMA VÍTREO TeO2-Li2O-ZnO." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2015. http://tede2.uepg.br/jspui/handle/prefix/842.
Full textFundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná
This work studied tellurite glasses in a ternary system with the TeO2-Li2O-ZnO composition, divided in three groups with 10%, 15% and 20%mol Li2O fixed. For this study, was made the replacement of known TeO2 network former by ZnO. It used the Differential Scanning Calorimetry (DSC), optical absorption in ultraviolet-visible region (UV-VIS), Raman spectroscopy, Fourier transform infrared (FTIR), linear refractive index (n0) measurement and instrumented nanoindentation. The samples were prepared by melt quenching method in the bulk form. DSC results showed that the glass transition temperature (TG) virtually no change in the glass systems, while that there was an increase in the glass stability due to exchange of TeO2 by ZnO especially for 10 and 15% mol Li2O groups. By continuing, the UV-VIS results indicated a gradual increase in the band gap energy which was calculated by Urbach rule; this increased energy as TeO2 was replaced by ZnO, can also be seen as a blue shift. These same results were confirmed by a structural change seen by Raman spectroscopy: with the increased of ZnO, the vibrational modes located at 450 e 659 cm-1 which incorporate trigonal bipyramids of TeO4 are gradually replaced by vibrational modes at 735-760 cm-1 referred the creation of Zn2Te3O8 units. This behavior by Raman spectroscopy is also confirmed by the FTIR results with increased intensity of peaks related to vibrational modes of ZnO molecules. Therefore, it is verified that the addition of ZnO in the system has the property to decrease the amount of NBOs, which in turn decreases the polarizability of the oxide ion of the system and increases the band gap energy. Lastly, the increase in the band gap values and, Raman and DSC results showed that this glassy system acquires considerable glass stability, has good transmittance in the ultraviolet and visible regions, and thus appears as a promising candidate for host ions optically active.
Esta dissertação teve por objetivo estudar os vidros teluretos em um sistema ternário com composição TeO2-Li2O-ZnO, separados em três grupos com concentração fixa de 10%, 15% e 20% em mol de Li2O com a respectiva substituição do conhecido formador de rede TeO2 por ZnO. Tal estudo agregou as técnicas de Calorimetria Diferencial de Varredura (DSC), absorção óptica na região do ultravioleta-visível (UV-VIS), espectroscopia Raman, infravermelho por transformada de Fourier (FTIR), medidas de índice de refração linear (n0) e nanoindentação instrumentada. As amostras foram preparadas pelo método de melt quenching e obtidas na forma de bulk. Por meio dos resultados de DSC verificou-se que a temperatura de transição vítrea (TG) fica praticamente inalterada nesse sistema vítreo, enquanto que existe um aumento expressivo da estabilidade vítrea com a troca de TeO2 por ZnO, principalmente para os grupos com 10 e 15% em mol de Li2O. Já os resultados de UV-VIS mostraram um aumento gradual na energia de band gap, a qual foi calculada utilizando a Regra de Urbach. Esse aumento de energia, à medida que TeO2 era substituído por ZnO, também pode ser visto como um blue shift (deslocamento para o azul). Esse aumento de band gap foi confirmado por uma mudança estrutural vista por espectroscopia Raman: com o aumento na concentração de ZnO, os modos vibracionais localizados em 450 e 659 cm-1 que incorporam bipirâmides trigonais de TeO4 passam a ser gradualmente substituídos por modos vibracionais em 735-760 cm-1 que se referem a criação de unidades Zn2Te3O8. Esse comportamento por espectroscopia Raman também é confirmado através dos resultados de FTIR com aumento da intensidade dos picos relacionados a modos vibracionais de moléculas ZnO. É verificado assim que a adição de ZnO ao sistema tem a propriedade de diminuir a quantidade de NBOs, o que por sua vez, diminui a polarizabilidade do íon óxido do sistema e aumenta a energia de band gap. Com isto, o aumento nos valores de band gap e os resultados de DSC e Raman mostraram que esse sistema vítreo adquire considerável estabilidade vítrea, tem boa transmitância nas regiões do ultravioleta e visível e, assim, se mostra como um promissor candidato para hospedeiro de íons opticamente ativos.
Rung, Andreas. "Numerical Studies of Energy Gaps in Photonic Crystals." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5848.
Full textRighini, Matteo. "Misure di trasmittanza ottica di nanoparticelle di Ti(1-x)V(x)O(2)." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7698/.
Full textBooks on the topic "Energy band gap"
Little, Mark E. Band-gap engineering in sputter deposited amorphous/microcrystalline ScxGa1-xN. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.
Find full textĖlektronnyĭ spektr besshchelevykh poluprovodnikov. Sverdlovsk: Akademii͡a nauk SSSR, Uralʹskoe otd-nie, 1991.
Find full textT͡Sidilʹkovskiĭ, I. M. Electron spectrum of gapless semiconductors. Berlin: Springer, 1997.
Find full textCentre, Bhabha Atomic Research. Rail gap switches & its triggering system for high energy capacitor bank. Mumbai: Bhabha Atomic Research Centre, 2011.
Find full textWorld Bank. Independent Evaluation Group and World Bank, eds. Climate change and the World Bank Group: Phase 1, an evaluation of World Bank win-win energy policy reforms. Washington, D.C: World Bank, 2009.
Find full textNATO Advanced Study Institute on the Physics of the Two-Dimensional Electron Gas (1986 Oostduinkerke, Belgium). The physics of the two-dimensional electron gas. New York: Plenum Press, 1987.
Find full textChomitz, Kenneth M. Climate change and the World Bank Group: Phase II, the challenge of low-carbon development. Washington, D.C: World Bank, 2010.
Find full textUnited States. Congress. Senate. Committee on Energy and Natural Resources. Staunton, Rossin, Garrish, and Francis nominations: Hearing before the Committee on Energy and Natural Resources, United States Senate, Ninety-ninth Congress, second session, on the nominations of Marshall A. Staunton ... A. David Rossin ... Department of Energy; Theodore J. Garrish ... Alaska Natural Gas Transportation System; and Richard H. Francis ... Solar Energy and Energy Conservation Bank ... July 15, 1986. Washington: U.S. G.P.O., 1986.
Find full textHeterojunction band discontinuities: Physics and device applications. Amsterdam: North-Holland, 1987.
Find full textBand-gap engineering in sputter deposited amorphous/microcrystalline ScxGa1-xN. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.
Find full textBook chapters on the topic "Energy band gap"
Weik, Martin H. "band gap energy." In Computer Science and Communications Dictionary, 102. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1322.
Full textMatsukura, F. "Ga1–xMnxAs: band structure, direct energy gap." In New Data and Updates for III-V, II-VI and I-VII Compounds, 187. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_140.
Full textBusch, K., and C. M. Soukoulis. "Energy Transport Velocity in Random Media." In Photonic Band Gap Materials, 667–78. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1665-4_38.
Full textPortela, Raquel. "Non-metal Doping for Band-Gap Engineering." In Green Energy and Technology, 287–309. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5061-9_14.
Full textWang, C. S., and W. E. Pickett. "Energy Band Gap in Quasi-Particle Local Density Theory." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 993–96. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_222.
Full textAlcubilla, R., L. Prat, and F. Therez. "GaAlAs/gaAs Solar Cells. Bulk Graded Band Gap Structures, an Optimization." In Seventh E.C. Photovoltaic Solar Energy Conference, 895–99. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_159.
Full textBundgaard, Eva, and Frederik Krebs. "Development of Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cell Modules." In Energy Efficiency and Renewable Energy Through Nanotechnology, 251–70. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-638-2_6.
Full textPathania, Sonika, and Satbir Singh. "Synthesis and Optoelectronic Studies of Low Band Gap Polymers and Their Role in Highly Efficient Solar Cells: An Overview." In Springer Proceedings in Energy, 179–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63085-4_24.
Full textSerpone, Nick, Alexei V. Emeline, Vyacheslav N. Kuznetsov, and Vladimir K. Ryabchuk. "Second Generation Visible-Light-Active Photocatalysts: Preparation, Optical Properties, and Consequences of Dopants on the Band Gap Energy of TiO2." In Nanostructure Science and Technology, 35–111. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-48444-0_3.
Full textMeyer, B. K. "ZnO: band structure, energy gaps." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 566–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_316.
Full textConference papers on the topic "Energy band gap"
Kramer, Aaron, Maarten L. Van de Put, Christopher L. Hinkle, and William G. Vandenberghe. "Trigonal Tellurium Nanostructure Formation Energy and Band gap." In 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2019. http://dx.doi.org/10.1109/sispad.2019.8870361.
Full textSoonil Lee, William H. Woodford, and Clive A. Randall. "Band gap energy of perovskite structured ABO3 compounds." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693923.
Full textYu, Liuyang, Yong Xu, and Kegao Liu. "Study on Energy Band-gap Calculation of CuGaS2." In 2015 3rd International Conference on Machinery, Materials and Information Technology Applications. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmita-15.2015.173.
Full textYan, Yanfa, K. S. Ahn, S. Shet, T. Deutsch, M. Huda, S. H. Wei, J. Turner, and M. M. Al-Jassim. "Band gap reduction of ZnO for photoelectrochemical splitting of water." In Solar Energy + Applications, edited by Jinghua Guo. SPIE, 2007. http://dx.doi.org/10.1117/12.734950.
Full textSalmani, E., A. Marjaoui, O. Mounkachi, M. Ben Ali, H. El Moussaoui, H. Ez-Zahraouy, M. Hamedoun, M. Benaissa, and A. Benyoussef. "Band gap engineering of (InGaN) for photovoltaic application." In 2014 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2014. http://dx.doi.org/10.1109/irsec.2014.7059771.
Full textShillaber, Luke, Li Ran, Yanfeng Shen, and Teng Long. "Gigahertz Current Measurement for Wide Band-gap Devices." In 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020. http://dx.doi.org/10.1109/ecce44975.2020.9235662.
Full textWitjaksono, Gunawan, and M. Junaid. "Analysis of Tunable Energy Band Gap of Graphene Layer." In 2018 IEEE 7th International Conference on Photonics (ICP). IEEE, 2018. http://dx.doi.org/10.1109/icp.2018.8533209.
Full textMaeda, M., T. Kamimura, S. Iwasaki, and K. Matumoto. "New Measurement Method of Carbon Nanotube Energy Band Gap." In 2007 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2007. http://dx.doi.org/10.7567/ssdm.2007.j-10-1.
Full textJani, Omkar, Christiana Honsberg, Yong Huang, June-o. Song, Ian Ferguson, Gon Namkoong, Elaissa Trybus, Alan Doolittle, and Sarah Kurtz. "Design, Growth, Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells." In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279337.
Full textMalachowski, Michal J. "Quantum yield of energy-band-gap-graded AlGaN(n)/GaN(p) UV photodetector." In Electronic Imaging, edited by Morley M. Blouke, Nitin Sampat, George M. Williams, Jr., and Thomas Yeh. SPIE, 2000. http://dx.doi.org/10.1117/12.385447.
Full textReports on the topic "Energy band gap"
Kizilyalli, Isik C., Eric P. Carlson, Daniel W. Cunningham, Joseph S. Manser, Yanzhi Ann Xu, and Alan Y. Liu. Wide Band-Gap Semiconductor Based Power Electronics for Energy Efficiency. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1464211.
Full textGamboa, E. J., L. B. Fletcher, H. J. Lee, M. J. MacDonald, U. Zastrau, M. Gauthier, D. O. Gericke, et al. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1241296.
Full textPrelas, M. A. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/378901.
Full textPrelas, M. A., E. J. Charlson, and E. M. Charlson. Summary year 2: A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/395669.
Full textA study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/6108288.
Full textA study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Progress report for year one, December 1, 1990--November 30, 1991. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/10107061.
Full textInter-American Development Bank Sustainability Report 2020: Global Reporting Initiative Annex. Inter-American Development Bank, March 2021. http://dx.doi.org/10.18235/0003100.
Full text