Academic literature on the topic 'Energy cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy cycle"
Han, Sung Bin, and Sung Il Hwang. "Experimental Study on the Cycle-to-Cycle Combustion Variations in a Spark Ignition Engine." Journal of Energy Engineering 22, no. 2 (June 30, 2013): 197–204. http://dx.doi.org/10.5855/energy.2013.22.2.197.
Full textHan, Sung Bin, and Sung Il Hwang. "Cycle-to-Cycle Fluctuations in a Spark Ignition Engine at Low Speed and Load." Journal of Energy Engineering 22, no. 2 (June 30, 2013): 205–10. http://dx.doi.org/10.5855/energy.2013.22.2.205.
Full textNoh, Taewan. "Technical Review on Thorium Breeding Cycle." Journal of Energy Engineering 25, no. 2 (June 30, 2016): 52–64. http://dx.doi.org/10.5855/energy.2016.25.2.052.
Full textGotovsky, M., A. Gotovsky, V. Mikhailov, V. Lychakov, Y. Sukhorukov, and E. Sukhorukova. "Formate Cycle: The Third Way in Green Energy." International Journal of Chemical Engineering and Applications 10, no. 6 (December 2019): 189–94. http://dx.doi.org/10.18178/ijcea.2019.10.6.767.
Full textShiwhae, Vichar. "Energy-Mass Cycle." International Journal of Scientific & Engineering Research 9, no. 6 (June 25, 2018): 1024–32. http://dx.doi.org/10.14299/ijser.2018.06.09.
Full textEremeev, Igor P. "Electrophotonuclear energy cycle." Physics-Uspekhi 47, no. 12 (December 31, 2004): 1221–37. http://dx.doi.org/10.1070/pu2004v047n12abeh001941.
Full textEremeev, Igor P. "Electrophotonuclear energy cycle." Uspekhi Fizicheskih Nauk 174, no. 12 (2004): 1319. http://dx.doi.org/10.3367/ufnr.0174.200412c.1319.
Full textDixit, Manoj, S. C. Kaushik, and Akhilesh Arora. "Energy and Exergy Analysis of Solar Triple Effect Refrigeration Cycle." Journal of Clean Energy Technologies 5, no. 3 (May 2017): 222–27. http://dx.doi.org/10.18178/jocet.2017.5.3.373.
Full textShin, Dong Gil. "Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas." Journal of Energy Engineering 21, no. 4 (December 31, 2012): 393–97. http://dx.doi.org/10.5855/energy.2012.21.4.393.
Full textCristina Zaro, Geovanna, Paulo Henrique Caramori, Cíntia Sorane Good Kitzberger, Fernanda Aparecida Sales, Sergio Luiz Colucci de Carvalho, and Cássio Egidio Cavenaghi Prete. "Phenological cycle and physicochemical characteristics of avocado cultivars in subtropical conditions." AIMS Energy 5, no. 3 (2017): 517–28. http://dx.doi.org/10.3934/energy.2017.3.517.
Full textDissertations / Theses on the topic "Energy cycle"
Bawaneh, Khaled. "Industrial facility nonprocess energy life cycle information." Diss., Wichita State University, 2011. http://hdl.handle.net/10057/5131.
Full textThesis (Ph.D.)--Wichita State University, College of Engineering, Dept. of Industrial and Manufacturing Engineering
Huang, Shu-Wei Ph D. Massachusetts Institute of Technology. "High-energy sub-cycle optical waveform synthesizer." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75634.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 147-157).
Over the last decade, the control of atomic-scale electronic motion by optical fields strong enough to mitigate the atomic Coulomb potential, has broken tremendous new ground with the advent of phase controlled high-energy few-cycle pulse sources. In particular, broadband optical parametric chirped pulse amplifier (OPCPA) has been investigated intensively in recent years to enable studies of novel strong-field physics phenomena such as high-harmonic generation (HHG) and strong-field ionization. Further investigation and control of these physical processes ask for the capability of waveform shaping on sub-cycle time scales, which requires a fully phase-controlled multiple-octave-spanning spectrum. To date, no single laser source can support a bandwidth of more than an octave. Coherent synthesis of pulses with different spectra, or wavelength multiplexing, presents a route towards obtaining a multi-octave spanning laser spectrum. The benefit of this approach lies in its modular design and scalability in both bandwidth and pulse energy. However, it was only recently laser scientists were able to successfully demonstrate coherent synthesis of two lasers albeit at low energy and high repetition rate. Achieving high pulse energy requires synthesis of low repetition rate pulses, which is a challenge because of the environmental perturbations typifying high-energy amplifiers. The technological advancements towards the ideal source for study and control of such strong-field physics are the focus of this thesis. The background reviews on femtosecond Ti:sapphire oscillators, carrier-envelope phase stabilization, chirped pulse amplifier, broadband OPCPAs, and HHG are given in Chapter 1. Chapter 2 starts with a discussion on the various properties of OPCPA which lends itself to the ideal building module for high-energy pulse synthesis. Then it is followed by a comprehensive optimization study and experimental results of broadband OPCPAs at different spectral ranges. In chapter 3, the first high-energy sub-cycle waveform synthesizer is presented. It is the prototype of a class of novel optical tools for atto-second control of strong-field physics experiments. Novel technologies that enable such a waveform synthesizer are described in details. At the end of the chapter, work towards the construction of a large-scale waveform synthesizer is included. Finally, the thesis is concluded by introducing some possible future directions.
by Shu-Wei Huang.
Ph.D.
Bouchouireb, Hamza. "Advancing the life cycle energy optimisation methodology." Licentiate thesis, KTH, VinnExcellence Center for ECO2 Vehicle design, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265556.
Full textLivscykelenergioptimerings-metodologin (LCEO) syftar till att hitta en designlösning som använder en minimal mängd av energi ackumulerat över de olika faserna av en produkts (i detta arbete i formen av ett fordon) livscykel, samtidigt som den uppfyller en förutbestämd uppsättning funktionella begränsningar. Genom detta kan avvägningar balanseras effektivt, och därmed undviks suboptimala förskjutningar mellan energibehovet för vagga-till-produktion av material, fordonets användningsfas samt hantering av det uttjänta fordonet, på engelska kallad End-Of-Life (EOL). Detta arbete vidareutvecklar LCEO-metodologin och utvidgar dess omfattning genom tre huvudsakliga metodologiska bidrag, som, för illustrativa syften, har applicerats på en fallstudie av ett fordons sub-systemdesign. En EOL-modell baserad på substitution med korrigeringsfaktorer, är inkluderad för att uppskatta energikrediter och bördor som härrör från hanteringen av det uttjänta fordonet. Flera olika scenarier som beskriver återvinning med olika nivåer av antagen degradering av egenskaper hos de återvunna materialen har definierats, och deras respektive LCEO utfall har jämförts med motsvarande resultat för scenarier baserade på deponering och förbränning med energiåtervinning. Resultaten visar att införandet av en EOL-modell i LCEO-metodologin kan ändra flöden och mönster kring materialanvändning och har en signifikant påverkan på den totala livscykelenergin i de optimala fordonsdesignen Då valet av EOL-modell har signifikans för LCEO utfallet, har de föregående, statiska modellerna kompletterats med en utvidgning mot en mer holistisk systemstudie utifrån LCEO. I denna utvidgning studeras frågor kring optimerade produktsystem, framförallt avseende en delmängd av EOL processernas parametrar som har inkluderats i form av kontinuerliga designvariabler med antagna barriärfunktioner som modellerar deras genomförbarhet. Resultaten visar att LCEO kan användas för att finna den optimala designen av en fordonskomponent tillsammans med dess associerade, ideala, syntetiska EOL-scenario. Dessutom demonstreras metodens förmåga att identifiera de underliggande mekanismer som möjliggör den optimala lösningens avvägningar. För att utöka komplexiteten i de ansatta funktionella begränsningarna har även form-relaterade variabler och aerodynamiska motståndsberäkningar tagits med. I det här fallet används krökningen på den studerade fordonskomponenten som ytterligare en variabel i LCEO analyser, med dess inverkan på det aerodynamiska motståndet och i och med detta variationer i användningsfasens energibehov. I detta fallet har det aerodynamiska motståndet tagits med i analysen genom uppskattning av motståndskoefficienten av en fordonskomponent framtagen genom strömningsmekaniska beräkningar. Denna uppskattning används sedan för att modellera den energi som krävs av fordonet för att övervinna det aerodynamiska luftmotståndet. I detta sammanhang visas också på behovet av en strategi för allokering av den aerodynamiska motståndsenergin hos en sub-komponent i relation till helheten, när fokus ligger på design av ett sub-system hos ett fordon. Resultaten visar att LCEO beskriver den underliggande funktionella synergin mellan de ansatta strukturella och de aerodynamiska kraven. Detta arbete bidrar till att LCEO utvecklas i flera olika avseenden som utgör väsentliga steg mot en pro-aktiv metod som kan hantera livscykel- och funktionella avvägningar i en optimal fordonsdesign ur ett livscykelenergiperspektiv.
Lohse, Tim. "Life cycle assessment of a plus-energy house." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266478.
Full textHau, Jorge Luis. "Integrating life cycle assessment, energy and emergy analysis." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1407139681.
Full textGastelum, Zepeda Leonardo. "Life Cycle Assessment of a Wave Energy Converter." Thesis, KTH, Industriell ekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206486.
Full textJones, Craig I. "Life cycle energy consumption and environmental burdens associated with energy technologies and buildings." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532723.
Full textColpan, Can Ozgur. "Exergy Analysis Of Combined Cycle Cogeneration Systems." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605993/index.pdf.
Full textDavidsson, Simon. "Life Cycle Exergy Analysis of Wind Energy Systems : Assessing and improving life cycle analysis methodology." Thesis, Uppsala universitet, Globala energisystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-157185.
Full textRoux, Charlotte. "The life cycle performance of energy using household products." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11012.
Full textBooks on the topic "Energy cycle"
Kuemmel, Bernd. Life-cycle analysis of energy systems. Frederiksberg: Roskilde University Press, 1997.
Find full textDemirbas, Ayhan. Waste Energy for Life Cycle Assessment. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40551-3.
Full textSakellariou, Nicholas. Life Cycle Assessment of Energy Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119418580.
Full textAyres, Robert U. Life cycle analysis and materials/energy forecasting models. Fontainebleau: INSEAD, 1993.
Find full textAyres, Robert U. Life cycle analysis and materials/energy forecasting models. Fontainebleau: INSEAD, 1993.
Find full textBasosi, Riccardo, Maurizio Cellura, Sonia Longo, and Maria Laura Parisi, eds. Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93740-3.
Full textHill, Terrell L. Free energy transduction and biochemical cycle kinetics. New York: Springer-Verlag, 1989.
Find full textSingh, Anoop, Deepak Pant, and Stig Irving Olsen, eds. Life Cycle Assessment of Renewable Energy Sources. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5364-1.
Full textHill, Terrell L. Free Energy Transduction and Biochemical Cycle Kinetics. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3558-3.
Full textMarkel, A. J. PHEV energy storage and drive cycle impacts. [Golden, Colo.]: National Renewable Energy Laboratory, 2007.
Find full textBook chapters on the topic "Energy cycle"
Laurent, Alexis, Nieves Espinosa, and Michael Z. Hauschild. "LCA of Energy Systems." In Life Cycle Assessment, 633–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56475-3_26.
Full textGicquel, Renaud. "Combined cycle, cogeneration or CHP." In Energy Systems, 265–86. 2nd ed. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003175629-13.
Full textRogner, Hans-Holger. "Long-Term Energy Projections and Novel Energy Systems." In The Changing Carbon Cycle, 508–33. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4757-1915-4_25.
Full textLuchsinger, Rolf H. "Pumping Cycle Kite Power." In Airborne Wind Energy, 47–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39965-7_3.
Full textBlok, Kornelis, and Evert Nieuwlaar. "Life-cycle energy analysis." In Introduction to Energy Analysis, 180–204. Third edition. | Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.4324/9781003003571-9.
Full textBush, Martin J. "The Carbon Cycle." In Climate Change and Renewable Energy, 109–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15424-0_3.
Full textDinçer, İbrahim, and Calin Zamfirescu. "Life-Cycle Assessment." In Sustainable Energy Systems and Applications, 663–700. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-95861-3_15.
Full textSmith, C. A., and E. J. Wood. "The tricarboxylic acid cycle." In Energy in Biological Systems, 75–100. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3124-7_4.
Full textUsman, Shoaib. "Uranium-Plutonium Nuclear Fuel Cycle." In Nuclear Energy Encyclopedia, 77–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118043493.ch11.
Full textFthenakis, Vasilis. "Life Cycle Assessment of Photovoltaics." In Photovoltaic Solar Energy, 646–57. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch57.
Full textConference papers on the topic "Energy cycle"
Sullivan, John L., and Jenny Hu. "Life Cycle Energy Analysis for Automobiles." In 1995 Total Life Cycle Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951829.
Full textRumminger, Marc, Robert Dibble, Andrew Lutz, and Ann Yoshimura. "An integrated analysis of the Kalina cycle in combined cycles." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4068.
Full textKreucher, Walter M. "Economic, Environmental and Energy Life-Cycle Inventory of Automotive Fuels." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982218.
Full textMines, G. L., W. D. Swank, and C. J. Bliem. "Geothermal Heat Cycle Research Supercritical Cycle with Horizontal Counterflow Condenser." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9379.
Full textLutzemberger, G. "Cycle life evaluation of lithium cells subjected to micro-cycles." In 2015 5th International Youth Conference on Energy (IYCE). IEEE, 2015. http://dx.doi.org/10.1109/iyce.2015.7180788.
Full textKobayashi, Y., M. Matsuo, N. Isshiki, and W. Ishida. "Elastic heat exchanger in Stirling cycle machines." In ENERGY 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/esus070081.
Full textHausberger, Stefan. "Scenarios for the Future Energy Demand and CO2-Emissions from the Global Transport Sector." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982216.
Full textKreucher, Walter M., Weijian Han, Dennis Schuetzle, Zhu Qiming, Zhang Alin, Zhao Ruilan, Sun Baiming, and Malcolm A. Weiss. "Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982207.
Full textStodolsky, Frank, Anant Vyas, Roy Cuenca, and Linda Gaines. "Life-Cycle Energy Savings Potential from Aluminum-Intensive Vehicles." In 1995 Total Life Cycle Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951837.
Full textKim, Hyung Chul, Gregory A. Keoleian, Sabrina Spatari, and Jonathan W. Bulkley. "Optimizing Vehicle Life Using Life Cycle Energy Analysis and Dynamic Replacement Modeling." In Total Life Cycle Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-1499.
Full textReports on the topic "Energy cycle"
Ruegg, Rosalie T. Life-cycle costing for energy conservation in buildings:. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4129.
Full textRuegg, Rosalie T., and Stephen R. Petersen. Life-cycle costing for energy conservation in buildings:. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4130.
Full textLittlefield, James, Joe Marriott, and Timothy J. Skone. Using Life Cycle Analysis to Inform Energy Policy. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1526310.
Full textRuegg, Rosalie T., and Stephen R. Petersen. Life-cycle costing for energy conservation in buildings:. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4778.
Full textTwomey, Janet M. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/991642.
Full textOh, C. H. Energy Conversion Advanced Heat Transport Loop and Power Cycle. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/911672.
Full textCoughlin, Katie. Projections of Full-Fuel-Cycle Energy and Emissions Metrics. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1169484.
Full textFuller, Sieglinde K., and Stephen R. Petersen. Life-cycle costing workshop for energy conservation in buildings:. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5165-1.
Full textSwaminathan, S., N. F. Miller, and R. K. Sen. Battery energy storage systems life cycle costs case studies. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/291017.
Full textSan Martin, Robert L. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/860643.
Full text