Academic literature on the topic 'Energy modeling and simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy modeling and simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy modeling and simulation"

1

Berndt, E. R., A. S. Kydes, A. K. Agrawal, S. Rahman, R. Vichnevetsky, and W. F. Ames. "Energy Modeling and Simulation." Journal of the American Statistical Association 80, no. 392 (1985): 1063. http://dx.doi.org/10.2307/2288578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mhadhbi, Mohsen. "DEM Modeling and Optimization of the High Energy Ball Milling." DESIGN, CONSTRUCTION, MAINTENANCE 2 (July 5, 2022): 221–25. http://dx.doi.org/10.37394/232022.2022.2.29.

Full text
Abstract:
The Discrete Element Method (DEM) is a numerical method for simulating the dynamics of particles processes. This present work focuses on DEM simulations of a scale laboratory planetary ball mill through DEM Altair 2021.2 software to optimize and modulate the milling parameters. The simulation results show a good agreement with the experiments. The numerical model is shown to be a promising tool for the knowledge of dry milling in a planetary ball mill.
APA, Harvard, Vancouver, ISO, and other styles
3

Mohammed Abd Ali, Layth, Haider Ahmed Mohmmed, and Othman M. Hussein Anssari. "Modeling and Simulation of Tidal Energy." Journal of Engineering and Applied Sciences 14, no. 11 (2019): 3698–706. http://dx.doi.org/10.36478/jeasci.2019.3698.3706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Mushtaq, and Charles Culp. "Uncalibrated Building Energy Simulation Modeling Results." HVAC&R Research 12, no. 4 (2006): 1141–55. http://dx.doi.org/10.1080/10789669.2006.10391455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nataf, Jean-Michel, and Frederick Winkelmann. "Symbolic modeling in building energy simulation." Energy and Buildings 21, no. 2 (1994): 147–53. http://dx.doi.org/10.1016/0378-7788(94)90007-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Makaratzis, Antonios T., Konstantinos M. Giannoutakis, and Dimitrios Tzovaras. "Energy modeling in cloud simulation frameworks." Future Generation Computer Systems 79 (February 2018): 715–25. http://dx.doi.org/10.1016/j.future.2017.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Glaa, Raja, Fernando Tadeo, Mohamed Najeh Lakhoua, and Lilia El Amraoui. "Modeling and simulation of building energy consumption." Independent Journal of Management & Production 13, no. 5 (2022): 925–39. http://dx.doi.org/10.14807/ijmp.v13i5.1514.

Full text
Abstract:
Building energy consumption represents much of the total energy consumed in advanced countries. For this reason, the aim of this paper is to study the energy consumption profile by day for each domestic appliance: controllable appliances (heating, ventilation and air conditioning, electric water heater, dishwasher, washing machine) and non-controllable appliances (oven, TV, PC, iron, refrigerator and freezer) where the modeling and the simulation based on MATLAB/Simulink software are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Kircher, K., X. Shi, S. Patil, and K. Max Zhang. "Cleanroom energy efficiency strategies: Modeling and simulation." Energy and Buildings 42, no. 3 (2010): 282–89. http://dx.doi.org/10.1016/j.enbuild.2009.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Özdemir, Ali Ekber, and Sibel Akkaya Oy. "Comparative Investigation of Comparative Investigation of Triboelectric Energy Harvesting Modes: A Simulation Study Energy Harvesting Modes: A Simulation Study." Savunma Bilimleri Dergisi, ERKEN GÖRÜNÜM (January 19, 2025): 1. https://doi.org/10.17134/khosbd.1559922.

Full text
Abstract:
This study presents a comparative analysis focused on simulating the operational modes of a triboelectric nanogenerator (TENG) using simulation-based method. Simulation modeling was performed using a demo version of the Comsol Multiphysics software. The simulations were conducted under both open circuit and short circuit conditions. The study provides the voltages across the surface of the electrodes under open circuit conditions and the transferred electrical charges under short circuit conditions, along with their respective graphs. The study examines the four main operating modes of a TENG—Vertical Contact-Separation Mode, Lateral Sliding Mode, Single-Electrode Mode, and Freestanding Mode—simulated under specific parameter sets. These results hold significant importance in the design stage of a Triboelectric Nanogenerator (TENG), as each working mode necessitates a specific interface circuit to harvest energy efficiently. Therefore, the evaluation of the findings of this study can be instrumental in the design optimization of TENG structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Jayanthi, U. B., and A. A. Gusev. "Modeling of the Near-Earth Low-Energy Antiproton Fluxes." Advances in Astronomy 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/471094.

Full text
Abstract:
The local interstellar antiproton spectrum is simulated taking into account antineutron decay, (He,p) interaction, secondary and tertiary antiproton production, and the solar modulation in the “force field” approximation. Inclusive invariant cross-sections were obtained through a Monte Carlo procedure using the Multistage Dynamical Model code simulating various processes of the particle production. The results of the simulations provided flux values of to and to antiprotons/( s sr GeV) at energies of 0.2 and 1 GeV, respectively, for the solar maximum and minimum epochs. Simulated flux of the trapped antiprotons in the inner magnetosphere due to galactic cosmic ray (GCR) interactions with the atmospheric constituents exceeds the galactic antiproton flux up to several orders. These simulation results considering the assumptions with the attendant limitations are in comprehensive agreement with the experimental data including the PAMELA ones.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Energy modeling and simulation"

1

Johari, Fatemeh. "Urban building energy modeling : A systematic evaluation of modeling and simulation approaches." Licentiate thesis, Uppsala universitet, Byggteknik och byggd miljö, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428021.

Full text
Abstract:
Urban energy system planning can play a pivotal role in the transition of urban areas towards energy efficiency and carbon neutrality. With the building sector being one of the main components of the urban energy system, there is a great opportunity for improving energy efficiency in cities if the spatio-temporal patterns of energy use in the building sector are accurately identified. A bottom-up engineering energy model of buildings, known as urban building energy model (UBEM), is an analytical tool for modeling buildings on city-levels and evaluating scenarios for an energy-efficient built environment, not only on the building-level but also on the district and city-level. Methods for developing an UBEM vary, yet, the majority of existing models use the same approach to incorporating already established building energy simulation software into the main core of the model. Due to difficulties in accessing building-specific information on the one hand, and the computational cost of UBEMs on the other hand, simplified building modeling is the most common method to make the modeling procedure more efficient. This thesis contributes to the state-of-the-art and advancement of the field of urban building energy modeling by analyzing the capabilities of conventional building simulation tools to handle an UBEM and suggesting modeling guidelines on the zoning configuration and levels of detail of the building models. According to the results from this thesis, it is concluded that with 16% relative difference from the annual measurements, EnergyPlus is the most suitable software that can handle large-scale building energy models efficiently. The results also show that on the individual building-level, a simplified single-zone model results in 6% mean absolute percentage deviation (MAPD) from a detailed multi-zone model. This thesis proposes that on the aggregated levels, simplified building models could contribute to the development of a fast but still accurate UBEM.
APA, Harvard, Vancouver, ISO, and other styles
2

Simonsson, Johan. "Towards efficient modeling and simulation of district energy systems." Licentiate thesis, Luleå tekniska universitet, Signaler och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83242.

Full text
Abstract:
Dynamic simulation of district energy systems has an increased importance in the transition towards renewable energy sources, lower temperature district heating grids and waste heat recovery from industrial plants and data centers. However, a city-scale, automatically generated and updated simulator that can be used for the whole lifecycle of the plant remains a distant vision. Physics based models are often used for planning and validation, but the complexity is too high to use the models for optimization and automatic control, or for longer time spans. In this thesis, the experiences and challenges from previous district heating simulation projects using a co-simulation approach are summarized, with corresponding research gaps and proposed research directions. Two of the identified shortcomings are investigated in more detail in the thesis:  First, a robust and computationally efficient method for prediction of the heat load for buildings is proposed. A deterministic dynamic model is used to predict the space heating load, and a latent variable model using Fourier basis functions predicts the heat load used for e.g. hot tap water and ventilation. The prediction model validity is shown on a multi-dwelling building located in Luleå, Sweden.  Second, a probabilistic model based on Gaussian Processes is used to simulate the temperature dynamics of a district heating pipe. The model is trained and validated against a state-of-the-art physics based pipe model. It is shown that the model both replicates the behavior of the reference model, and that it can account for uncertainty of the inputs. By employing a kernel exploiting the underlying physics, many shortcomings of Gaussian Process models can be mitigated.  The results suggest that a mix of physics based and probabilistic methods can be one way forward towards a digital twin of a city-scale district energy system. Natural extensions to the published papers would be to research how the methods can be applied to a larger scale district energy system.
APA, Harvard, Vancouver, ISO, and other styles
3

Bånkestad, Maria. "Modeling, Simulation and Dynamic control of a Wave Energy Converter." Thesis, KTH, Numerisk analys, NA, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134104.

Full text
Abstract:
The energy in ocean waves is a renewable energy resource not yet fully exploited. Research in converting ocean energy to useful electricity has been ongoing for about 40 years, but no one has so far succeed to do it at sufficiently low cost. CorPower Ocean has developed a method, which in theory can achieve this. It uses a light buoy and a control strategy called Phase Control. The purpose of this thesis is to develop a mathematical model of this method - using LinearWave Theory to derive the hydrodynamic forces - and from the simulated results analyze the energy output of the method. In the process we create a program that will help realizing and improving the method further. The model is implemented and simulated in the simulation program Simulink. On the basis of the simulated results, we can concludes that the CorPower Ocean method is promising. The outcome shows that the energy output increases - up to five times- compared to conventional methods.<br>Vågenergi är en förnyelsebar energikälla som ännu inte utnyttjas fullt ut. Forskning inom konvertering av vågenergi till användbar elektricitet har pågått i cirka 40 år, men ingen har hittills lyckas att göra det tillräckligt kostnadseffektivt. CorPower Ocean har utvecklat en metod, som i teorin kan uppnå detta. De använder en lätt boj och en kontrollstrategi kallad Phase Control. Syftet med detta examensarbete är att utveckla en matematisk modell av metoden -genom att använda Linear Wave Theory för att härleda de hydrodynamiska krafterna -och från de simulerade resultaten analysera energiutbytet. Under arbetets gång skapades också ett simuleringsprogram som hjälpmedel till att realisera och förbättra metoden. Modellen implementeras och simuleras i programmet Simulink. Utifrån de simulerade resultaten kan vi dra slutsatsen att CorPower Oceans metod är lovande. Resultatet visar att energiutbytet ökar -upp till fem gånger - jämfört med konventionella metoder.
APA, Harvard, Vancouver, ISO, and other styles
4

Chitas, Dimosthenis. "Modeling and Simulation of a Small-Scale Polygeneration Energy System." Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175830.

Full text
Abstract:
The polygeneration is an innovative and sustainable solution which has become an attractive concept. The simultaneous production of electricity, heating and cooling including hot and cold water respectively in autonomous smaller energy systems can manage a more flexible and environmentally friendly system. Furthermore distributed generation and micro scale polygeneration systems can perform the increase of the utilized renewable energy sources in the power generation. The aforementioned energy systems can consist of several power generation units however the low emission levels, the low investment costs and the fuel flexibility of microturbines are some of the reasons that the study of the microturbines in polygeneration systems is a crucial necessity. In this study, an autonomous small-scale polygeneration energy system is investigated and each component is analyzed. The components of the system are a microturbine, a heat recovery boiler, a heat storage system and an absorption chiller. The purpose of this work is the development of a dynamic model in Matlab/Simulink and the simulation of this system, aiming to define the reliability of the model and understand better the behavior of such a system. Special focus is given to the model of the microturbine due to the complexity and the control methods of this system. The dynamic model is mainly based on thermodynamic equations and the control systems of the microturbine on previous research works. The system has as a first priority the electricity supply while thermal load is supplied depending on the electric demand. The thermal load is supplied by hot water due to the heat recovery which takes place at the heat recovery boiler from the flue gases of the microturbine. Additionally the design of the system is investigated and an operational strategy is defined in order to ensure the efficient operation of the system. For this reason, after creating the load curves for a specific load, two different cases are simulated and a discussion is done about the simulation results and the future work.
APA, Harvard, Vancouver, ISO, and other styles
5

Saadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.

Full text
Abstract:
La demande d'énergie consommée par les habitants a connu une croissance significative au cours des 30 dernières années. Par conséquent, des actions sont menées en vue de développement des énergies renouvelables et en particulier de l'énergie solaire. De nombreuses solutions technologiques ont ensuite été proposées, telles que les capteurs solaires PV/T dont l'objectif est d'améliorer la performance des panneaux PV en récupérant l’énergie thermique qu’ils dissipent à l’aide d’un fluide caloporteur. Les recherches en vue de l'amélioration des productivités thermiques et électriques de ces composants ont conduit à l'intégration progressive à l’enveloppe des bâtiments afin d'améliorer leur surface de captation d’énergie solaire. Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BIPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants et en particulier les composants cristallins, influence sensiblement leur efficacité ainsi que leur durée de vie. Ceci est donc d’autant plus vrai en configuration d’intégration. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. Ce travail porte sur la simulation numérique d'une façade PV partiellement transparente et ventilée, conçu pour le rafraichissement en été (par convection naturelle) et pour la récupération de chaleur en hiver (par ventilation mécanique). Pour les deux configurations, l'air dans la cavité est chauffé par la transmission du rayonnement solaire à travers des surfaces vitrées, et par les échanges convectif et radiatif. Le système est simulé à l'aide d'un modèle multi-physique réduit adapté à une grande échelle dans des conditions réelles d'exploitation et développé pour l'environnement logiciel TRNSYS. La validation du modèle est ensuite présentée en utilisant des données expérimentales du projet RESSOURCES (ANR-PREBAT 2007). Cette étape a conduit, dans le troisième chapitre du calcul des besoins de chauffage et de refroidissement d'un bâtiment et l'évaluation de l'impact des variations climatiques sur les performances du système. Les résultats ont permis enfin d'effectuer une analyse énergétique et exergo-économique<br>The demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
APA, Harvard, Vancouver, ISO, and other styles
6

Djafarzadeh, Roxana. "Modeling and simulation of cellular metabolism and energy production by mitochondria." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26890.

Full text
Abstract:
It is the intent of this thesis to investigate and develop a simulation model for metabolic pathways in the cells, namely, Glycolysis and Krebs cycle, using the DEVS formalism and the CD++ tool, then to further improve it to complete virtual mitochondrion. The hierarchical nature of DEVS makes it ideal for describing naturally hierarchical systems as the Cell, while its discrete-event approach improves performance due to the asynchronous nature of the events occurring in the cell. Simultaneously, as DEVS is a timed-based modeling approach, timing of the chemical reactions can be adequately represented. The models were developed using the CD++ toolkit, a modeling tool for simulation of complex physical systems that can be used to simulate a variety of models. CD++ server permits the execution and visualization of the results with sophisticated and easy-to-use Graphical User Interfaces. A precise and easy to use simulation environment for biological models of glycolysis and Krebs cycle was created, and the results presented show the potential of this approach.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Hanlu. "Modeling, simulation, and optimization of miniature tribo-electret kinetic energy harvesters." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC100.

Full text
Abstract:
La récupération d'énergie dans l'environnement ambiant est une bonne solution d'alimentation durable et complémentaire dans certains produits électroniques grand public, réseaux de capteurs distribués sans fil, dispositifs portables ou implantables, systèmes "Internet of Things" avec beaucoup de nœuds, etc. par rapport aux batteries. Les mouvements et les vibrations sont des sources d’énergie les plus disponibles à cet effet. Les dispositifs collectant de l’énergie cinétique à petite échelle sont appelés récupérateurs d'énergie cinétique (RECs). Les RECs avec électrets (E-RECs) sont un type de RECs électrostatiques qui utilisent des électrets (diélectriques avec charges quasi permanentes) comme source de tension de polarisation, et qui peuvent générer de l'électricité grâce à l'effet d'induction électrostatique lorsque la la capacitance des E-RECs varie du fait des mouvements/vibrations. Cette thèse vise à étudier les caractéristiques de sortie transitoires des E-RECs à la fois par des simulations théoriques et des mesures expérimentales, et à optimiser l’efficacité et la puissance de sortie des E-RECs par charge triboélectrique et par d'autres méthodes adaptées à leurs caractéristiques de sortie, qui sont essentielles pour améliorer la performance des E-RECs par mouvements/vibrations.Tout d'abord, les caractéristiques de sortie à amplitude variable d'un E-REC en mode contact-séparation (CS) dans des cycles de travail transitoires sont examinées via les résultats de la simulation basés sur un modèle de circuit équivalent détaillé. Ces caractéristiques de sortie à amplitude variable sont attribuées au décalage du cycle de transfert de charge par rapport au cycle de mouvement d'excitation. Les influences de la condition initiale et de la résistance de charge sur la variation des pics de tension de sortie d'un tribo-électret REC (TE-REC) en mode CS réalisé avec un film électret en polytétrafluoroéthylène (PTFE) one été étudiées en détail et vérifiées à la fois par simulations et expériences.Deuxièmement, une méthode d'optimisation du temps de contact est utilisée pour améliorer la puissance de sortie et l'efficacité du TE-REC en mode CS avec une résistance de charge de 100 MΩ. L'énergie convertie théorique maximale par cycle de travail du TE-REC est analysée. Nous avons aussi étudié les influences de plusieurs facteurs défavorables qui généralement réduiraient la conversion d'énergie par cycle de travail du TE-REC. L’optimisation de l'intervalle d'air maximal et la méthode tribo-charge sont également utilisées pour améliorer la puissance moyenne sortie du TE- REC avec une surface de 4 cm × 4 cm, de ~ 150 μW à ~ 503 μW.Troisièmement, une méthode innovante et facile a été développée pour charger le film polymère électret en éthylène propylène fluoré (FEP) par pelage de ruban adhésif, sans utiliser de source de haute tension électrique. La distribution du potentiel de la surface du film de FEP est fortement modifiée après plusieurs pelages au ruban adhésif. Par conséquence, la tension et le courant de sortie des TE-REC fabriqués avec le film FEP traités sont beaucoup améliorés. Pour un TE-REC flexible d’une surface de 64 cm2 soufflé par du vent, une amélioration évidente d'environ 692% de la puissance de sortie, correspondant 2,5 μW à environ 19,8 μW, a été obtenue par cette méthode<br>Harvesting energy from the ambient environment is a good sustainable and complementary power supply solution in some consumer electronics, distributed wireless sensor networks, wearable or implantable devices, "Internet of Things" systems with lots of nodes, etc. in comparison with batteries. The ubiquitous kinetic energy in various motions and vibrations is one of the most available energy sources for such a purpose. The electret kinetic energy harvesters (E-KEHs) is one type of electrostatic kinetic energy harvesters using electrets (dielectrics with quasi-permanent charges) as the biasing voltage source, which can generate electricity based on the electrostatic induction effect when the capacitance of the E-KEHs is changed by the motions/vibrations. This thesis aims to investigate the transitory output characteristics of E-KEHs by both theoretical simulations and experimental measurements and to optimize the efficiency and output power of E-KEHs by tribo-charging and other methods adapted to their output characteristics, which are significant to improving the performance of E-KEHs.Firstly, the amplitude-variable output characteristics of a contact-separation (CS) mode E-KEH in transitory working cycles are investigated via the simulation results based on a detailed equivalent circuit model. These amplitude-variable output characteristics are attributed to the lag of the charge-transfer cycle behind the excitation motion cycle. The influences of both the initial condition and the load resistance on the variation in the output voltage peaks of a tribo-electret KEH (TE-KEH) are studied in detail and verified by both simulated and experimental data of a CS mode TE-KEH made with polytetrafluoroethylene (PTFE) electret film.Secondly, based on the analysis of the amplitude-variable output characteristics, a contact time optimization method is used to improve the output power and efficiency of the CS mode TE-KEH with a large load resistance of 100 MΩ. The theoretical maximum output energy per working cycle of the TE-KEH is analyzed. Several usually unfavorable factors that would reduce the practical output energy per working cycle of the TE-KEH are discussed. The maximum air gap optimization and the tribo-charging methods are also used together to further improve the average output power of the 4 cm × 4 cm sized TE-KEH from ~150 μW to ~503 μW.Thirdly, an innovative and facile tape-peeling tribo-charging method is developed to charge the fluorinated ethylene propylene (FEP) polymer film to make electrets without using any high voltage source. The surface potential distribution of the FEP film is apparently changed after several tape-peeling tribo-charging treatments. Consequently, the output voltage and current of TE-KEHs made with the FEP film are greatly improved. For a 64 cm2 sized flexible TE-KEH to harvest kinetic energy from wind, an apparent ~692% improvement in the output power from ~2.5 μW to ~19.8 μW was obtained by the tape-peeling charging method
APA, Harvard, Vancouver, ISO, and other styles
8

Yurkovich, Benjamin J. "Electrothermal Battery Pack Modeling and Simulation." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281632214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gebben, Florian. "Modeling and Simulation of Solar Energy Harvesting Systems with Artificial Neural Networks." Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-29626.

Full text
Abstract:
Simulations are a good method for the verification of the correct operation of solar-powered sensor nodes over the desired lifetime. They do, however, require accurate models to capture the influences of the loads and solar energy harvesting system. Artificial neural networks promise a simplification and acceleration of the modeling process in comparison to state-of-the-art modeling methods. This work focuses on the influence of the modeling process's different configurations on the accuracy of the model. It was found that certain parameters, such as the network's number of neurons and layers, heavily influence the outcome, and that these factors need to be determined individually for each modeled harvesting system. But having found a good configuration for the neural network, the model can predict the supercapacitor's charge depending on the solar current fairly accurately. This is also true in comparison to the reference models in this work. Nonetheless, the results also show a crucial need for improvements regarding the acquisition and composition of the neural network's training set.
APA, Harvard, Vancouver, ISO, and other styles
10

Calance, Marius Alexandru. "Energy Losses Study on District Cooling Pipes : Steady-state Modeling and Simulation." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18490.

Full text
Abstract:
Distributionsförluster är en viktig faktor i fjärrenergisystem. Genom att optimera förluster i sådana system, kan både ekonomiska och miljömässiga aspekter uppfyllas. Tyvärr finns det ringa information om rörförluster i fjärrkylasystem. Föreliggande studie fokuserar på förluster i ett fjärrkylanät genom att både använda ett R-nätverk och FEM simuleringsmodeller. Ett R-nätverksmodell bestående av termiska konduktanser har utvecklats genom analytiska ekvationer och simuleringar med FEM har utfört för validering av modellen. Därefter har ett fjärrkylanätverk som konstrueras i Gävle, analyserats. Undersökningen omfattar 15 olika rördiametrar i tre utföranden (dubbelrör med två symmetriska och en osymmetrisk värmeisolering) och i tre förläggningsdjup (0,8; 2 och 4 meter) för en säsong om 7 månader (April t o m Oktober). Särskilt utreds ökningen av temperaturen hos framledningsmediet, där matningsrören förlagts i en å mitt i staden om en sträcka av 1 km. Den maximala förlusten under säsongen, bland alla rörkonfigurationer, motsvarar 2 % av den totala levererade energin. Slutligen konstateras att kombinationen av isolerad framledningsrör och oisolerade returrör verkar som en gångbar investering, ekonomiskt och tekniskt, men kan inte användas i hela nätet eftersom stora delar har redan byggts med oisolerade plaströr. R-nätverksmodellen, som visades vara effektiv och pålitlig i undersökningen, kan som beräkningsverktyg, framförallt för dimensionering och för att uppskatta energiförluster.<br>Distribution losses are a very important factor in district energy systems. By optimizing the losses in such a system, both economical and environmental aspects can be fulfilled. Unfortunately, there is few information regarding losses for district cooling systems. This study focuses on losses in district cooling networks by using both R-network and FEM simulation models. A R-network model composed of thermal conductances has been developed through analytical equations and simulations have been performed for validation. Afterwards, an in-progress construction project of a district cooling network from the city of Gävle, Sweden, is analyzed. The assessment consists of 15 pipe diameters in three configurations (two symmetric cases and one asymmetric), at three ground laying depths (0.8, 2 and 4 meters) for a duration of 7 months (April to October). A particular case in which the main distribution pipes from and to the plant are submerged in the city’s river for a distance of 1 km is investigated in order to estimate the temperature increase of the supply water. A maximum cooling loss below 2% of the total delivered energy during the season for any network configuration resulted from the calculation. Finally, the mixed pipes array seems to be a feasible investment both economically and technically but it cannot be used for the entire network spread since a part of the network has been already built with the non-insulated plastic pipes. The R-network model proved to be effective and reliable in the analysis which provides confidence that it can serve as a solid foundation for a calculation tool - primarily for design purposes and also for estimating energy loss.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Energy modeling and simulation"

1

Argonne National Laboratory. Modeling and simulation. The Laboratory, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Argonne National Laboratory. Modeling and simulation. The Laboratory, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Haoyong, Huaguang Yan, and Guixiong He. Integrated Energy System Modeling and Simulation. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0373-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vepa, Ranjan. Dynamic Modeling, Simulation and Control of Energy Generation. Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5400-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. Energy Information Administration, ed. NEMS, the National Energy Modeling System: A preview. Energy Information Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Molina, Marcelo Gustavo. Emerging advanced energy storage systems: Dynamic modeling, control and simulation. Nova Science Publishers, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kemal, Hanjalić, ed. Mathematical modeling and computer simulation of processes in energy systems. Hemisphere Pub. Corp., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

National Renewable Energy Laboratory (U.S.). Thermal Systems Group. Modeling and analysis of CSP systems. National Renewable Energy Laboratory, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pinnau, René, Nicolas R. Gauger, and Axel Klar, eds. Modeling, Simulation and Optimization in the Health- and Energy-Sector. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99983-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

B. K. (Bilash Kanti) Bala. Energy and environment: Modelling and simulation. Nova Science Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Energy modeling and simulation"

1

Hariharan, K., Mathiarasan Vivek Ramanan, Naresh Kumar, D. Kesava Krishna, Arockia Dhanraj Joshuva, and S. K. Indumathi. "Design and Development of Energy Meter for Energy Consumption." In Modeling, Simulation and Optimization. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6866-4_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bala, B. K. "Modeling and Simulation." In Energy Systems Modeling and Policy Analysis. CRC Press, 2022. http://dx.doi.org/10.1201/9781003218401-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reinhart, Christoph, and Carlos Cerezo Davila. "Urban building energy modeling." In Building Performance Simulation for Design and Operation. Routledge, 2019. http://dx.doi.org/10.1201/9780429402296-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mei, Jie. "Modeling and Simulation of Electric Motors." In Green Energy and Technology. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-3060-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dai, Haifeng, and Wei Tang. "Modeling and Simulation in Fuel Cells." In Handbook of Energy Materials. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4480-1_54-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Agarwal, Avinash Kumar, Dhananjay Kumar, Nikhil Sharma, and Utkarsha Sonawane. "Introduction to Engine Modeling and Simulation." In Energy, Environment, and Sustainability. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8618-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sai Kaushik, A., and Satya Sekhar Bhogilla. "Solar-Driven Potassium Formate Liquid Desiccant Dehumidification System with Thermal Energy Storage." In Modeling, Simulation and Optimization. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9829-6_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rajput, Isha, Jyoti Verma, and Hemant Ahuja. "Controller Design for Dynamic Stability and Performance Enhancement of Renewable Energy Systems." In Modeling, Simulation and Optimization. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9829-6_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Haoyong, Huaguang Yan, and Guixiong He. "Energy Network Theory of IES." In Integrated Energy System Modeling and Simulation. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0373-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Reuben Brandon Huan Chung, Sukanta Roy, Yam Ke San, and Aja Ogboo Chikere. "Computational Analysis of Darrieus Vertical Axis Wind Turbines for Exhaust Air Energy Extraction." In Modeling, Simulation and Optimization. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6866-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy modeling and simulation"

1

Zech, Philipp, Daniel Plörer, Rainer Pfluger, and Ruth Breu. "Scalable Building Energy Efficiency Balancing." In 2024 Annual Modeling and Simulation Conference (ANNSIM). IEEE, 2024. http://dx.doi.org/10.23919/annsim61499.2024.10732099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ranjbar, Saeed, Oriol Gavalda, Abolfazl Rezaei, and Ursula Eicker. "Modelling Decarbonization Strategies for Urban Energy Systems." In 2024 Annual Modeling and Simulation Conference (ANNSIM). IEEE, 2024. http://dx.doi.org/10.23919/annsim61499.2024.10732693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Liheng, Qipin Xu, Yuantao Shi, Ling Yang, Jiancheng Zhang, and Hongchao Zhu. "Simulation Modeling and Simulation Verification of Dual-Excited Synchronous Generator." In 2024 IEEE 4th New Energy and Energy Storage System Control Summit Forum (NEESSC). IEEE, 2024. http://dx.doi.org/10.1109/neessc62857.2024.10733476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abidha, D., and Gomathi Bhavani Rajagopalan. "Design and Implementation of a Hybrid Renewable Energy System for a Positive Energy Residential Building." In 2024 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom). IEEE, 2024. https://doi.org/10.1109/mosicom63082.2024.10881951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jeaied, Maryem, Mouna Karmani, and Mohsen Machhout. "Energy Transaction Modeling and Simulation in Smart Grids." In 2025 IEEE 22nd International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2025. https://doi.org/10.1109/ssd64182.2025.10989833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Mengzhe, Ji Yao, Yu Nie, Wenmao Gao, Ran Xin, and Siyu Chen. "Energy Internet Power CPS Risk Transmission Modeling and Simulation." In 2024 IEEE 8th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2024. https://doi.org/10.1109/ei264398.2024.10990480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Fengqi, Alexandros Tsamis, and Kristen R. Schell. "Infomorphism: Urban Planning For Renewable Energy Integration Via Simulated Energy Exchange Networks." In 2022 Annual Modeling and Simulation Conference (ANNSIM). IEEE, 2022. http://dx.doi.org/10.23919/annsim55834.2022.9859300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

North, Michael J., John T. Murphy, Pam Sydelko, Ignacio Martinez-Moyano, David L. Sallach, and Charles M. Macal. "Integrated modeling of conflict and energy." In 2015 Winter Simulation Conference (WSC). IEEE, 2015. http://dx.doi.org/10.1109/wsc.2015.7408360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

FRANCONI, Ellen, Kristin FIELD, and Michael DERU. "Building Energy Modeling For Gaining Investor Confidence." In 2017 Building Simulation Conference. IBPSA, 2013. http://dx.doi.org/10.26868/25222708.2013.1401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wright, Dennis H., Tatsumi Koi, Gunter Folger, et al. "Low and High Energy Modeling in Geant4." In HADRONIC SHOWER SIMULATION WORKSHOP. AIP, 2007. http://dx.doi.org/10.1063/1.2720453.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy modeling and simulation"

1

McDermott, Thomas, Jing Xie, and Meghana Ramesh. Avista CEF2 Shared Energy Economy: Modeling and Simulation. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/2433780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bradley, K. NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1093526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MALCZYNSKI, LEONARD A., WALTER E. BEYELER, STEPHEN H. CONRAD, DAVID B. HARRIS, PAUL E. REXROTH, and ARNOLD B. BAKER. Regional Dynamic Simulation Modeling and Analysis of Integrated Energy Futures. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/809601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holmberg, David, Martin Burns, Steven Bushby, et al. NIST transactive energy modeling and simulation challenge phase II final report. National Institute of Standards and Technology, 2019. http://dx.doi.org/10.6028/nist.sp.1900-603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Don Shirey. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program. Office of Scientific and Technical Information (OSTI), 2008. http://dx.doi.org/10.2172/940908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deru, Michael, Eric Bonnema, Greg Barker, Ed Hancock, and Ashok Kumar. Energy Performance Measurement and Simulation Modeling of Tactical Soft-Wall Shelters. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada621105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gamble, K. A., and J. D. Hales. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: FeCrAl Modeling Capabilities. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1408757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferencz, R. M. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Structural Mechanics Module Development Plan. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1113412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diachin, L., F. Garaizar, V. Henson, and G. Pope. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/971412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gamble, K. A., J. D. Hales, Y. Zhang, D. Andersson, L. Capolungo, and B. D. Wirth. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1376905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography