Academic literature on the topic 'Energy dispersive spectrometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy dispersive spectrometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy dispersive spectrometry"
Lund, Mark W. "More Than One Ever Wanted To Know About X-ray Detectors Part V: Wavelength - The "Other" Spectroscopy." Microscopy Today 3, no. 4 (May 1995): 8–9. http://dx.doi.org/10.1017/s1551929500063537.
Full textMichael, J. R. "Energy Dispersive Spectrometry in the AEM." Microscopy and Microanalysis 4, S2 (July 1998): 186–87. http://dx.doi.org/10.1017/s143192760002105x.
Full textRitchie, N., J. Davis, and D. Newbury. "Energy Dispersive Spectrometry at Wavelength Precision." Microscopy and Microanalysis 17, S2 (July 2011): 556–57. http://dx.doi.org/10.1017/s1431927611003655.
Full textSteel, E. B., R. B. Marinenko, and R. L. Myklebust. "Quality Assurance of Energy Dispersive Spectrometry Systems." Microscopy and Microanalysis 3, S2 (August 1997): 903–4. http://dx.doi.org/10.1017/s1431927600011405.
Full textSteel, E. B., and R. B. Marinenko. "Quality Assurance of Energy Dispersive Spectrometry Systems." Microscopy and Microanalysis 4, S2 (July 1998): 214–15. http://dx.doi.org/10.1017/s143192760002119x.
Full textYao, Min, Dongyue Wang, and Min Zhao. "Element Analysis Based on Energy-Dispersive X-Ray Fluorescence." Advances in Materials Science and Engineering 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/290593.
Full textVartuli, C. B., F. A. Stevie, B. M. Purcell, A. Scwhitter, B. Rossie, S. Brown, T. L. Shofner, S. D. Anderson, J. M. McKinley, and R. B. Irwin. "Energy Dispersive Spectrometry Calibration of Fe and Co." Microscopy and Microanalysis 7, S2 (August 2001): 200–201. http://dx.doi.org/10.1017/s1431927600027070.
Full textRitchie, Nicholas W. M., and Dale E. Newbury. "Uncertainty Propagation for Energy Dispersive X-ray Spectrometry." Microscopy and Microanalysis 24, S1 (August 2018): 708–9. http://dx.doi.org/10.1017/s1431927618004038.
Full textWollman, D. A., Dale E. Newbury, G. C. Hilton, K. D. Irwin, D. A. Rudman, L. L. Dulcie, N. F. Bergren, and John M. Martinis. "Microcalorimeter Energy Dispersive Spectrometry for Low Voltage SEM." Microscopy and Microanalysis 5, S2 (August 1999): 304–5. http://dx.doi.org/10.1017/s1431927600014847.
Full textLifshin, Eric, Necip Doganaksoy, Jane Sirois, and Raynald Gauvin. "Statistical Considerations in Microanalysis by Energy-Dispersive Spectrometry." Microscopy and Microanalysis 4, no. 6 (December 1998): 598–604. http://dx.doi.org/10.1017/s1431927698980576.
Full textDissertations / Theses on the topic "Energy dispersive spectrometry"
Kasemodel, Carlos A. "Quantitative energy dispersive x-ray spectrometry using an Emispec Vision system." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA374498.
Full text"December 1999". Thesis advisor(s): Alan G. Fox, James Luscombe. Includes bibliographical references (p. 69-70). Also available online.
Menendez-Alonso, Elena. "Trace metal and speciation analysis using ion-exchange and energy dispersive X-ray fluorescence spectrometry." Thesis, University of Plymouth, 2000. http://hdl.handle.net/10026.1/896.
Full textPEÑAFIEL, MARLIN JEANNETTE PEDROZO. "DETERMINATION OF SILICON AND ALUMINUM IN CRUDE OIL USING ENERGY DISPERSIVE X-RAY FLUORESCENCE SPECTROMETRY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33880@1.
Full textA determinação de diferentes níveis de silício e alumínio em petróleo é importante porque pequenas quantidades destes elementos podem produzir efeitos adversos nas refinarias devido à corrosão de equipamento ou afetar a qualidade dos produtos refinados. A espectrometria de fluorescência de raios-X por dispersão de energia (EDXRF) foi utilizada para desenvolver um método para a determinação de Si e Al em petróleo, onde estes elementos se encontram principalmente sob a forma de partículas sólidas de aluminossilicatos dispersas na amostra. Uma vez que os analitos não puderam ser determinados sem interferência diretamente no óleo, a fusão das amostras de petróleo foi realizada utilizando tetraborato de lítio. Em seguida, as amostras fundidas foram colocadas no centro de papéis de filtro de 10 mm de diâmetro, que foi colocado entre duas folhas de filme de polipropileno, para então ser fixado à cubeta para as medições no instrumento. A quantificação foi feita por meio de curvas analíticas no intervalo de concentração de 0 a 40 mg kg(-1) (para ambos os elementos) no material fundido final. O método desenvolvido, não sofreu interferência matriz uma vez que as amostras foram completamente decompostas e, posteriormente secas no substrato. Os resultados para os elementos foram estatisticamente comparáveis com os obtidos por espectrometria de absorção atômica com chama (FAAS). Além disso, os resultados concordaram com os obtidos nas amostras de programas de proficiência da ASTM. Amostras reais de petróleo, fornecidas pela Petrobras, também foram analisadas. As recuperações alcançadas se encontram entre 71 e 100 por cento para as diferentes amostras, o qual pode ser considerado satisfatório devido à dificuldade em se determinar esses elementos. Os limites de quantificação (10 vezes o desvio-padrão, n=10) encontrados para o Si e Al no petróleo foram de 0,7 e 1,1 mg kg(-1), respectivamente, mostrando o potencial do método proposto para a determinação de amostras com valores mais elevados destes elementos.
It is important to determine silicon and aluminum at different levels in crude oils because of trace amounts of these elements may produce adverse effects in oil refining either by causing corrosion or by contaminating and affecting the quality of the refined products. Energy dispersive X-ray fluorescence spectrometry (EDXRF) was used to enable a reliable method for determination of Si and Al in crude oil, where these elements are found mainly in the form of solid aluminosilicate particles dispersed in the sample. Since the analytes could not be determined directly in the oil without interference, the fusing the crude oil samples was made using lithium tetraborate. Then, the fused samples were placed in the center of 10 mm diameter filter paper that were sandwiched between two polypropylene film foils and attached to the instrument cell for measurements. Quantification was made by using analytical curves in the concentration range from 0 to 40 mg kg (-1) (for both elements) in the final fused material. The method developed did not suffer from matrix effect once the sample matrix was completely decomposed and the sample solution dried in the substrate before measurements. The results for the elements were statistically comparable to the ones obtained by flame atomic absorption spectrometry (FAAS). In addition, for proficiency test samples, the results were in accordance to the ones reported by ASTM proficiency programs. Real samples of oil provided by Petrobras Company also were analyzed. Recoveries were achieved between 71 and 100 percent for different samples, which can be considerable satisfactory because of the difficulty in determine those elements. The limits of quantification (10 times the standard deviation. N = 10) found for silicon and aluminum in the oil were of 0.7 and 1.1 mg kg (-1), respectively, showing the potential of the proposed method to screen for samples with higher amounts of these elements.
Van, Loggerenberg Daniël Elhardus. "Important trace element concentrations in ovine liver as determined by energy dispersive handheld X-ray fluorescence spectrometry." Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/65518.
Full textDissertation (MSc)--University of Pretoria, 2016.
Paraclinical Sciences
MSc
Unrestricted
CRUZ, ALEX RUBEN HUAMAN DE LA. "DETERMINATION OF IRON IN IRON ORE BY ENERGY DISPERSIVE X‐RAY FLUORESCENCE SPECTROMETRY: A COMPARATIVE STUDY OF METROLOGICAL PERFORMANCE AND ECONOMIC IMPACT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22183@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
O ferro é extraído sob a forma de minério de ferro, sendo 99 por cento utilizado na indústria siderúrgica. Os documentos normativos existentes indicam a volumetria como à técnica analítica para quantificar o teor de ferro em minério de ferro, com exceção da ISO 9516-1: 2003, que, recomenda a espectrometria de fluorescência de raios-X por comprimento de onda (WDXRF). Na literatura são descritos estudos utilizando a espectrometria de fluorescência de raios-X por dispersão de energia (EDXRF) para quantificar ferro em minério de ferro, mas em nenhuma destas publicações é caracterizada a confiabilidade metrológica e a incerteza de medição, sendo outros aspectos importantes na seleção de um método analítico o impacto económico e tempo de análise. No presente trabalho realizou-se um estudo comparativo de impacto económico, tempo de análise e desempenho metrológico na quantificação de ferro em minério de ferro por meio da técnica de EDXRF, comparando-o com a espectrofotometria de absorção molecular e volumetria (titulação com dicromato de potássio), abrangendo a incerteza de medição e a avaliação de parâmetros de validação para EDXRF. A análise volumétrica foi realizado baseado nas normas ANBT NBR 8577:2011 e ASTM E246:2010. Na espectrofotometria de absorção molecular, adaptou-se o método da ortofenantrolina descrito na norma ABNT NBR 13934:1997. Nas outras técnicas precisam-se da abertura da amostra, na EDXRF, as amostras foram preparadas na forma de pastilha (pó de minério prensado). Os métodos avaliados apresentaram desempenhos metrológicos equivalentes, os melhores indicadores de custo e tempo em longo prazo foram observados para o método por EDXRF na quantificação do teor de ferro em minério.
After its extraction in the form of iron ore, 99 per cent of the iron is employed in the steel industry. The normative documents existents recommend to volumetry as the technical analytic for quantification of iron in iron ore, with the exception of ISO 9516-1: 2003, which recommends the fluorescence spectrometry X-ray wavelength (WDXRF). In literature, there are studies using energy dispersive Xray fluorescence spectrometry (EDXRF) to quantify iron in iron ore, but none of these is characterized by complete validation and measurement uncertainty. Other aspects to be considered when selecting an analytical method are the financial cost and the time for analysis. In this work it is carried out a comparative study of financial cost, time analysis and metrological performance on quantification of iron ore through the EDXRF technique, in comparison with the results obtained by molecular absorption spectrophotometry and volumetry (titration with potassium dichromate), including measurement uncertainty evaluation and some parameter of validation for EDXRF. The molecular absorption spectrophotometry measurements were performed by colorimetric orthophenanthroline method. Unlike the other approaches that require sample preparation with acid, for EDXRF measurements, samples were prepared in tablet form (pressed iron ore powder). The evaluated methods presented equivalent metrological performances on determining iron in ore, but the best long-term outcome for cost was observed in the results obtained by EDXRF method.
Mhiri, Akram. "Elaborations, caractérisations et études spectroscopiques des composés hybrides organiques-inorganiques R2SnBr6 avec R=N(CH3)4 et R=N(CH3-CH2)4." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1032.
Full textThis work is part of a research project that aims to synthesize and characterize new organic-inorganic hybrid materials that can be used in the manufacture of photovoltaic cells, but with less polluting elements than the compounds currently proposed. For this we have developed and studied two new compounds based on tin : bis tetramethylammonium hexabromostannate ([N(CH₃)₄]₂SnBr₆), and bis-tetraethylammonium hexabromostannate ([CH₃-CH₂]₄SnBr₆). The experimental studies are based on thermal measurements (ATD, DSC, ATG), energy dispersion spectrometry (EDX), powder and single crystal X-ray diffraction, vibrational spectrometries (infrared and Raman), complex impedance spectrometry, and UV-Visible spectrometry.It appeared that [N(CH₃)₄]₂SnBr₆ is of cubic symmetry of the K₂PtCl₆ type. It consists of unconnected SnBr₆²- octahedra, separated by tetramethylammoniums, which can be considered to be derived from a perovskite structure in which half of the sites of octahedral symmetry are occupied by SnBr₆²- and half by vacancies (perovskite structure 0D). This arrangement thus leaves very large volumes free of any atom, and we have even shown that it has infinite open channels of large section (0,5 nm in diameter) ; it can thus be considered as a porous material. The vibrational analyzes coupled with ab-initio calculations on the SnBr₆²- octahedron and the tetramethylammonium ion (TMA+) made it possible to unambiguously explain the spectra and to conclude to the existence of local disorder. Infrared, Raman and EDX signals also suggest the presence of OH- or water, probably related to the porous structure. It has been shown that the compound undergoes a reversible phase transition at a higher temperature (around 100°C). Vibrational studies confirm the phase transition, as do studies of dielectric properties. The gap (2,31 eV) is close to the width of the 2,7 eV forbidden band of the Cs₂SnBr₆ semiconductor used in solar cells.Bis-tetraethylammonium hexabromostannate [CH₃-CH₂]₄SnBr₆ at room temperature exhibits a (rhombohedral) structure also composed of non-connected SnBr₆²- octahedra, but of compact structural arrangement, unlike the compound with TMA. Its temperature study reveals two reversible transitions but with strong hysteresis at 262K / 239K and at 362K / 307K (heating / cooling). Its gap energy is equal to 2,51 eV
Krummenauer, Alex. "Desenvolvimento e validação de metodologia analítica para análise de aços por espectrometria de fluorescência de raios X por dispersão de energia (EDXRF)." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/178232.
Full textThe development and validation of analytical methods is a required procedure when a non-standard method is used by a testing laboratory. Method validation is also a specific requirement of the ABNT NBR ISO / IEC 17025, which determines the general requirements for the competence of testing and calibration laboratories. The purpose of validation is to demonstrate that the analytical method, under the conditions in which it is performed, produces results with the required accuracy. The Corrosion, Protection and Recycling Materials Laboratory (LACOR), at UFRGS, has the X-ray fluorescence metal analysis, accredited by CGCRE / INMETRO, according to ABNT NBR ISO / IEC 17025. The test is performed using Energy Dispersive X-Ray Fluorescence spectrometry, EDXRF method. This method, however, is not standardized; therefore, it was validated in this research to meet this requirement. The validation was based on the DOQ-CGCRE-08 document and the EURACHEM guide. The method performance calculated in this study for quantitative testing by EDXRF are: selectivity; limit of detection (LOD) and limit of quantification (LOQ); linearity and working range; trueness (bias, normalized error, Z-score and comparison with reference method) and precision (repeatability, intermediate precision and reproducibility). In addition, a measurement uncertainty calculation methodology was developed for the EDXRF testing The results obtained in this study demonstrate that the EDXRF method, used in the determination in the chemical analysis of steels, is a validated non-standard method and compatible with the results obtained with the reference methods: Wavelength Dispersive X-Ray Fluorescence spectrometry (WDXRF), photometric and atomic absorption spectrometry (AAS). In addition, WDXRF is a reference method used in many international standards, which describes analysis of steels by X-ray fluorescence spectrometry such ASTM E572 or ASTM E1085. The study developed in this dissertation allowed LACOR to maintain its accreditation in the test of metal by X-ray fluorescence analysis, in the CGCRE / INMETRO audit, this year. Other fruits of this work were the preparation of calibration curves of NITON XL3t GOLDD + spectrometer and complete revision of testing procedure, where this new knowledge about the EDXRF technique was applied. In the future, this work can be used by other researchers to develop studies in other base metals such as copper, aluminum, titanium or nickel, and also in other areas of application such as jewelry, recycling of metallic materials or even for analysis elemental residues retained in ion exchange membranes.
Wasserbauer, Jaromír. "Mechanické vlastnosti mikrostrukturních komponent anorganických materiálů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-233368.
Full textKosár, Petr. "Modifikace povrchu pokročilých hořčíkových slitin povlaky na bázi Ni-P." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2017. http://www.nusl.cz/ntk/nusl-367534.
Full textDemers, Hendrix. "Two facets of the x-ray microanalysis at low voltage: the secondary fluorescence x-rays emission and the microcalorimeter energy-dispersive spectrometer." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21993.
Full textPour la microanalyse par rayons X avec un microscope électronique à balayage (MEB), la meilleure résolution spatiale est obtenue à bas voltage. Cependant, la microanalyse par rayons X a été développée pour des grandes énergies du faisceau d'électrons (plus grandes que 10 keV). De plus, les échantillons analysés contiennent souvent des éléments légers et moyens. L'analyste va devoir utiliser un mélange de pics de rayons X K, L et parfois M pour la microanalyse par rayons X. Avec un aussi grand nombre de pics, l'émission de fluorescence secondaire de rayons X par des interactions K-L et L-K est inévitable. La précision des modèles de correction de la fluorescence utilisés présentement n'est pas bien quantifiée pour ces types d'interactions. Les modifications apportées, dans le cadre de ce travail, aux modèles de correction de la fluorescence améliorent la précision des résultats de la microanalyse pour les interactions K-L et L-K. L'équation générale dérivée dans ce travail permet l'identification de trois facteurs qui influencent l'émission de fluorescence secondaire de rayons X. Le facteur de production de fluorescence est utilisé pour prédire l'importance de l'émission de fluorescence de rayons X. Une grande valeur de ce facteur indique que la correction de fluorescence est nécessaire. Un autre désavantage d'utiliser une basse tension est le chevauchement des pics de rayons X qui se produit plus fréquemment. Un nouvel instrument de microanalyse qui combine une grande résolution spatiale et une grande résolution en énergie pour la détection des rayons X est nécessaire. Un spectromètre microcalorimétrique à dispersion d'énergie des rayons X (uEDS) devrait améliorer la microanalyse à basse tension, mais la maturité de cette technologie doit être évaluée. L'un des premiers spectromètre uEDS commercial pour la microanalyse par rayons X dans un MEB est étudié et analysé dans ce travail. Cet uEDS commercial$
Books on the topic "Energy dispersive spectrometry"
Kasemodel, Carlos A. Quantitative energy dispersive x-ray spectrometry using an Emispec Vision system. Monterey, Calif: Naval Postgraduate School, 1999.
Find full textItaly) European Conference on Energy Dispersive X-Ray Spectrometry (1998 Bologna. Proceedings of the European Conference on Energy Dispersive X-Ray Spectrometry 1998: EDXRS-98 : San Giovanni in Monte, Bologna, Italy, 7-12 June 1998. Bologna: Compositori, 1999.
Find full textSeverin, Kenneth P. Energy Dispersive Spectrometry of Common Rock Forming Minerals. Springer, 2013.
Find full textEnergy Dispersive Spectrometry of Common Rock Forming Minerals. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2841-0.
Full textQuantitative Energy Dispersive X-Ray Spectrometry Using an Emispec Vision System. Storming Media, 1999.
Find full textBook chapters on the topic "Energy dispersive spectrometry"
Potts, P. J. "Energy dispersive x-ray spectrometry." In A Handbook of Silicate Rock Analysis, 286–325. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-3270-5_9.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "Energy-Dispersive X-Ray Spectrometry." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 207–12. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_34.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "Energy-Dispersive X-Ray Spectrometry." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 27–32. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_5.
Full textPotts, P. J. "Energy dispersive x-ray spectrometry." In A Handbook of Silicate Rock Analysis, 286–325. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-015-3988-3_9.
Full textJoy, D. C. "Modeling the Energy Dispersive X-Ray Detector." In X-Ray Spectrometry in Electron Beam Instruments, 53–65. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1825-9_5.
Full textMorita, Masaki. "Scanning Electron Microscope Energy Dispersive X-Ray Spectrometry." In Compendium of Surface and Interface Analysis, 557–61. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_90.
Full textHeinrich, K. F. J. "The Development of Energy Dispersive Electron Probe Analysis." In X-Ray Spectrometry in Electron Beam Instruments, 1–6. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1825-9_1.
Full textRickerby, David G. "Barriers to Energy Dispersive Spectrometry with Low Energy X-Rays." In Microbeam and Nanobeam Analysis, 493–500. Vienna: Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-6555-3_43.
Full textBrydson, Rik, and Nicole Hondow. "Electron Energy Loss Spectrometry and Energy Dispersive X-ray Analysis." In Aberration-Corrected Analytical Transmission Electron Microscopy, 163–210. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119978848.ch7.
Full textGoldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott, and David C. Joy. "Qualitative Elemental Analysis by Energy Dispersive X-Ray Spectrometry." In Scanning Electron Microscopy and X-Ray Microanalysis, 265–87. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_18.
Full textConference papers on the topic "Energy dispersive spectrometry"
Angloher, Godehard, Michael Altmann, Matthias Buehler, Franz von Feilitzsch, Theo Hertrich, Paul Hettl, Jens Hoehne, et al. "Cryogenic microcalorimeters for high-resolution energy-dispersive x-ray spectrometry." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Oswald H. W. Siegmund and Kathryn A. Flanagan. SPIE, 1999. http://dx.doi.org/10.1117/12.366543.
Full textDemarest, James, Chris Deeb, Thomas Murray, and Hong-Ying Zhai. "Energy-Dispersive X-ray Spectrometry Performance on Multiple Transmission Electron Microscope Platforms." In ISTFA 2010. ASM International, 2010. http://dx.doi.org/10.31399/asm.cp.istfa2010p0301.
Full textSoares, Luís Eduardo Silva, Sídnei Nahorny, Fernanda Roberta Marciano, Hudson Zanin, and Anderson de Oliveira Lobo. "Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials." In SPIE Biophotonics South America, edited by Cristina Kurachi, Katarina Svanberg, Bruce J. Tromberg, and Vanderlei S. Bagnato. SPIE, 2015. http://dx.doi.org/10.1117/12.2180965.
Full textSong, JunLei, ZhiHeng Yang, Jing Cai, XiaoYong Ni, DianHong Wang, Xing Jin, WenQin Mo, KaiFeng Dong, and Fang Jin. "Qualitative Elemental Analysis of Minerals Based on Energy Dispersive X - ray Fluorescence Spectrometry." In 2018 37th Chinese Control Conference (CCC). IEEE, 2018. http://dx.doi.org/10.23919/chicc.2018.8483065.
Full textHoehne, Jens, Michael Altmann, Godehard Angloher, Matthias Buehler, Franz v. Feilitzsch, Torsten Frank, Paul Hettl, et al. "Cryogenic microcalorimeters and tunnel junctions for high-resolution energy dispersive x-ray spectrometry." In Microelectronic Manufacturing Technologies, edited by Kostas Amberiadis, Gudrun Kissinger, Katsuya Okumura, Seshu Pabbisetty, and Larg H. Weiland. SPIE, 1999. http://dx.doi.org/10.1117/12.346911.
Full textMohsen, H. T., N. F. Zahran, and A. I. Helal. "Quantitative Elemental Analysis of Biological Samples by Energy Dispersive X-ray Fluorescence Spectrometry." In MODERN TRENDS IN PHYSICS RESEARCH: Second International Conference on Modern Trends in Physics Research MTPR-06. AIP, 2007. http://dx.doi.org/10.1063/1.2711132.
Full textNewbury, Dale E., and Nicholas W. M. Ritchie. "Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS)." In SPIE Defense, Security, and Sensing. SPIE, 2012. http://dx.doi.org/10.1117/12.912770.
Full textHughes, Louise. "Energy dispersive x-ray spectrometry identifies wear particles and reveals protein accumulation in tissue-biomaterial interactions." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.165.
Full textBogani, Federica, and Priyanka Dobriyal. "Development of Small Spot Thickness Capability on a Conventional Energy Dispersive X-Ray Fluorescence Spectrometer." In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0378.
Full text"Determination of barium content in pyrotechnics used for fireworks and firecrackers based on Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF)." In 2017 International Conference on Materials, Energy, Civil Engineering and Computer. Francis Academic Press, 2017. http://dx.doi.org/10.25236/matecc.2017.01.
Full textReports on the topic "Energy dispersive spectrometry"
Zuccarelli, N., C. M. Lesher, M. G. Houlé, and S. J. Barnes. Variations in the textural facies of sulphide minerals in the Eagle's Nest Ni-Cu-(PGE) deposit, McFaulds Lake greenstone belt, Superior Province, Ontario: insights from microbeam scanning energy-dispersive X-ray fluorescence spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/326895.
Full textPringle, G. J. Eddi: a Fortran Computer Program To Produce Corrected Microprobe Analyses of minerals using An Energy Dispersive X-ray Spectrometer. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/130786.
Full text