Journal articles on the topic 'Energy gradients'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Energy gradients.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chittur K, Subramaniam, Aishwarya Chandran, Ashwini Khandelwal, and Sivakumar A. "Energy Conversion using electrolytic concentration gradients." MRS Proceedings 1774 (2015): 51–62. http://dx.doi.org/10.1557/opl.2015.758.
Full textLiu, Chang Song, Dong Mei Zheng, Ji Gen Zhou, Yong Wan, and Zhi Wen Li. "Fabrication of Surface Energy Gradients Using Self-Assembled Monolayer Surfaces Prepared by Photodegradation." Materials Science Forum 688 (June 2011): 102–6. http://dx.doi.org/10.4028/www.scientific.net/msf.688.102.
Full textKauffman, Louis H. "Following Knots down Their Energy Gradients." Symmetry 4, no. 2 (2012): 276–84. http://dx.doi.org/10.3390/sym4020276.
Full textBaysal, K., D. W. Jung, K. K. Gunter, T. E. Gunter, and G. P. Brierley. "Na(+)-dependent Ca2+ efflux mechanism of heart mitochondria is not a passive Ca2+/2Na+ exchanger." American Journal of Physiology-Cell Physiology 266, no. 3 (1994): C800—C808. http://dx.doi.org/10.1152/ajpcell.1994.266.3.c800.
Full textHashimoto, Kenro, and Yoshihiro Osamura. "Orbital exponent optimization for molecular self-consistent-field wave functions including the polarization function." Canadian Journal of Chemistry 70, no. 2 (1992): 547–54. http://dx.doi.org/10.1139/v92-077.
Full textEremeyev, Victor A. "Local material symmetry group for first- and second-order strain gradient fluids." Mathematics and Mechanics of Solids 26, no. 8 (2021): 1173–90. http://dx.doi.org/10.1177/10812865211021640.
Full textZachariassen, K., A. Olsen, and T. Aunaas. "The effect of formaldehyde exposure on the transmembrane distribution of free amino acids in muscles of Mytilus edulis." Journal of Experimental Biology 199, no. 6 (1996): 1287–94. http://dx.doi.org/10.1242/jeb.199.6.1287.
Full textKitaura, Kazuo, Sin-Ichirou Sugiki, Tatsuya Nakano, Yuto Komeiji, and Masami Uebayasi. "Fragment molecular orbital method: analytical energy gradients." Chemical Physics Letters 336, no. 1-2 (2001): 163–70. http://dx.doi.org/10.1016/s0009-2614(01)00099-9.
Full textKishore, Ravi Anant, Brenton Davis, Jake Greathouse, et al. "Energy scavenging from ultra-low temperature gradients." Energy & Environmental Science 12, no. 3 (2019): 1008–18. http://dx.doi.org/10.1039/c8ee03084g.
Full textChang, Hyung-Kwan, Eunpyo Choi, and Jungyul Park. "Paper-based energy harvesting from salinity gradients." Lab on a Chip 16, no. 4 (2016): 700–708. http://dx.doi.org/10.1039/c5lc01232e.
Full textKlaus, Manuela, and Christoph Genzel. "Nondestructive separation of residual stress and composition gradients in thin films by angle- and energy-dispersive X-ray diffraction. I. Theoretical concepts." Journal of Applied Crystallography 50, no. 1 (2017): 252–64. http://dx.doi.org/10.1107/s1600576716020598.
Full textGeorge, N. T., S. Sponberg, and T. L. Daniel. "Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta." Journal of Experimental Biology 215, no. 3 (2012): 471–79. http://dx.doi.org/10.1242/jeb.062901.
Full textTulloch, Ross, and K. Shafer Smith. "Quasigeostrophic Turbulence with Explicit Surface Dynamics: Application to the Atmospheric Energy Spectrum." Journal of the Atmospheric Sciences 66, no. 2 (2009): 450–67. http://dx.doi.org/10.1175/2008jas2653.1.
Full textBoamah, Mavis D., Emilie H. Lozier, Jeongmin Kim, et al. "Energy conversion via metal nanolayers." Proceedings of the National Academy of Sciences 116, no. 33 (2019): 16210–15. http://dx.doi.org/10.1073/pnas.1906601116.
Full textLutsko, Nicholas J., and Max Popp. "The Influence of Meridional Gradients in Insolation and Longwave Optical Depth on the Climate of a Gray Radiation GCM." Journal of Climate 31, no. 19 (2018): 7803–22. http://dx.doi.org/10.1175/jcli-d-18-0103.1.
Full textSidhardh, Sai, and Manas C. Ray. "Exact solutions for elastic response in micro- and nano-beams considering strain gradient elasticity." Mathematics and Mechanics of Solids 24, no. 4 (2018): 895–918. http://dx.doi.org/10.1177/1081286518761182.
Full textThomas, Jared J., Pieter MO Gebraad, and Andrew Ning. "Improving the FLORIS wind plant model for compatibility with gradient-based optimization." Wind Engineering 41, no. 5 (2017): 313–29. http://dx.doi.org/10.1177/0309524x17722000.
Full textHsu, Wei-Shan, Anant Preet, Tung-Yi Lin, and Tzu-En Lin. "Miniaturized Salinity Gradient Energy Harvesting Devices." Molecules 26, no. 18 (2021): 5469. http://dx.doi.org/10.3390/molecules26185469.
Full textSodano, Henry A., Garnett E. Simmers, Remi Dereux, and Daniel J. Inman. "Recharging Batteries using Energy Harvested from Thermal Gradients." Journal of Intelligent Material Systems and Structures 18, no. 1 (2006): 3–10. http://dx.doi.org/10.1177/1045389x06063906.
Full textKaduk, Benjamin, Takashi Tsuchimochi, and Troy Van Voorhis. "Analytic energy gradients for constrained DFT-configuration interaction." Journal of Chemical Physics 140, no. 18 (2014): 18A503. http://dx.doi.org/10.1063/1.4862497.
Full textLee, Timothy J. "Theory for externally contracted configuration interaction energy gradients." Journal of Chemical Physics 87, no. 5 (1987): 2825–31. http://dx.doi.org/10.1063/1.453070.
Full textKozaki, Masatoshi, Shuichi Suzuki, and Keiji Okada. "Dendritic Light-harvesting Antennas with Excitation Energy Gradients." Chemistry Letters 42, no. 10 (2013): 1112–18. http://dx.doi.org/10.1246/cl.130654.
Full textSoleimani, Soheil, E. Ghasemi, and M. A. Almas. "Effects of Pressure Gradients on Energy Dissipation Coefficient." Journal of Advanced Thermal Science Research 1, no. 2 (2015): 71–77. http://dx.doi.org/10.15377/2409-5826.2014.01.02.6.
Full textMoser, André, Metin Erd, Milos Kostic, Keith Cobry, Michael Kroener, and Peter Woias. "Thermoelectric Energy Harvesting from Transient Ambient Temperature Gradients." Journal of Electronic Materials 41, no. 6 (2012): 1653–61. http://dx.doi.org/10.1007/s11664-011-1894-4.
Full textRice, J. E., and R. D. Amos. "On the efficient evaluation of analytic energy gradients." Chemical Physics Letters 122, no. 6 (1985): 585–90. http://dx.doi.org/10.1016/0009-2614(85)87275-4.
Full textWilliams, Ian, Sangyoon Lee, Azzurra Apriceno, Richard P. Sear, and Giuseppe Battaglia. "Diffusioosmotic and convective flows induced by a nonelectrolyte concentration gradient." Proceedings of the National Academy of Sciences 117, no. 41 (2020): 25263–71. http://dx.doi.org/10.1073/pnas.2009072117.
Full textMinetti, A. E., L. P. Ardigò, and F. Saibene. "Mechanical determinants of the minimum energy cost of gradient running in humans." Journal of Experimental Biology 195, no. 1 (1994): 211–25. http://dx.doi.org/10.1242/jeb.195.1.211.
Full textWalenta, Stefan, Stacey Snyder, Zishan A. Haroon, et al. "Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model." International Journal of Radiation Oncology*Biology*Physics 51, no. 3 (2001): 840–48. http://dx.doi.org/10.1016/s0360-3016(01)01700-x.
Full textDewhirst, M. W., S. Walenta, S. Snyder, W. Mueller-Klieser, R. Braun, and B. Chance. "Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model." International Journal of Radiation Oncology*Biology*Physics 48, no. 3 (2000): 131–32. http://dx.doi.org/10.1016/s0360-3016(00)80059-0.
Full textLi, Rong, and Jun Xiong. "Role of substrate shape on thermal energy transmission in robotized wire and arc additive manufacturing." Rapid Prototyping Journal 25, no. 7 (2019): 1285–94. http://dx.doi.org/10.1108/rpj-10-2018-0277.
Full textLam, D. C. C., and A. C. M. Chong. "Characterization and modeling of specific strain gradient modulus of epoxy." Journal of Materials Research 16, no. 2 (2001): 558–63. http://dx.doi.org/10.1557/jmr.2001.0080.
Full textYuval, Janni, and Yohai Kaspi. "The Effect of Vertical Baroclinicity Concentration on Atmospheric Macroturbulence Scaling Relations." Journal of the Atmospheric Sciences 74, no. 5 (2017): 1651–67. http://dx.doi.org/10.1175/jas-d-16-0277.1.
Full textZeller, Christian, Binu Surendran, and Micheal F. Zaeh. "Parameterized Extended Finite Element Method for high thermal gradients." Journal of Computational Design and Engineering 5, no. 3 (2017): 329–36. http://dx.doi.org/10.1016/j.jcde.2017.12.001.
Full textBardall, Aaron, Shih-Yuan Chen, Karen E. Daniels, and Michael Shearer. "Gradient-induced droplet motion over soft solids." IMA Journal of Applied Mathematics 85, no. 3 (2020): 495–512. http://dx.doi.org/10.1093/imamat/hxaa015.
Full textKotoul, Michal, and Petr Skalka. "Applicability of the Critical Energy Release Rate for Predicting the Growth of a Crack in Nanoscale Materials Applying the Strain Gradient Elasticity Theory." Key Engineering Materials 754 (September 2017): 185–88. http://dx.doi.org/10.4028/www.scientific.net/kem.754.185.
Full textGULITSKI, G., M. KHOLMYANSKY, W. KINZELBACH, B. LÜTHI, A. TSINOBER, and S. YORISH. "Velocity and temperature derivatives in high- Reynolds-number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives." Journal of Fluid Mechanics 589 (October 8, 2007): 103–23. http://dx.doi.org/10.1017/s0022112007007513.
Full textLi, Zheng, and Gerald H. Pollack. "Surface-induced flow: A natural microscopic engine using infrared energy as fuel." Science Advances 6, no. 19 (2020): eaba0941. http://dx.doi.org/10.1126/sciadv.aba0941.
Full textStenrup, Michael, Roland Lindh, and Ignacio Fdez. Galván. "Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation." Journal of Computational Chemistry 36, no. 22 (2015): 1698–708. http://dx.doi.org/10.1002/jcc.23987.
Full textYip, Ngai Yin, Doriano Brogioli, Hubertus V. M. Hamelers, and Kitty Nijmeijer. "Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects." Environmental Science & Technology 50, no. 22 (2016): 12072–94. http://dx.doi.org/10.1021/acs.est.6b03448.
Full textBreitzman, Timothy, and Kaushik Dayal. "Bond-level deformation gradients and energy averaging in peridynamics." Journal of the Mechanics and Physics of Solids 110 (January 2018): 192–204. http://dx.doi.org/10.1016/j.jmps.2017.09.015.
Full textJiao, Yanmei, Chun Yang, and Yuejun Kang. "Energy Conversion from Salinity Gradients by Forward Osmosis–Electrokinetics." Journal of Physical Chemistry C 118, no. 20 (2014): 10574–83. http://dx.doi.org/10.1021/jp412032b.
Full textWerpetinski, Katrina S., and Michael Cook. "Grid-free density-functional technique with analytical energy gradients." Physical Review A 52, no. 5 (1995): R3397—R3400. http://dx.doi.org/10.1103/physreva.52.r3397.
Full textAnatole von Lilienfeld, O. "Accurate ab initio energy gradients in chemical compound space." Journal of Chemical Physics 131, no. 16 (2009): 164102. http://dx.doi.org/10.1063/1.3249969.
Full textOrtiz, J. V. "Total energies and energy gradients in electron propagator theory." International Journal of Quantum Chemistry 44, S26 (1992): 1–11. http://dx.doi.org/10.1002/qua.560440805.
Full textWu, Qin, Aron J. Cohen, and Weitao Yang. "Analytic energy gradients of the optimized effective potential method." Journal of Chemical Physics 123, no. 13 (2005): 134111. http://dx.doi.org/10.1063/1.1989310.
Full textBurgos, Pierre, Zhenyu Zhang, Ramin Golestanian, Graham J. Leggett, and Mark Geoghegan. "Directed Single Molecule Diffusion Triggered by Surface Energy Gradients." ACS Nano 3, no. 10 (2009): 3235–43. http://dx.doi.org/10.1021/nn900991r.
Full textSigrist, Lukas, Naomi Stricker, Dominic Bernath, Jan Beutel, and Lothar Thiele. "Thermoelectric Energy Harvesting From Gradients in the Earth Surface." IEEE Transactions on Industrial Electronics 67, no. 11 (2020): 9460–70. http://dx.doi.org/10.1109/tie.2019.2952796.
Full textHoffmann, Mark R., and Jack Simons. "Analytical energy gradients for a unitary coupled-cluster theory." Chemical Physics Letters 142, no. 6 (1987): 451–54. http://dx.doi.org/10.1016/0009-2614(87)80642-5.
Full textWegner, Lars H. "A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient." Functional Plant Biology 42, no. 9 (2015): 828. http://dx.doi.org/10.1071/fp15077.
Full textMirzaali, Nava, Gunashekar, Nouri-Goushki, Doubrovski, and Zadpoor. "Fracture Behavior of Bio-Inspired Functionally Graded Soft–Hard Composites Made by Multi-Material 3D Printing: The Case of Colinear Cracks." Materials 12, no. 17 (2019): 2735. http://dx.doi.org/10.3390/ma12172735.
Full text