Academic literature on the topic 'Energy Harvesting Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy Harvesting Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy Harvesting Systems"
Uchino, Kenji. "Piezoelectric Energy Harvesting Systems." Journal of Physics: Conference Series 1052 (July 2018): 012002. http://dx.doi.org/10.1088/1742-6596/1052/1/012002.
Full textAmbrożkiewicz, Bartłomiej, and Aasifa Rounak. "ENERGY HARVESTING – NEW GREEN ENERGY." Journal of Technology and Exploitation in Mechanical Engineering 8, no. 1 (November 4, 2022): 1–7. http://dx.doi.org/10.35784/jteme.3054.
Full textAljadiri, Rita T., Luay Y. Taha, and Paul Ivey. "Electrostatic Energy Harvesting Systems: A Better Understanding of Their SustainabilityElectrostatic Energy Harvesting Systems: A Better Understanding of Their Sustainability." Journal of Clean Energy Technologies 5, no. 5 (September 2017): 409–16. http://dx.doi.org/10.18178/jocet.2017.5.5.407.
Full textAzevedo, Joaquim, and Jorge Lopes. "Energy harvesting from hydroelectric systems for remote sensors." AIMS Energy 4, no. 6 (2016): 876–93. http://dx.doi.org/10.3934/energy.2016.6.876.
Full textMinasian, Arin, Shahram ShahbazPanahi, and Raviraj S. Adve. "Energy Harvesting Cooperative Communication Systems." IEEE Transactions on Wireless Communications 13, no. 11 (November 2014): 6118–31. http://dx.doi.org/10.1109/twc.2014.2320977.
Full textLiang, Junrui, and Wei-Hsin Liao. "Energy flow in piezoelectric energy harvesting systems." Smart Materials and Structures 20, no. 1 (December 2, 2010): 015005. http://dx.doi.org/10.1088/0964-1726/20/1/015005.
Full textDai, Quanqi, Inhyuk Park, and Ryan L. Harne. "Impulsive energy conversion with magnetically coupled nonlinear energy harvesting systems." Journal of Intelligent Material Systems and Structures 29, no. 11 (April 23, 2018): 2374–91. http://dx.doi.org/10.1177/1045389x18770860.
Full textGordón, Carlos, Fabián Salazar, Cristina Gallardo, and Julio Cuji. "Storage Systems for Energy Harvesting Applications." IOP Conference Series: Earth and Environmental Science 1141, no. 1 (February 1, 2023): 012009. http://dx.doi.org/10.1088/1755-1315/1141/1/012009.
Full textGhasemi, Fatemeh, and Magnus Jahre. "Modeling Periodic Energy-Harvesting Computing Systems." IEEE Computer Architecture Letters 20, no. 2 (July 1, 2021): 142–45. http://dx.doi.org/10.1109/lca.2021.3117031.
Full textGunduz, Deniz, Kostas Stamatiou, Nicolo Michelusi, and Michele Zorzi. "Designing intelligent energy harvesting communication systems." IEEE Communications Magazine 52, no. 1 (January 2014): 210–16. http://dx.doi.org/10.1109/mcom.2014.6710085.
Full textDissertations / Theses on the topic "Energy Harvesting Systems"
Elmes, John. "MAXIMUM ENERGY HARVESTING CONTROL FOROSCILLATING ENERGY HARVESTING SYSTEMS." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3400.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Barker, Simon Keith. "Resilient energy harvesting systems." Thesis, University of Newcastle Upon Tyne, 2012. http://hdl.handle.net/10443/1434.
Full textAlrowaijeh, Jamal Salem. "Fluidic Energy Harvesting and Sensing Systems." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96241.
Full textPHD
López, Suárez Miquel. "Non-linear nanoelectromechanical systems for energy harvesting." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/283731.
Full textErkal, Hakan. "Optimization Of Energy Harvesting Wireless Communication Systems." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613937/index.pdf.
Full textMoser, Clemens. "Power management in energy harvesting embedded systems." Aachen Shaker, 2009. http://d-nb.info/994883013/04.
Full textGindullina, Elvina. "Sustainable Management of Energy-Harvesting Communication Systems." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423306.
Full textI sistemi IoT si sono massivamenti entrati nella vita quotidiana per varie applicazioni. Uno dei principali vincoli che inibiscono l'ulteriore sviluppo di queste applicazioni è l'autonomia limitata delle batterie attuali. Inoltre, la sostenibilità energetica è un requisito cruciale per i sistemi impiegati in applicazioni mission-critical. Un approccio ampiamente utilizzato per aumentare l'autonomia dei sistemi IoT è l'uso di fonti energetiche rinnovabili come solare, eolico, termico e altri per alimentare i dispositivi. Ad esempio, una delle soluzioni più diffuse per i nodi di sensori wireless è l'uso di pannelli solari, che possono fornire un ragionevole input di energia. La loro efficienza è determinata dal materiale del pannello che definisce l'efficienza di conversione. Le fonti energetiche rinnovabili sono troppo irregolari per garantire la completa affidabilità del sistema se non sovradimensionate. In realtà, l'approvvigionamento energetico è spesso limitato, il che causa la necessità di adattamento della strategia operativa del nodo per garantire l'affidabilità funzionale del sistema. Tuttavia, la natura inaffidabile delle energie rinnovabili provoca diverse sfide, che affrontiamo in questo lavoro. In particolare, questa tesi studia l'effetto delle imperfezioni della batteria causate dai processi di diffusione interna della batteria sul funzionamento del dispositivo wireless per la raccolta di energia e strategie efficaci di bilanciamento dell'energia per diversi scenari e tipi di sistema. Proponiamo 1) la strategia di trasmissione, che tiene conto delle proprietà della batteria (perdite, recupero della carica, scarica profonda, ecc.) E riduce le perdite di dati e gli eventi di scarica; 2) algoritmi di campionamento adattivo, che bilanciano gli arrivi irregolari di energia, validati sul data logger industriale alimentato da un pannello solare; e 3) cooperazione energetica in contesti WSN e Smart City. Ci concentriamo anche su sistemi IoT di missione critica, in cui la freschezza dei pacchetti consegnati al nodo di monitoraggio da parte delle fonti di informazione (nodi di comunicazione) è il parametro importante da tracciare. In questo contesto, fissiamo l'obiettivo dell'età della minimizzazione delle informazioni tenendo conto dei vincoli della batteria, dell'asimmetria nell'affidabilità delle fonti di informazione e della stabilità degli arrivi di energia, ovvero della velocità di raccolta dell'energia. Questa serie di strategie copre una vasta gamma di applicazioni, scenari e requisiti. Ad esempio, possono essere applicati a una città intelligente rappresentata come un grande sistema di servizi intelligenti interconnessi o come WSN impiegato per applicazioni mission-critical. Abbiamo dimostrato che la conoscenza della batteria e delle caratteristiche ambientali e le proprietà asimmetriche di un sistema sono utili per la progettazione di strategie di trasmissione / rilevamento.
Persson, Erik. "Energy Harvesting in Wireless Sensor Networks." Thesis, Uppsala universitet, Signaler och System, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388006.
Full textStevens, Amy L. "Energy transfer processes in supramolecular light-harvesting systems." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:43833f3a-96b0-432a-9608-8f08a9096be7.
Full textThomas, Michael Brandon. "Donor-Acceptor Systems: Photochemistry and Energy Harvesting Applications." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703335/.
Full textBooks on the topic "Energy Harvesting Systems"
Kaźmierski, Tom J., and Steve Beeby, eds. Energy Harvesting Systems. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7566-9.
Full textBlokhina, Elena, Abdelali El Aroudi, Eduard Alarcon, and Dimitri Galayko, eds. Nonlinearity in Energy Harvesting Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20355-3.
Full textYlli, Klevis, and Yiannos Manoli. Energy Harvesting for Wearable Sensor Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4448-8.
Full textKaźmierski, Tom J. Energy Harvesting Systems: Principles, Modeling and Applications. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textC, Onar Omer, ed. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.
Find full textKhaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: CRC Press, 2010.
Find full textKhaligh, Alireza. Energy harvesting: Solar, wind, and ocean energy conversion systems. Boca Raton: Taylor & Francis, 2010.
Find full textDi Paolo Emilio, Maurizio. Microelectronic Circuit Design for Energy Harvesting Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47587-5.
Full textInnovative materials and systems for energy harvesting applications. Hershey, PA: Engineering Science Reference, 2015.
Find full textBook chapters on the topic "Energy Harvesting Systems"
In, Visarath, and Antonio Palacios. "Energy Harvesting." In Understanding Complex Systems, 295–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55545-3_8.
Full textDauksevicius, Rolanas, and Danick Briand. "Energy Harvesting." In Material-Integrated Intelligent Systems - Technology and Applications, 479–528. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527679249.ch21.
Full textZhu, Dibin, and Steve Beeby. "Kinetic Energy Harvesting." In Energy Harvesting Systems, 1–77. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7566-9_1.
Full textKázmierski, Tom J., and Leran Wang. "Modelling, Performance Optimisation and Automated Design of Mixed-Technology Energy Harvester Systems." In Energy Harvesting Systems, 79–101. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7566-9_2.
Full textHaase, Jan, Joseph Wenninger, Christoph Grimm, and Jiong Ou. "Simulation of Ultra-Low Power Sensor Networks." In Energy Harvesting Systems, 103–40. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7566-9_3.
Full textHerndl, Thomas. "Remote Sensing of Car Tire Pressure." In Energy Harvesting Systems, 141–59. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7566-9_4.
Full textAhmad, Shafeeq, Md Toufique Alam, Mohammad Bilal, Osama Khan, and Mohd Zaheen Khan. "Analytical Modelling of HVAC-IoT Systems with the Aid of UVGI and Solar Energy Harvesting." In Energy Harvesting, 65–80. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003218760-3.
Full textDe Marqui, Carlos. "Piezoelectric Energy Harvesting." In Dynamics of Smart Systems and Structures, 267–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_11.
Full textDespesse, Ghislain, Jean Jacques Chaillout, Sébastien Boisseau, and Claire Jean-Mistral. "Mechanical Energy Harvesting." In Energy Autonomous Micro and Nano Systems, 115–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561836.ch5.
Full textCaroff, Tristan, Emmanuelle Rouvière, and Jérôme Willemin. "Thermal Energy Harvesting." In Energy Autonomous Micro and Nano Systems, 153–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118561836.ch6.
Full textConference papers on the topic "Energy Harvesting Systems"
Elmes, John, Venceslav Gaydarzhiev, Adje Mensah, Khalid Rustom, John Shen, and Issa Batarseh. "Maximum Energy Harvesting Control for Oscillating Energy Harvesting Systems." In 2007 IEEE Power Electronics Specialists Conference. IEEE, 2007. http://dx.doi.org/10.1109/pesc.2007.4342461.
Full textSingh, Nitin, Pankaj Dayama, Sukanya Randhawa, Kalyan Dasgupta, Manikandan Padmanaban, Shivkumar Kalyanaraman, and Jagabondhu Hazra. "Photonic Energy Harvesting." In e-Energy '17: The Eighth International Conference on Future Energy Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3077839.3077857.
Full textRabaey, J., F. Burghardt, D. Steingart, M. Seeman, and P. Wright. "Energy Harvesting - A Systems Perspective." In 2007 IEEE International Electron Devices Meeting. IEEE, 2007. http://dx.doi.org/10.1109/iedm.2007.4418947.
Full textDavronbekov, D. A., U. T. Aliev, J. D. Isroilov, X. F. Alimdjanov, and B. I. Akhmedov. "Integrated Solutions Energy Harvesting Systems." In 2020 International Conference on Information Science and Communications Technologies (ICISCT). IEEE, 2020. http://dx.doi.org/10.1109/icisct50599.2020.9351518.
Full textSample, A., D. Yeager, J. Smith, P. Powledge, and A. Mamishev. "Energy Harvesting in RFID Systems." In 2006 International Conference on Actual Problems of Electron Devices Engineering. IEEE, 2006. http://dx.doi.org/10.1109/apede.2006.307453.
Full textPatil, Akshay, Mayur Jadhav, Shreyas Joshi, Elton Britto, and Apurva Vasaikar. "Energy harvesting using piezoelectricity." In 2015 International Conference on Energy Systems and Applications. IEEE, 2015. http://dx.doi.org/10.1109/icesa.2015.7503403.
Full textKarthik, G., S. Ajay, and K. J. Jegadishkumar. "Harvesting the RF energy." In 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2011. http://dx.doi.org/10.1109/comcas.2011.6105809.
Full textFarhangdoust, Saman, Gary E. Georgeson, and Jeong-Beom Ihn. "MetaSub piezoelectric energy harvesting." In Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, edited by Kerrie Gath and Norbert G. Meyendorf. SPIE, 2020. http://dx.doi.org/10.1117/12.2559331.
Full textMeyer, Johannes, Hilko Meyer, and Gerd von Colln. "An Energy Measurement System for Characterization of Energy Harvesting Systems." In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2018. http://dx.doi.org/10.1109/etfa.2018.8502628.
Full textYang Ge, Yukan Zhang, and Qinru Qiu. "Improving energy efficiency for energy harvesting embedded systems." In 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC 2013). IEEE, 2013. http://dx.doi.org/10.1109/aspdac.2013.6509645.
Full textReports on the topic "Energy Harvesting Systems"
Ely, Roger, Catherine Page, and David Kehoe. Engineered, Solid-State Processes for Enhanced Biosolar Hydrogen Production and Exploitation of Solar Energy with Tailored Light-Harvesting Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada581276.
Full textLin, Yirong. Additive Manufacturing of Energy Harvesting Material System for Active Wireless MEMS Sensors. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1755669.
Full textZhang, Qiming, and Heath Hogmann. Harvesting Electric Energy During Walking With a Backpack: Physiological, Ergonomic, Biomechanical, and Electromechanical Materials, Devices, and System Considerations. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada428873.
Full textVermillion, Christopher. Final Technical Report: Device Design and Periodic Motion Control of an Ocean Kite System for Hydrokinetic Energy Harvesting. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1959041.
Full textNicholson, Claire, Jonathan Wastling, Peter Gregory, and Paul Nunn. FSA Science Council Working Group 6 Food Safety and Net Zero Carbon July 2022 Interim Report. Food Standards Agency, July 2022. http://dx.doi.org/10.46756/sac.fsa.vxz377.
Full textSystems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet). Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/971095.
Full text