Academic literature on the topic 'Energy modeling and optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy modeling and optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy modeling and optimization"
Tovar-Facio, Javier, Mariano Martín, and José María Ponce-Ortega. "Sustainable energy transition: modeling and optimization." Current Opinion in Chemical Engineering 31 (March 2021): 100661. http://dx.doi.org/10.1016/j.coche.2020.100661.
Full textMaleki, Akbar. "Modeling and optimization of energy systems." Journal of Thermal Analysis and Calorimetry 144, no. 5 (April 15, 2021): 1635–38. http://dx.doi.org/10.1007/s10973-021-10782-7.
Full textXiao, Dong, Xiao-li Pan, Yong Yuan, Zhi-zhong Mao, and Fu-li Wang. "Modeling and optimization for piercing energy consumption." Journal of Iron and Steel Research International 16, no. 2 (February 2009): 40–44. http://dx.doi.org/10.1016/s1006-706x(09)60025-x.
Full textVera, J., and F. Urbina. "Modeling the decentralized optimization of communicative energy." EPL (Europhysics Letters) 131, no. 6 (October 13, 2020): 68002. http://dx.doi.org/10.1209/0295-5075/131/68002.
Full textEvans, R. J., and P. D. Franzon. "Energy consumption modeling and optimization for SRAM's." IEEE Journal of Solid-State Circuits 30, no. 5 (May 1995): 571–79. http://dx.doi.org/10.1109/4.384170.
Full textLiu, Pei, Dimitrios I. Gerogiorgis, and Efstratios N. Pistikopoulos. "Modeling and optimization of polygeneration energy systems." Catalysis Today 127, no. 1-4 (September 30, 2007): 347–59. http://dx.doi.org/10.1016/j.cattod.2007.05.024.
Full textKusiak, Andrew, Mingyang Li, and Fan Tang. "Modeling and optimization of HVAC energy consumption." Applied Energy 87, no. 10 (October 2010): 3092–102. http://dx.doi.org/10.1016/j.apenergy.2010.04.008.
Full textYin, Yonghua. "OPTIMUM ENERGY FOR ENERGY PACKET NETWORKS." Probability in the Engineering and Informational Sciences 31, no. 4 (April 9, 2017): 516–39. http://dx.doi.org/10.1017/s0269964817000067.
Full textBansal, Manoj. "Optimization Modelling for Renewable Energy Resources based Distribution Generation." Revista Gestão Inovação e Tecnologias 11, no. 3 (June 30, 2021): 1510–19. http://dx.doi.org/10.47059/revistageintec.v11i3.2027.
Full textBryan, Lisk, John Collett, and Robert Walters. "Smart Modeling for Water Distribution System Energy Optimization." Proceedings of the Water Environment Federation 2016, no. 10 (January 1, 2016): 3174–81. http://dx.doi.org/10.2175/193864716819707788.
Full textDissertations / Theses on the topic "Energy modeling and optimization"
Craft, David (David Loren) 1973. "Local energy management through mathematical modeling and optimization." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28858.
Full textIncludes bibliographical references (p. 217-223).
(cont.) Extensions to the core TOTEM model include a demand charge model, used for making daily optimal control decisions when the electric bill includes a charge based on the monthly maximum power draw. The problem of heating, ventilation, and air conditioning (HVAC) control is treated separately since it strongly violates TOTEM's linearity assumptions. Nonetheless, we describe a solution approach to the HVAC problem which operates in conjunction with TOTEM. We also provide an analysis of storage suitability in stochastic supply and demand networks. The node-based approach lends itself well to a software system that uses a drag- and-drop graphical network creation tool. We present a graphical user interface, the XML data representation, and the communication links to and from optimization software.
We develop an extensive yet tractable framework for analyzing and optimally controlling local energy networks. A local energy network is any set of generation, storage, and end-use devices existing to provide energy fulfillment to a building, a group of jointly operated buildings, or a village power system. The software developed is called TOTEM for Total Energy Management, and provides hourly (or sub-hourly) control over the flows in such energy networks. TOTEM manages multiple energy flows such as electricity, chilled water, heat, and steam together, since such energies are often coupled, particularly for networks containing cogeneration turbines (which produce electricity and steam) and absorption chillers (which use steam for driving refrigeration turbines). Due to the large number of interconnected devices in such networks, the model is kept as a linear mixed integer program, able to be solved rapidly with off-the-shelf mathematical optimization packages. Certain nonlinearities, for example input-output relationships for generators, are handled in this linear framework with piecewise linear approximations. Modeling flexibility is achieved by taking a node-centric approach. Each device in the network is represented as a node, and depending on each node's set membership, proper constraint and objective equations are written. Given the network, TOTEM uses hourly electricity and fuel pricing, weather, and demand projections to determine the optimal operating and scheduling strategy for the day, in both deterministic and stochastic settings. MIT's cogeneration plant is used as a case study, with other examples throughout the thesis demonstrate the use of TOTEM for assessing and controlling renewable resources, storage options, and
by David Craft.
Ph.D.
Xie, Liguang. "Modeling and Optimization of Rechargeable Sensor Networks." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/52243.
Full textPh. D.
Geidl, Martin. "Integrated modeling and optimization of multi-carrier energy systems /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17141.
Full textAri, Seckin. "Intelligent modeling of individual thermal comfort and energy optimization." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.
Full textYaoumi, Mohamed. "Energy modeling and optimization of protograph-based LDPC codes." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0224.
Full textThere are different types of error correction codes (CCE), each of which gives different trade-offs interms of decoding performanceand energy consumption. We propose to deal with this problem for Low-Density Parity Check (LDPC) codes. In this work, we considered LDPC codes constructed from protographs together with a quantized Min-Sum decoder, for their good performance and efficient hardware implementation. We used a method based on Density Evolution to evaluate the finite-length performance of the decoder for a given protograph.Then, we introduced two models to estimate the energy consumption of the quantized Min-Sum decoder. From these models, we developed an optimization method in order to select protographs that minimize the decoder energy consumption while satisfying a given performance criterion. The proposed optimization method was based on a genetic algorithm called differential evolution. In the second part of the thesis, we considered a faulty LDPC decoder, and we assumed that the circuit introduces some faults in the memory units used by the decoder. We then updated the memory energy model so as to take into account the noise in the decoder. Therefore, we proposed an alternate method in order to optimize the model parameters so as to minimize the decoder energy consumption for a given protograph
Angulo, Ignacio. "Harvester Energy Modelling and Optimization." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192131.
Full textThis report is the result of the Master of Science thesis project developed for KTH Royal Institute of Technology in collaboration with the Forestry Research Institute of Sweden (Skogforsk) for the Forestry Master Thesis School 2016. The purpose is to analyze the tree cutting process of a harvester machine, optimize the energy consumption and propose modifications to the system of components if applicable. A study on the energy usage of a harvester head was performed based on test data gathered by Skogforsk, providing insight about the performance of the hydraulic motor Parker F11-19 when cutting different tree diameters and quantifying the amount of energy used on each part of the harvester head. Hydraulic and mechanical models of the head were built using Hopsan and Simulink, respectively. These models were used for the verification of the optimizations proposed. The results from this research study are four optimization solutions for a harvester head. The first suggestion is to use an accumulator for kinetic energy recovery in the feeding rollers, which will contribute with a reduction in energy consumption of 6.85%. The second suggestion is to optimize the saw’s cylinder position, which did not provide any improvements. The third suggestion is a redesign of the delimbing knives, which will reduce the energy consumption with 2.72%. And the final suggestion is to use an alternative motor that requires less power, which will result in a significant decrease of energy consumption by 28.4%. In total, the changes suggested will result in a reduction of the energy consumption by 37.9%. The results are theoretical and further testing in practice is needed in order to assess the veracity of the results.
Calle, Laguna Alvaro Jesus. "Isolated Traffic Signal Optimization Considering Delay, Energy, and Environmental Impacts." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74238.
Full textMaster of Science
Mergulhao, Vasco. "Innovation and Optimization of Energy Systems in the Temporary Entertainment Events Industry : Modeling & Optimization of temporary energy systems." Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263612.
Full textEn ny syn på energisystem för tillfällig underhållning (TEEI) är under utveckling. En karaktärisering av sammanhanget för det senare och dess energisystem har varit fokus i denna studie. Utgående från utvecklingen av den aktuella studien, modellering av tillfälliga energisystem i TEEI, levereras ett verktyg för bedömning av prestandan hos dessa system på en nivå av analytisk detaljering som tidigare inte fanns i branschen. I avsaknad av tidigare litteratur om ämnet har state-of-the-art modelleringstekniker från området för småskaligt polygenerationssystem använts för att utveckla ett anpassat tillvägagångssätt för modellering av tillfälliga energisystem. En integrerad strategi för design, syntes och driftoptimering (IDSOO) har anpassats i en MILPmodell (Mixed Integer Linear Programing) och kontextualiserats för TEEI. Dessutom har ett anpassat tillvägagångssätt utvecklats för behandling och komprimering av mätningar av faktiska energibehov i en separat optimeringsalgoritm definierad med avseende på begränsningarna och prioriteringarna i det givna sammanhanget. Modellen har utvecklats för att tillgodose utvärderingen av de mål som fastställts av Festival Vision 2025- pantsättningen. Som sedan tillämpas i en fallstudiehändelse i Storbritannien (Storbritannien), med över 50 000 besökare under en period av fyra dagar. Förutom utvärderingen av de uppsatta målen skapas ytterligare två scenarier för att bättre utforska till den fulla potentialen för den för närvarande utvecklade metodiken. Först har en integrerad systemansats och dess fördelar utvärderats för att motverka den etablerade praxisen att isolera evenemangets energi-delsystem. För det andra analyseras effekterna av den rådande osäkerheten om energibehov i TEEI och dess typiska preferens för systemdesign med alltör generösa säkerhetsmarginaler i ett hypotetiskt men ändå representativt scenario. Slutligen, med tanke på studiens banbrytande karaktär, har en lista gjorts med de mest relevanta framtida studieämnen som visat sig ge de främsta fördelarna för TEEI. Sammanfattningsvis har det visat sig att det verkar finnas mer potential än man tidigare trott för förbättring av prestandan i TEEI: s nuvarande energisystem. Det visas att även när optimerade och isolerade generatorbaserade system i vissa fall oundvikligen kommer att drabbas av oönskade driftsförhållanden och därmed demonstreras gränserna för den nuvarande praxisen och teknikvalet. Trots det konstaterades att, åtminstone för den givna fallstudien, Festival Vision 2025 målsättningarna på medellång sikt kan uppnås även om man endast använder sig av optimeringen av de nuvarande dieselbaserade systemen, vilket återinför behovet av bättre planering och design av energisystem. I slutändan drogs slutsatsen att den utvecklade modellen uppfyller målet att representera TEEI: s energisystem till en ny detaljnivå och att den, eller liknande verktyg, skulle kunna användas för att kvantifiera och underbygga konsekvenserna av branschens miljömål för dess energisystem.
DeLuca, Christopher. "Numerical Modeling and Optimization of Mechanically Active Electrochemical Systems." Thesis, University of Colorado at Boulder, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3592275.
Full textThis work is primarily motivated by the hope that Silicon (Si) can be utilized in Lithium (Li) ion batteries to enable an order of magnitude capacity increase if Li-Si systems can be better understood. In order to create a valuable tool that could be used to study a wide range of problem, pertinent physical models were implemented in an extended finite element method (XFEM) framework written in c++. One of the major contribution of this work goes to the battery modeling community, by generalizing several existing electrochemical-mechanical models which use a small deformation approximations so they can accommodate finite deformation. A general theory which can be used to guide the development of new finite element models is presented in detail. This work also contributes new finite element modeling tools with novel predictive capabilities to the battery modeling community, which will hopefully facilitate the design and optimization of next generation battery micro-structures. Studies within demonstrate that small deformation approximation models can produce incorrect predictions about the behavior of Li-Si systems, supporting the case for using finite deformation models. The developed tools are used to demonstrate that arbitrary geometries can easily be simulated on a the same fixed grid, facilitating automated geometry studies including parameter sweeping and topology optimization.
Bao, Wenlei. "Compiler Techniques for Transformation Verification, Energy Efficiency and Cache Modeling." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524073563586939.
Full textBooks on the topic "Energy modeling and optimization"
Wei, Wei, and Jianhui Wang. Modeling and Optimization of Interdependent Energy Infrastructures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-25958-7.
Full textŞahin, Arzu Şencan. Modeling and optimization of renewable energy systems. Rijeka: InTech, 2012.
Find full textKnopf, F. Carl. Modeling, Analysis and Optimization of Process and Energy Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118121160.
Full textAthienitis, Andreas, and William O'Brien, eds. Modeling, Design, and Optimization of Net-Zero Energy Buildings. Berlin, Germany: Wilhelm Ernst & Sohn, 2015. http://dx.doi.org/10.1002/9783433604625.
Full textModeling, analysis, and optimization of process and energy systems. Hoboken, N.J: Wiley, 2012.
Find full textSpreemann, Dirk. Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization. Dordrecht: Springer Netherlands, 2012.
Find full textGuzzella, Lino. Vehicle Propulsion Systems: Introduction to Modeling and Optimization. 3rd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textYao, David D., Xun Yu Zhou, and Hanqin Zhang. Stochastic Modeling and Optimization. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21757-4.
Full textPötzsche, Christian, Clemens Heuberger, Barbara Kaltenbacher, and Franz Rendl, eds. System Modeling and Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45504-3.
Full textBook chapters on the topic "Energy modeling and optimization"
Sanz, Abel, Ana Susmozas, Jens Peters, and Javier Dufour. "Biorefinery Modeling and Optimization." In Lecture Notes in Energy, 123–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48288-0_6.
Full textGabriel, Steven A., Antonio J. Conejo, J. David Fuller, Benjamin F. Hobbs, and Carlos Ruiz. "Optimization Problems Constrained by Complementarity and Other Optimization Problems." In Complementarity Modeling in Energy Markets, 221–62. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-6123-5_6.
Full textSoroudi, Alireza. "Energy System Integration." In Power System Optimization Modeling in GAMS, 265–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62350-4_10.
Full textSoroudi, Alireza. "Energy Storage Systems." In Power System Optimization Modeling in GAMS, 175–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62350-4_7.
Full textLiao, Wenhe, Hao Liu, and Tao Li. "Energy Optimization Method and Subdivision Surfaces." In Subdivision Surface Modeling Technology, 167–95. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3515-9_6.
Full textNwulu, Nnamdi, and Saheed Lekan Gbadamosi. "Mathematical Optimization Modeling and Solution Approaches." In Green Energy and Technology, 37–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-00395-1_3.
Full textMahoney, Daniel. "Valuation, Portfolios, and Optimization." In Modeling and Valuation of Energy Structures, 48–117. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/9781137560155_3.
Full textSai Kaushik, A., and Satya Sekhar Bhogilla. "Solar-Driven Potassium Formate Liquid Desiccant Dehumidification System with Thermal Energy Storage." In Modeling, Simulation and Optimization, 737–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9829-6_58.
Full textRajput, Isha, Jyoti Verma, and Hemant Ahuja. "Controller Design for Dynamic Stability and Performance Enhancement of Renewable Energy Systems." In Modeling, Simulation and Optimization, 657–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9829-6_52.
Full textZiębik, Andrzej, and Krzysztof Hoinka. "Mathematical Modeling and Optimization of Energy Systems." In Green Energy and Technology, 29–58. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4381-9_3.
Full textConference papers on the topic "Energy modeling and optimization"
Saadon, Salem, and Othman Sidek. "Ambient vibration-based MEMS piezoelectric energy harvester for green energy source." In 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). IEEE, 2011. http://dx.doi.org/10.1109/icmsao.2011.5775554.
Full textKomali, Ramakant S., and Allen B. MacKenzie. "Impact of Selfish Packet Forwarding on Energy-Efficient Topology Control." In 6th International ICST Symposium on Modeling and Optimization. IEEE, 2008. http://dx.doi.org/10.4108/icst.wiopt2008.3160.
Full textPedersen, Morten V., Gian Paolo Perrucci, Frank H. P. Fitzek, and Torben Larsen. "Energy and Link Measurements for Mobile Phones using IEEE802.11b/g." In 6th International ICST Symposium on Modeling and Optimization. IEEE, 2008. http://dx.doi.org/10.4108/icst.wiopt2008.3262.
Full textQian, Yulin, Yang Zhang, Yuanhe Tang, and Pengfei Ye. "Mathematical modeling and control optimization for energy internet." In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2017. http://dx.doi.org/10.1109/ei2.2017.8245325.
Full textShuman, David, and Mingyan Liu. "Energy-Efficient Transmission Scheduling for Wireless Media Streaming with Strict Underflow Constraints." In 6th International ICST Symposium on Modeling and Optimization. IEEE, 2008. http://dx.doi.org/10.4108/icst.wiopt2008.3198.
Full textRana, Bhumika K., Sudhir P. Dabke, Swapan Paruya, Samarjit Kar, and Suchismita Roy. "Molecular Model and Helmholtz Energy Contribution for Association Effects in SAFT." In INTERNATIONAL CONFERENCE ON MODELING, OPTIMIZATION, AND COMPUTING (ICMOS 20110). AIP, 2010. http://dx.doi.org/10.1063/1.3516295.
Full textBiswas, Aritra, B. L. Deekshatulu, Shibendu Shekhar Roy, Swapan Paruya, Samarjit Kar, and Suchismita Roy. "Energy Optimal Trajectory Planning of a Robotic Manipulator Using Genetic Algorithm." In INTERNATIONAL CONFERENCE ON MODELING, OPTIMIZATION, AND COMPUTING (ICMOS 20110). AIP, 2010. http://dx.doi.org/10.1063/1.3516354.
Full textSarkar, Sabuj, and Mostafizur Rahman. "Power-Energy Optimization of Solar Photovoltaic Device Modeling." In 2018 IEEE Electron Devices Kolkata Conference (EDKCON). IEEE, 2018. http://dx.doi.org/10.1109/edkcon.2018.8770431.
Full textDietmair, Anton, and Alexander Verl. "Energy consumption modeling and optimization for production machines." In 2008 IEEE International Conference on Sustainable Energy Technologies (ICSET). IEEE, 2008. http://dx.doi.org/10.1109/icset.2008.4747073.
Full textKolekar, Nitin, Suchi Subhra Mukherji, and Arindam Banerjee. "Numerical Modeling and Optimization of Hydrokinetic Turbine." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54252.
Full textReports on the topic "Energy modeling and optimization"
Pulay, Peter, and Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416248.
Full textZuo, Wangda, Michael Wetter, James VanGilder, Xu Han, Yangyang Fu, Cary Faulkner, Jianjun Hu, Wei Tian, and Michael Condor. Improving Data Center Energy Efficiency Through End-to-End Cooling Modeling and Optimization. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1773506.
Full textBaker, Justin S., George Van Houtven, Yongxia Cai, Fekadu Moreda, Chris Wade, Candise Henry, Jennifer Hoponick Redmon, and A. J. Kondash. A Hydro-Economic Methodology for the Food-Energy-Water Nexus: Valuation and Optimization of Water Resources. RTI Press, May 2021. http://dx.doi.org/10.3768/rtipress.2021.mr.0044.2105.
Full textHoward, Heidi, Chad Helmle, Raina Dwivedi, and Daniel Gambill. Stormwater Management and Optimization Toolbox. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39480.
Full textBrigantic, Robert T., Anthony F. Papatyi, and Casey J. Perkins. Comprehensive Energy Assessment: EE and RE Project Optimization Modeling for United States Pacific Command (USPACOM) American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1000152.
Full textMorton, David P., Richard E. Rosenthal, and Lim T. Weng. Optimization Modeling for Airlift Mobility. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada299818.
Full textLuccio A. U., R. Gupta, W. W. MacKay, and T. Roser. Cold AGS Snake Optimization by Modeling. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/1061721.
Full textPeles, S. Open source Modeling and optimization tools for Planning. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1343841.
Full textEskow, Elizabeth, and Robert B. Schnabel. Mathematical Modeling of a Parallel Global Optimization Algorithm. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada446514.
Full textBeaman, Joseph J. Computer Modeling and Optimization of OBOGS with Contaminants. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada178038.
Full text