Academic literature on the topic 'Energy Efficient Machine Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy Efficient Machine Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy Efficient Machine Learning"
Masikos, Michail, Michael Theologou, Konstantinos Demestichas, and Evgenia Adamopoulou. "Machine-learning methodology for energy efficient routing." IET Intelligent Transport Systems 8, no. 3 (2014): 255–65. http://dx.doi.org/10.1049/iet-its.2013.0006.
Full textShanthi, D., and Ashwani Kumar. "Energy Efficient NoC design through Supervised Machine Learning." Journal of Physics: Conference Series 1998, no. 1 (2021): 012002. http://dx.doi.org/10.1088/1742-6596/1998/1/012002.
Full textZhang, Huanhuan, Jigeng Li, and Mengna Hong. "Machine Learning-Based Energy System Model for Tissue Paper Machines." Processes 9, no. 4 (2021): 655. http://dx.doi.org/10.3390/pr9040655.
Full textOh, Myeung Suk, Gibum Kim, and Hyuncheol Park. "Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems." Journal of Korean Institute of Electromagnetic Engineering and Science 27, no. 5 (2016): 407–15. http://dx.doi.org/10.5515/kjkiees.2016.27.5.407.
Full textMoayedi, Hossein, Dieu Tien Bui, Anastasios Dounis, Zongjie Lyu, and Loke Kok Foong. "Predicting Heating Load in Energy-Efficient Buildings Through Machine Learning Techniques." Applied Sciences 9, no. 20 (2019): 4338. http://dx.doi.org/10.3390/app9204338.
Full textAbebe, Misganaw, Yongwoo Shin, Yoojeong Noh, Sangbong Lee, and Inwon Lee. "Machine Learning Approaches for Ship Speed Prediction towards Energy Efficient Shipping." Applied Sciences 10, no. 7 (2020): 2325. http://dx.doi.org/10.3390/app10072325.
Full textIlager, Shashikant, Kotagiri Ramamohanarao, and Rajkumar Buyya. "Thermal Prediction for Efficient Energy Management of Clouds Using Machine Learning." IEEE Transactions on Parallel and Distributed Systems 32, no. 5 (2021): 1044–56. http://dx.doi.org/10.1109/tpds.2020.3040800.
Full textPlazinski, Wojciech, Anita Plazinska, and Agnieszka Brzyska. "Efficient sampling of high-energy states by machine learning force fields." Physical Chemistry Chemical Physics 22, no. 25 (2020): 14364–74. http://dx.doi.org/10.1039/d0cp01399d.
Full textKang, Mingu, Prakalp Srivastava, Vikram Adve, Nam Sung Kim, and Naresh R. Shanbhag. "An Energy-Efficient Programmable Mixed-Signal Accelerator for Machine Learning Algorithms." IEEE Micro 39, no. 5 (2019): 64–72. http://dx.doi.org/10.1109/mm.2019.2929502.
Full textClay, James, Naveena Elango, Sheena Ratnam Priya, Shixiong Jiang, and Ramalingam Sridhar. "Energy-efficient and reliable in-memory classifier for machine-learning applications." IET Computers & Digital Techniques 13, no. 6 (2019): 443–52. http://dx.doi.org/10.1049/iet-cdt.2019.0040.
Full textDissertations / Theses on the topic "Energy Efficient Machine Learning"
Azmat, Freeha. "Machine learning and energy efficient cognitive radio." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/85990/.
Full textGarcía-Martín, Eva. "Extraction and Energy Efficient Processing of Streaming Data." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15532.
Full textLe, Borgne Yann-Aël. "Learning in wireless sensor networks for energy-efficient environmental monitoring." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210334.
Full textYurur, Ozgur. "Energy Efficient Context-Aware Framework in Mobile Sensing." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4797.
Full textZayene, Mariem. "Cooperative data exchange for wireless networks : Delay-aware and energy-efficient approaches." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0033/document.
Full textKheffache, Mansour. "Energy-Efficient Detection of Atrial Fibrillation in the Context of Resource-Restrained Devices." Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76394.
Full textZorello, Ligia Maria Moreira. "Dynamic CPU frequency scaling using machine learning for NFV applications." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-30012019-100044/.
Full textGuss, Herman, and Linus Rustas. "Applying Machine Learning Algorithms for Anomaly Detection in Electricity Data : Improving the Energy Efficiency of Residential Buildings." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415507.
Full textSeeker, Volker Günter. "User experience driven CPU frequency scaling on mobile devices : towards better energy efficiency." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29583.
Full textCollard, Sophie. "Assessing and Predicting the Impact of Energy Conservation Measures Using Smart Meter Data." Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150352.
Full textBooks on the topic "Energy Efficient Machine Learning"
Zein, André. Transition Towards Energy Efficient Machine Tools. Springer Berlin Heidelberg, 2012.
Find full textZein, André. Transition Towards Energy Efficient Machine Tools. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32247-1.
Full textErtekin, Şeyda. Algorithms for efficient learning systems: Online and active learning approaches. VDM Verlag Dr. Müller, 2009.
Find full textApproximation methods for efficient learning of Bayesian networks. IOS Press, 2008.
Find full textAronsson, Stefan. Learning from experiences with energy efficient lighting in commercial buildings. Centre for the Analysis and Dissemination of Demonstrated Energy Technologies, CADDET Analysis Support Unit, 1991.
Find full textMagoulès, Frédéric, and Hai-Xiang Zhao. Data Mining and Machine Learning in Building Energy Analysis. John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118577691.
Full textMathur, Puneet. IoT Machine Learning Applications in Telecom, Energy, and Agriculture. Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5549-0.
Full textTomar, Anuradha, Hasmat Malik, Pramod Kumar, and Atif Iqbal, eds. Machine Learning, Advances in Computing, Renewable Energy and Communication. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2354-7.
Full textPathak, Manas A. Privacy-Preserving Machine Learning for Speech Processing. Springer New York, 2013.
Find full textBook chapters on the topic "Energy Efficient Machine Learning"
Berral, Josep Ll, Iñigo Goiri, Ramon Nou, et al. "Toward Energy-Aware Scheduling Using Machine Learning." In Energy-Efficient Distributed Computing Systems. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118342015.ch8.
Full textHanif, Muhammad Abdullah, Rehan Hafiz, Muhammad Usama Javed, Semeen Rehman, and Muhammad Shafique. "Energy-Efficient Design of Advanced Machine Learning Hardware." In Machine Learning in VLSI Computer-Aided Design. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04666-8_21.
Full textZhang, Tong, Gang Wang, Ruofei Zhou, Yikun Zou, and Mingchuan Yang. "Energy Efficient Communication of Fuel-Powered UAV Relay, Design of Positions and Power Allocation." In Machine Learning and Intelligent Communications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66785-6_52.
Full textReddy, V. Dinesh, G. R. Gangadharan, G. S. V. R. K. Rao, and Marco Aiello. "Energy-Efficient Resource Allocation in Data Centers Using a Hybrid Evolutionary Algorithm." In Machine Learning for Intelligent Decision Science. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3689-2_4.
Full textLiu, Xin, Xueyan Zhang, Weidang Lu, and Mudi Xiong. "Energy Efficiency Maximization for Green Cognitive Internet of Things with Energy Harvesting." In Machine Learning and Intelligent Communications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32388-2_24.
Full textWang, Xi, Xiangbin Yu, Tao Teng, and Guangying Wang. "Energy-Efficient Power Allocation Scheme Based on Discrete-Rate Adaptive Modulation in Distributed Antenna System." In Machine Learning and Intelligent Communications. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00557-3_29.
Full textBhatt, Varun, and Udayan Ganguly. "Sparsity Enables Data and Energy Efficient Spiking Convolutional Neural Networks." In Artificial Neural Networks and Machine Learning – ICANN 2018. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01418-6_26.
Full textPal, R. K., Parveen Goyal, and Shankar Sehgal. "Thermal Performance of Natural Insulation Materials for Energy Efficient Buildings." In Artificial Intelligence, Machine Learning, and Data Science Technologies. CRC Press, 2021. http://dx.doi.org/10.1201/9781003153405-9.
Full textKachris, Christoforos, Elias Koromilas, Ioannis Stamelos, Georgios Zervakis, Sotirios Xydis, and Dimitrios Soudris. "Energy-Efficient Acceleration of Spark Machine Learning Applications on FPGAs." In Hardware Accelerators in Data Centers. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92792-3_5.
Full textNafis, Md Tabrez, Aksa Urooj, and Siddhartha Sankar Biswas. "Recent Machine Learning and Internet of Things (IoT) Applications for Personalized Healthcare: Issues and Challenges." In Sustainable and Energy Efficient Computing Paradigms for Society. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51070-1_7.
Full textConference papers on the topic "Energy Efficient Machine Learning"
Kumar, Mohit, Xingzhou Zhang, Liangkai Liu, Yifan Wang, and Weisong Shi. "Energy-Efficient Machine Learning on the Edges." In 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2020. http://dx.doi.org/10.1109/ipdpsw50202.2020.00153.
Full textCurtis-Maury, Matthew, Karan Singh, Sally A. McKee, et al. "Identifying energy-efficient concurrency levels using machine learning." In 2007 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2007. http://dx.doi.org/10.1109/clustr.2007.4629274.
Full textLata, Sonam, and Shabana Mehfuz. "Machine Learning based Energy Efficient Wireless Sensor Network." In 2019 International Conference on Power Electronics, Control and Automation (ICPECA). IEEE, 2019. http://dx.doi.org/10.1109/icpeca47973.2019.8975526.
Full textKim, Hyunjoo, Annette Stumpf, and Richard Schneider. "Developing Energy Efficient Building Design in Machine Learning." In 27th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2010. http://dx.doi.org/10.22260/isarc2010/0053.
Full textVenkataramani, Swagath, Anand Raghunathan, Jie Liu, and Mohammed Shoaib. "Scalable-effort classifiers for energy-efficient machine learning." In DAC '15: The 52nd Annual Design Automation Conference 2015. ACM, 2015. http://dx.doi.org/10.1145/2744769.2744904.
Full textHao Yu. "Energy efficient VLSI circuits for machine learning on-chip." In 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2017. http://dx.doi.org/10.1109/vlsi-dat.2017.7939671.
Full textMao, Wei, Zhihua Xiao, Peng Xu, et al. "Energy-Efficient Machine Learning Accelerator for Binary Neural Networks." In GLSVLSI '20: Great Lakes Symposium on VLSI 2020. ACM, 2020. http://dx.doi.org/10.1145/3386263.3407582.
Full textImes, Connor, Steven Hofmeyr, and Henry Hoffmann. "Energy-efficient Application Resource Scheduling using Machine Learning Classifiers." In ICPP 2018: 47th International Conference on Parallel Processing. ACM, 2018. http://dx.doi.org/10.1145/3225058.3225088.
Full textMa, Tian-yi, Zhi-qiang Li, and Jun Yang. "A Novel Neural Network Search for Energy-Efficient Hardware-Software Partitioning." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258365.
Full textMurthy, Akshay, Curtis Green, Radu Stoleru, Suman Bhunia, Charles Swanson, and Theodora Chaspari. "Machine Learning-based Irrigation Control Optimization." In BuildSys '19: The 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. ACM, 2019. http://dx.doi.org/10.1145/3360322.3360854.
Full textReports on the topic "Energy Efficient Machine Learning"
Burlig, Fiona, Christopher Knittel, David Rapson, Mar Reguant, and Catherine Wolfram. Machine Learning from Schools about Energy Efficiency. National Bureau of Economic Research, 2017. http://dx.doi.org/10.3386/w23908.
Full textHeinz, M. Improving High-Energy Particle Detectorswith Machine Learning. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1670544.
Full textSmith, Justin, Nicholas Lubbers, Aidan Thompson, and Kipton Barros. Simple and efficient algorithms for training machine learning potentials to force data. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1763572.
Full textArumugam, Kamesh. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1422715.
Full textMueller, Juliane. Machine Learning to Enable Efficient Uncertainty Quantification, Data Assimilation, and Informed Data Acquisition. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769743.
Full textAngerami, Aaron, Piyush Karande, Wojtek Fedorko, et al. Machine Learning for Pion Identification and Energy Calibration with the ATLAS Detector. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1638440.
Full textKnittel, Christopher, and Samuel Stolper. Using Machine Learning to Target Treatment: The Case of Household Energy Use. National Bureau of Economic Research, 2019. http://dx.doi.org/10.3386/w26531.
Full textChang, Chihway, Alex Drlica-Wagner, Brian Nord, Donah, Michelle Wang, and Michael H. L. S. Wang. A Machine Learning Approach to the Detection of Ghosting Artifacts in Dark Energy Survey Images. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1594126.
Full textKarali, Nihan, Won Young Park, and Michael A. McNeil. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1372638.
Full textFan, Jiwen, Zhangshuan Hou, Paul O'Gorman, et al. Develop a weather-aware climate model to understand and predict extremes and associated power outages and renewable energy shortageswith uncertainty-aware and physics-informed machine learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769695.
Full text