Academic literature on the topic 'Energy Nexus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy Nexus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy Nexus"

1

Schnoor, Jerald L. "Water–Energy Nexus." Environmental Science & Technology 45, no. 12 (June 15, 2011): 5065. http://dx.doi.org/10.1021/es2016632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guven, Huseyin, and Aysegul Tanik. "Water-energy nexus." Smart and Sustainable Built Environment 9, no. 1 (August 14, 2018): 54–70. http://dx.doi.org/10.1108/sasbe-07-2017-0030.

Full text
Abstract:
Purpose Rough estimations of water gain through greywater reuse and rainwater harvesting together with energy recovery from wastewater generated from a fictitious eco-city of population 100,000 located in Istanbul, Turkey form the main framework of the study. As such, the highly important concept of water–energy nexus will be emphasised and domestic wastewater will be partly considered for water recycling and the rest for energy recovery. The paper aims to discuss these issues. Design/methodology/approach Distribution of daily domestic water consumption among different household uses and the population in the residential area are the two governing parameters in the practical calculation of daily wastewater generated. Therefore, domestic wastewater will be initially estimated based on population, and in turn, the amount of greywater will be found from the per cent distribution of water use. After segregation of greywater, the energy equivalency of the rest of the wastewater, known as blackwater, will further be calculated. Besides, the long-term average precipitation data of the geographical location (Istanbul) are used in determining safe and sound rainwater harvesting. Harvesting is considered to be only from the roofs of the houses; therefore, surface area of the roofs is directly taken from an actual residential site in Turkey, housing the same population which is constructed in four stages. Similarly, the fictitious eco-city in Istanbul is assumed to be constructed in a stage-wise manner to resemble real conditions. Findings The water consumption of the fictitious eco-city ABC is considered as 15,000 m3/day by taking the unit water consumption 150 L/capita.day. Therefore, total water savings through on-site reuse and reuse as irrigation water (9,963 m3/day) will reduce water consumption by 64 per cent. Minimum 40 per cent water saving is shown to be possible by means of only greywater recycling and rainwater harvesting with a long-term average annual precipitation of 800 mm. The energy recovery from the rest of the wastewater after segregation of greywater is calculated as 15 MWh/day as electricity and heat that roughly correspond to electricity demand of 1,300 households each bearing four people. Research limitations/implications A fictitious eco-city rather than an actual one located in Istanbul is considered as the pilot area in the study. So far, an eco-city with population around 100,000 in Turkey does not exist. An important implication relates to rainwater harvesting. The amount of safe water to be gained through precipitation is subject to fluctuations within years and, thus, the amount of collected rainwater will highly depend on the geographical location of such an eco-city. Practical implications The study covering rough calculations on water savings and energy recovery from domestic wastewater will act as a guide to practitioners working on efficient water management in the eco-cities, especially in those that are planned in a developing country. Originality/value Practising water–energy nexus in an eco-city of population 100,000 regarding water savings and energy recovery from wastewater forms the originality of the study. Sustainable water use and energy recovery from wastewater are among the emerging topics in environmental science and technology. However, safe and sound applications are lacking especially in the developing countries. Guiding these countries with practical calculations on both water gain and energy recovery from wastewater (blackwater) is the value of the work done. Moreover, Istanbul is deliberately selected as a case study area for various reasons: its annual rainfall represents the worlds’ average, it is one of the most crowded megacities of the world that supply water demand from the surface water reservoirs and the megacity has not yet significantly increased wastewater reuse and recycling practices.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Yu, Han-Qing Yu, Wun Jern Ng, and David C. Stuckey. "Wastewater-Energy Nexus." Chemosphere 140 (December 2015): 1. http://dx.doi.org/10.1016/j.chemosphere.2015.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kahrl, Fredrich, and David Roland-Holst. "China's water–energy nexus." Water Policy 10, S1 (March 1, 2008): 51–65. http://dx.doi.org/10.2166/wp.2008.052.

Full text
Abstract:
As China continues to sustain high rates of economic growth, it is important to better understand patterns of resource use within the Chinese economy and the vulnerability of its growth to resource scarcity. This paper examines relationships between two of China's scarcest resources—energy and water—focusing on the energy implications of water use. Based on an analysis of economy-wide resource flows using China's input-output tables, we draw three overarching conclusions: First, the energy used both directly and indirectly in providing non-agricultural water currently represents only a small fraction of China's total energy consumption. However, this share is set to increase as the country expands its water treatment capacity and hydraulic infrastructure. A lifecycle assessment framework for evaluating these projects would aid policymakers as they choose between more and less energy-intensive modes of water provision. Second, energy-water price interactions are currently of little relevance to policymakers because water prices are low, but the high electricity-intensity of water treatment facilities and their need to recover costs may change this situation. Third, water “migration” from agriculture to non-agricultural uses will have important energy dimensions, which will be important for policymakers to bear in mind as they design water pricing and conservation efforts.
APA, Harvard, Vancouver, ISO, and other styles
5

Loeb, Barry L. "Water-Energy-Food Nexus." Ozone: Science & Engineering 38, no. 3 (April 8, 2016): 173–74. http://dx.doi.org/10.1080/01919512.2016.1166029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krampe, Jörg, and Norbert Kreuzinger. "Water-Energy-Food-Nexus." Österreichische Wasser- und Abfallwirtschaft 68, no. 3-4 (March 15, 2016): 84–85. http://dx.doi.org/10.1007/s00506-016-0300-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blumberga, Dagnija, Haralds Vigants, Einars Cilinskis, Valdis Vitolins, Irina Borisova, Asset Khabdullin, Arman Khabdullin, Zauresh Khabdullina, Guldana Khabdullina, and Ivars Veidenbergs. "Energy Efficiency and Energy Management Nexus." Energy Procedia 95 (September 2016): 71–75. http://dx.doi.org/10.1016/j.egypro.2016.09.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Dae-Jung. "Sogang Energy-Water Nexus Laboratory." Journal of the Korean Society of Visualization 10, no. 1 (April 30, 2012): 3–7. http://dx.doi.org/10.5407/jksv.2012.10.1.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bess, Mike, and Mark Whiteley. "The energy, environment, technology nexus." International Journal of Global Energy Issues 14, no. 1/2/3/4 (2000): 33. http://dx.doi.org/10.1504/ijgei.2000.004351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keairns, D. L., R. C. Darton, and A. Irabien. "The Energy-Water-Food Nexus." Annual Review of Chemical and Biomolecular Engineering 7, no. 1 (June 7, 2016): 239–62. http://dx.doi.org/10.1146/annurev-chembioeng-080615-033539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Energy Nexus"

1

Hussien, Wa'el Abdul-Bari. "Multi-scale investigation of water-energy-food nexus." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/28299.

Full text
Abstract:
Water, energy and food (WEF) are among essentials to meet the basic human needs and ensure economic and social development. Globally, the demand for WEF rapidly increases while billions of people are still lacking access to these needs. The main drivers behind increased demand for WEF are population growth, urbanization, economic growth and climate change. It may also be driven by changes in demography, technological developments and diet preferences. To achieve a sustainable supply and effectively manage the demand for WEF, complex interactions between WEF (nexus) need to be understood. Traditionally, WEF have been studied and managed separately with a minimal focus on their interactions. The primary objective of this study is to investigate WEF nexus at different scales. A bottom-up approach has been employed to develop a system-dynamics based model to capture the interactions between WEF at end-use level at a household scale. Additionally, a city scale model has been developed to quantify WEF implications for agricultural, commercial and industrial sectors. The household level model is then integrated with the city scale model to estimate WEF demand and the generated organic waste and wastewater quantities. The integrated model investigates the impact of several variables on WEF: human bahaviour, diet, household income, family size, seasonal variability, population size, GDP, crop type and land-use for agriculture. The integrated model is based on a detailed survey of 407 households conducted to investigate WEF over winter and summer season for the city of Duhok, Iraq. The city is chosen as a case study due to the rapid population growth, considerable urbanization, changes in land-use pattern and shifting climate trends toward longer summer duration. These put an additional pressure on WEF demand in the city. The collected data of WEF and household characteristics (demographic and socio-economic) have been intensively analysed to provide a better understanding for the factors influencing WEF consumption. The surveyed data was used to develop statistical regression models for estimating demand as a function of household characteristics using stepwise-multiple-linear and evolutionary polynomial regression techniques. The integrated WEF model was subjected to sensitivity analysis and uncertainty assessment. A comparison of the model simulation results were made with the historical data. The model results show a good agreement with the historical data. The WEF model is then applied to assess the risk and resilience of WEF systems under the impact of seasonal climate variability (i.e., increase/decrease in the number of summer days). In order to decrease the risk of not meeting per capita demand for WEF and increase the resilience of system for providing per capita demand for WEF, a number of demand management strategies have been investigated in water and energy systems under the impact of seasonal variability. The results show that using recycled greywater for non-potable application in Duhok water system is the most efficient strategy but it increases the energy demand. Additionally, anaerobic digestion of food waste and wastewater sludge for energy recovery can increase the resilience of Duhok energy system. Finally, the impact, of Global Scenario Group (GSG) scenarios (Market Forces, Fortress World, Great Transition and Policy Reform) on the WEF consumption and resulting implications, has been investigated using the WEF model. The results suggest that the Fortress World scenario (an authoritarian response to the threat of breakdown) has the highest impact on WEF consumption. In the Great Transition scenario, WEF consumption would be the lowest. The model results suggest that the food-related water consumption is the highest in the Policy Reform scenario.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Xuechao. "Critical Transmission Sectors of Energy-Water-GHG Nexus." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433461.

Full text
Abstract:
Využití vody, spotřeba energie a emise skleníkových plynů (GHG) jsou rozhodujícími ukazateli a do značné míry souvisí s udržováním nebo dosahováním environmentální a sociální udržitelnosti. Tato práce prezentuje vyvinuté metodiky. Představuje také provedené případové studie, které prozkoumaly a identifikovaly Water-Energy-GHG Nexus (WEGN) z pohledu dodavatelského řetězce. Pro analýzu a návrh sítě WEGN jsou navrženy tři metodiky, které jsou založeny na nové aplikaci a integraci modelu vstup-výstup (IO), geografického informačního systému (GIS) a sítě dodavatelského řetězce (SCN), a zároveň řeší výzvy, které dříve neumožňovali praktické implementace. Použitelnost těchto metod je prokázána třemi komplexními případovými studiemi zaměřenými na odvětvovou environmentální účinnost, regionální environmentální účinnost a kritické přenosy WEGN. Mezi mé příspěvky v této oblasti patří: i. Nový nástroj pro hodnocení založený na IO pro identifikaci regionální environmentální účinnosti z hlediska WEGN, zejména pro regiony, které jsou úzce propojenyobchodem. ii. Pokročilá integrace metodik GIS a IO (GIS-IO) za účelem odhalení a mapování sítě WEGN, sledování kritických meziregionálních a sektorových toků WEGN, vyjasnění regionálních, odvětvových a celosvětových vzorců sítě WEGN a určení souvisejících výhod pro různé regiony. iii. Efektivní metoda hodnocení založená na IO a SCN pro kvantifikaci sektorových koeficientů WEGN. Navrhované metodiky, s podporou sady komplexních základních rovnic, transformují komplikované výzvy identifikace a analýzy sítě WEGN do snadno srozumitelného formátu, z čehož vznikají robustní řešení pro zlepšení posuzování environmentální udržitelnosti a zmírnění environmentálních tlaků. Například v jedné z případových studií ukazují výsledky nového přístupu GIS-IO zjevné rozdíly mezi různými zeměmi v rámci EU27, mezi různými sektory a také pokud srovnáme EU27 jako blok zemí, s ostatními státy světa. Analýza ukázala, že země EU27 přispěly o 1.4 Gt nižšími emisemi CO2, o 64.5 Gm3 menší spotřebou vody a 4.9 × 104 PJ nižší spotřebou energie ve srovnání se zbytkem světa, přičemž generovaly ekvivalentní ekonomickou produkci. To má dramatický dopad na globální prostředí. Největší úspěch v CWE mezi zeměmi EU27 měly Německo, Francie a Itálie. Práce doporučuje, aby EU27 poskytovala více technické podpory zemím, které těchto výsledků nedosahují, aby se zvýšila účinnost využívání zdrojů.
APA, Harvard, Vancouver, ISO, and other styles
3

Nussbaumer, Patrick. "Energy for Sustainable Development – An Assessment of the Energy-Poverty-Development Nexus." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96873.

Full text
Abstract:
La energía es un elemento fundamental para muchos aspectos del desarrollo socioeconómico. Los servicios que la mayoría de las personas en los países industrializados dan garantizados - iluminación adecuada, energía limpia para calefacción y cocina, telecomunicaciones, fuerza motriz y ocio - están fuera del alcance en gran parte de la población mundial. La falta de acceso a servicios energéticos confiables y asequibles representa un claro obstáculo para el desarrollo humano, social, económico y para el logro de los Objetivos de Desarrollo del Milenio. Constituyendo actualmente un hecho inaceptable e insostenible, la pobreza energética representa una cruda realidad que junto a otros problemas globales debe ser tratada de manera urgente. A pesar de los importantes esfuerzos realizados por las instituciones y los gobiernos locales, las entidades públicas y las organizaciones internacionales, la tendencia indica que el número total de pobres en términos de acceso a la energía aumente en las próximas décadas, a menos de que se inicien de forma inmediata acciones adicionales orientadas a evitar ese incremento. En este sentido, la historia ha demostrado que es posible lograr un significativo avance en acceso energetico en un corto espacio de tiempo. Este hecho se ha producido recientemente en varios países asiáticos (por ejemplo, Vietnam), Sudáfrica y Brasil. Sin embargo, a pesar de los avances realizados en los países mencionados, las iniciativas que hoy en día se están desarrollando a nivel global para erradicar la pobreza energética no son suficientes en cuanto a su tamaño y alcance. Las estrategias relacionadas con la promoción del acceso a la energía para el desarrollo socioeconómico deben ir mucho más allá de la iluminación para hogares pobres. Los objetivos de dichas estrategias deberían estar orientados a generar cambios estructurales que originen un desarrollo sostenible. Además, la reciente crisis ha provocado retrocesos en el desarrollo sostenible de los países. La comunidad internacional tiene que adaptarse rápidamente a las nuevas circunstancias y proporcionar asesoramiento y asistencia que sea duradera en el tiempo y adaptable a cada caso, de cara a provocar un ambiente propicio para el desarrollo interno en los países. Hoy en día, no existen barreras técnicas que impidan suministrar servicios modernos de energía de forma segura, fiable y asequible a los miles de millones de pobres que no tienen acceso a la misma. Es nuestro deber contribuir a lograr la aspiración de los países más desfavorecidos para avanzar hacia economías sostenibles, y la energía es fundamental para esta transformación. Afortunadamente, el tema de acceso a la energía está recibiendo una atención cada vez mayor en todas las esferas. Como ejemplo ilustrativo de este hecho, el año 2012 ha sido declarado por la Asamblea General, el principal órgano normativo y representativo de las Naciones Unidas, como el Año Internacional de la Energía Sostenible para Todos. Es fundamental aprovechar este impulso, ya que la energía es necesaria para enfrentar muchos de los desafíos clave actuales. Así, abordar la pobreza energética de manera integral tendría enormes beneficios en diversas áreas relacionadas con el desarrollo de los países (por ejemplo, salud, educación, igualdad de género). Los capítulos de esta tesis persiguen conformar un conjunto coherente de piezas individuales de análisis en torno a un tema central: el nexo entre energía y el desarrollo socio-económico. Los diferentes capítulos están basados en artículos independientes y ofrecen perspectivas contrastadas y a la vez complementarias en relación al tema en cuestión. En definitiva, se trata de un ejercicio de investigación aplicada así como de desarrollo metodológico y el conjunto deriva en una evaluación integrada de las implicaciones de la energía para el desarrollo sostenible. La tesis está organizada de forma que se presente como una narrativa coherente y estructurada. En términos generales de su estructura, los primeros capítulos describen el problema de la pobreza energética, como la falta de acceso a servicios energéticos modernos. Estos capítulos ofrecen una idea de la magnitud del desafío que nos ocupa y presentan una evaluación de los escenarios posibles para lograr el acceso universal a la energía. En los capítulos siguientes, se presenta la escala de la inversión necesaria para abordar la cuestión así como intervenciones concretas que permitirían superar algunas de las cuestiones que se discuten. La Energía y los Objetivos de Desarrollo del Milenio Aunque intuitiva, la relación entre energía y desarrollo sostenible es difícil de determinar cuantitativamente y no ha sido explorada ni analizada en detalle en la literatura científica. La correlación entre el acceso a los servicios de energía y el desarrollo socioeconómico se refleja a menudo, por ejemplo, mediante el uso de índices compuestos como el Índice de Desarrollo Humano (HDI), o a partir de un análisis centrado únicamente en las repercusiones económicas. Este trabajo presenta una articulación estadística que analiza la relación entre la energía y varios elementos clave del desarrollo socioeconómico, utilizando los Objetivos de Desarrollo del Milenio como marco de referencia. Los resultados confirman la influencia potencialmente positiva que el acceso a los servicios de energía genera. La evaluación desarrollada en el trabajo proporciona una perspectiva basada en una serie de supuestos que a menudo se emplean alrededor de la correlación entre energía y desarrollo, y examina reivindicaciones de sus beneficios universalmente positivos a las prioridades específicas de desarrollo socioeconómico. Entre las conclusiones, se destaca que los beneficios para el desarrollo sostenible del acceso a los servicios de energía varían considerablemente. Medición de la pobreza energética Cualquier política que pretenda ser efectiva para expandir de forma considerable el acceso a energía moderna ha de estar fundamentada en una sólida base documental. Por lo tanto los análisis cuantitativos que se pueden utilizar con fines comparativos y de seguimiento de los avances hacia los objetivos planteados, representan una herramienta de apoyo esencial. Este trabajo revisa la literatura relevante en la materia, y analiza la idoneidad y la aplicabilidad de los instrumentos existentes para medir la pobreza energética. Basándose en esos instrumentos y en sus resultados, se propone un nuevo índice compuesto para medir la pobreza energética. Tanto la metodología como los resultados iniciales obtenidos de la aplicación del índice son presentados para varios países africanos. Mientras que la mayoría de los indicadores e índices compuestos existentes se centran en la evaluación del acceso a la energía o en el grado de desarrollo relacionado con la energía, el nuevo índice desarrollado - el Índice de Pobreza Multidimensional de la Energía (MEPI) - se centra en la privación del acceso a servicios energéticos modernos. Este índice, refleja la incidencia e intensidad de la pobreza energética y proporciona una nueva herramienta para la elaboración de políticas. Escenarios de acceso a la energía hasta el año 2030 para el África subsahariana Con el fin de alcanzar una meta de acceso universal a servicios modernos de energía para el año 2030, se han considerado varias opciones de desarrollo de sector eléctrico así como el hecho de informar consecuentemente a los políticos e inversionistas, de cara a orientar de forma adecuada el diseño del sistema. Con este fin, y basándose en las herramientas y análisis existentes, se presentan varios escenarios de forma transparente y para toda la economía del sector energético de África subsahariana hasta el año 2030. Estos escenarios se han elaborado teniendo en cuenta el contexto de las tendencias históricas y las diversas interpretaciones sobre el concepto de acceso universal a la energía. Los mismos, están diseñados para proporcionar una indicación de la escala general en relación al esfuerzo requerido por la comunidad internacional. Actualmente, la mayoría de las proyecciones con métodos tradicionales de predicción a largo plazo en materia de planificación energética muestran un aumento de aproximadamente tres veces la capacidad de generación instalada para el año 2030, pero probablemente se requiera que ese aumento sea de más de diez veces, si se pretende proporcionar un acceso completo a nivel global - incluso a niveles relativamente modestos de consumo de electricidad. Esto equivale a aproximadamente un 13% la tasa media de crecimiento anual, en comparación con un histórico (en las últimas dos décadas) de 1,7%. Escala de la inversión para el acceso a la energía universal Para ayudar a proporcionar una mayor claridad y apoyo a la toma de decisiones políticas, así como en el diseño de propuestas financieras, en este trabajo es considerado y analizado el nivel global de gasto requerido para satisfacer el acceso universal a servicios de energía modernos. Este trabajo revisa la literatura existente a nivel mundial, regional, nacional y de proyecto, y a su vez se realiza un desglose de las estimaciones de costos necesarios, a fin de proporcionar una mayor transparencia a través del desarrollo de indicadores comparables. Con la nueva metodología desarrollada, calculamos tres escenarios de costos nuevos que intentan abordar varias deficiencias analíticas existentes. Como conclusión, el costo total de proporcionar (de forma aproximada) el acceso universal se espera que probablemente sea considerablemente más alto que las estimaciones publicadas, que a menudo se centran principalmente en los costos de capital. Si bien se reconoce la naturaleza aproximada de los análisis, el costo anual del acceso universal a la electricidad y energía limpia para la cocinar se calcula que va desde USD 14 a 136 mil millones (de USD 12 a 134 mil millones para electrificación y de USD 1,4 a 2,2 mil millones para energía limpia para la cocinar). Actuales flujos financieros relacionados con el acceso a la energía De cara a contribuir al diseño de políticas apropiadas y eficaces para reducir la pobreza energética, este análisis presenta una evaluación de los flujos macro financieros actuales en el sector eléctrico y de distribución de gas en los países en desarrollo. Se basa en la metodología más extendida actualmente para cuantificar los flujos de inversión en el área de cambio climático. El enfoque se centra en las variables de formación bruta de capital fijo nacional, la ayuda al desarrollo procedente del extranjero y la inversión extranjera directa. Estas cifras proporcionan a los responsables políticos una idea de la escala de inversión necesaria, aunque esto representan sólo una pequeña parte de la información necesaria para diseñar los instrumentos financieros requeridos para lograr el acceso universal a la energía. Igualmente, estas cifras tienden a ocultar muchas variaciones entre sectores y países, así como las tendencias y otras fluctuaciones en el tiempo. En cualquier caso, se puede concluir que la corriente de inversión destinada a los países más pobres se queda muy corta (por lo menos cinco veces) si se pretende proporcionar un nivel básico de acceso a servicios modernos de energía limpia a los ‘pobres energéticos’. Mecanismo de Desarrollo Limpio y el Desarrollo Sostenible El Mecanismo de Desarrollo Limpio (MDL) tiene un doble objetivo: compensar las emisiones de gases de efecto invernadero y contribuir al desarrollo sostenible en el país anfitrión, aunque la contribución a este último objetivo parece marginal en la mayoría de las actividades del MDL. Además, las actividades del MDL están distribuidas de forma desigual entre los países en desarrollo. En respuesta a estas inquietudes, se han puesto en marcha varias iniciativas cuyo objetivo es la promoción de proyectos MDL que generen amplios dividendos orientados al desarrollo local sostenible, como el Gold Standard y el Community Development Carbon Fund (CDCF). La certificación Gold Standard recompensa las mejores prácticas de proyectos MDL, mientras que el CDCF se centra en la promoción de las actividades del MDL en comunidades desfavorecidas. A partir de un método de criterios múltiples, este trabajo analiza, la contribución potencial al desarrollo local sostenible de los proyectos del MDL, comparando los proyectos que tienen atributos particulares con los proyectos ordinarios. Los resultados obtenidos sugieren que generalmente aunque no siempre, los proyectos MDL con certificación, tienden a superar ligeramente a los proyectos similares sin certificación en términos de beneficios a nivel local.
Energy is central to many aspects of socio-economic emancipation. The services that most people in industrialised countries take from granted – adequate lighting, low-polluting heating and cooking energy, telecommunication and entertainment, motive power – are out of reach to large parts of the world’s population. A lack of access to affordable and reliable energy services represents a key obstacle to human, social, and economic development and the achievement of the Millennium Development Goals. As unacceptable and unsustainable as it is, widespread energy poverty represents a stark reality which must be dealt alongside other pressing global issues. Despite the significant efforts by local institutions and governments, utilities and international organisations, the absolute number of energy poor is expected to rise in coming decades in the absence of additional dedicated action. History has shown, however, that significant progress can be achieved with regard to improving energy access in a short timeframe. Remarkable improvements occurred rapidly in several Asian countries (e.g. Vietnam), South Africa and Brazil in the recent past. However, current initiatives to eradicate energy poverty are insufficient in scale and scope, and attempting to address the issue in the same incremental fashion as in the past is clearly inappropriate. Energy for development strategies must go well beyond merely providing light to poor households. They should aim at transformative changes that bring about sustainable development. The recent succession of crises has set back some development progress. The international community needs to adjust swiftly to the new circumstances and provide advice and assistance that is resilient and long-lasting, and creates an environment that is conducive to enhancing endogenous development. Today, there is no technical barrier to providing the billions of energy poor with modern, safe, reliable and affordable energy services. It is our duty to deal with the aspiration of countries to move towards modern economies, and energy is paramount to such transformation. Fortunately, the issue of energy access is receiving greater and greater attention. As an illustrative example, 2012 has been declared by the General Assembly, the main deliberative, policymaking and representative organ of the United Nations, as the International Year of Sustainable Energy for All. It is crucial to capitalise on this momentum, as energy is central to facing many of today's key development challenges. Addressing the issue of energy poverty in a comprehensive manner would have enormous multiple benefits (e.g. health, education, gender equality). The various chapters of this thesis form a coherent ensemble of individual pieces of analysis around a core topic, namely the nexus between energy and socio-economic development. The different chapters, which are based on stand-alone articles, provide contrasting and complementary perspectives around the issue at hand. It consists of applied research as well as methodological development, and forms altogether an integrated assessment of energy for sustainable development. The thesis is organised in such a way so as to present a consistent and structured narrative. In terms of broad structure, the first chapters gauge the issue of energy poverty, or the lack of access to modern energy services. They offer a sense of the magnitude of the challenge at hand, as well as present an assessment of scenarios towards universal energy access. This is followed by insights on the scale of investment required to address the issue. Finally, concrete interventions to overcome some of the issues are discussed. Energy and the Millennium Development Goals While intuitive, the relationship between energy and development is difficult to quantitatively ascertain and has not been analytically explored in detail in the scientific literature. The correlation between access to energy services and development is, however, often addressed in aggregate in the literature, for example by using composite indexes such as the Human Development Index (HDI), or by focusing strictly on economic impacts. This analysis presents a statistical articulation of the link between energy and various proxies of development, using the Millennium Development Goals as a framework. The outcomes confirm the potentially positive influence of access to energy services on development. The assessment provides a perspective on a number of often employed assumptions about the correlation between energy and development, and challenges claims of its universally positive benefits to specific development priorities. It is found that the benefits to development of access to energy services vary considerably. Measuring Energy Poverty Effective policies to dramatically expand modern energy access need to be grounded in a robust information-base. Metrics that can be used for comparative purposes and to track progress towards targets therefore represent an essential support tool. This analysis reviews the relevant literature, and discusses the adequacy and applicability of existing instruments to measure energy poverty. Drawing on those insights, it proposes a new composite index to measure energy poverty. Both the associated methodology and initial results for several African countries are discussed. Whereas most existing indicators and composite indices focus on assessing the access to energy, or the degree of development related to energy, the new index developed – the Multidimensional Energy Poverty Index (MEPI) – focuses on the deprivation of access to modern energy services. It captures both the incidence and intensity of energy poverty, and provides a new tool to support policy-making. Energy Access Scenarios to 2030 for sub-Saharan Africa In order to reach a goal of universal access to modern energy services by 2030, consideration of various electricity sector pathways is required to help inform policy-makers and investors, and help guide power system design. To that end, and building on existing tools and analysis, several ‘high-level’, transparent, and economy-wide scenarios for the sub-Saharan African power sector to 2030 are presented. These simple scenarios are constructed against the backdrop of historical trends and various interpretations of universal access. They are designed to provide the international community with an indication of the overall scale of the effort required. Most existing projections, using typical long-term forecasting methods for power planning, show roughly a threefold increase in installed generation capacity occurring by 2030, but more than a tenfold increase would likely be required to provide for full access – even at relatively modest levels of electricity consumption. This equates to approximately a 13% average annual growth rate, compared to a historical one (in the last two decades) of 1.7%. Scale of Investment for Universal Energy Access To help provide clarity, support political decision making, and inform the design of financial responses, the overall scale of spending required to meet universal access to modern energy services is considered. The existing literature at the global, regional, national, and project levels and disaggregate cost estimates is reviewed in order to provide increased transparency through comparable metrics. A new methodology is developed to calculate three new cost scenarios that attempt to address several existing analytical gaps. As a conclusion, the total cost of providing (near) universal access is expected to be likely considerably higher than published estimates which often focus primarily on capital costs. While recognizing the coarse nature of the analysis, the annual cost of universal access to electricity and clean cooking is estimated at ranging from USD 14 to 136 billion (USD 12 - 134 billion for electrification and USD 1.4 to 2.2 billion for clean cooking) depending on the various scenarios and assumptions. Current Financial Flows related to Energy Access To help inform the design of appropriate and effective policies to reduce energy poverty, this analysis presents an assessment of the current macro financial flows in the electricity and gas distribution sectors in developing countries. It builds on the methodology used to quantify the flows of investment in the climate change area. The approach relies on national gross fixed capital formation, overseas development assistance, and foreign direct investment. These high-level and aggregated investment figures provide a sense of the scale to policy-makers, but are only a small part of the information required to design financial vehicles. In addition, these figures tend to mask numerous variations between sectors and countries, as well as trends and other temporal fluctuations. Nonetheless, for the poorest countries, one can conclude that the current flows are considerably short (at least five times) of what will be required to provide a basic level of access to clean, modern energy services to the ‘energy poor’. Clean Development Mechanism and Sustainable Development The Clean Development Mechanism (CDM) has a twofold objective, to offset greenhouse gas emissions and to contribute to sustainable development in the host country. The contribution to the latter objective seems marginal in most CDM activities. Also, CDM activities are unevenly spread among developing countries. In response to these concerns, initiatives with the objective of promoting CDM projects with broad local sustainable development dividends have been launched, such as the Gold Standard and the Community Development Carbon Fund. The Gold Standard label rewards best-practice CDM projects while the Community Development Carbon Fund focuses on promoting CDM activities in underprivileged communities. Using a multi-criteria method, the potential contribution to local sustainable development of those CDM projects with particular attributes is compared with ordinary ones. This evaluation suggests that labelled CDM activities tend to slightly outperform comparable projects, although not unequivocally.
APA, Harvard, Vancouver, ISO, and other styles
4

Johnson, Emelie, and Josefine Axelsson. "A nexus assessment of Energy and Water in Rwanda." Thesis, KTH, Industriell ekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210750.

Full text
Abstract:
Rwanda is a small country in Central Africa with plans on 100% electrification and 60% renewable energy in the electricity mix by 2030. Today 31% of the country’s population has access to electricity and hydropower yields approximately half (44%) of the country’s electricity generation. The country’s plans include an aggressive development plan, which aims to foster multi-sectoral development and elevate the country from poverty. Water is a critical resource, heavily exploited by both the power and agriculture sector. This thesis intends to investigate the role of hydropower in Rwanda’s electrification plans, identify critical points in the use of water and explore the possible effects of climate change. Two energy modelling tools were used, namely OnSSET and OSeMOSYS. Water balance equations were developed manually based water demand data from the Rwandan Ministry of Natural Resources and three climate scenarios based on data from KNMI Climate Explorer. The results show that hydropower’s share is expected to vary between 7 - 47% in the electricity mix by 2030, with its penetration highly depending on both electricity demand and climate scenario selected. It was also concluded that water availability will not be able to sufficiently cover the expected water demand in the country after 2026. Hence, Rwanda’s aggressive hydropower expansion plans might need to be reconsidered.
Rwanda är ett litet land i centrala Afrika med mål att elektrifiera hela landet samt att ha en elmix med 60% förnyelsebart år 2030. Idag har 31% tillgång till el och vattenkraft står för 44% av elmixen. Vatten är emellertid en begränsad resurs med ökande behov från inte minst jordbruket. Denna rapport utreder vattenkraftens roll i Rwandas elektrifieringsplaner och klimatförändringars påverkan på vattentillgång. För att modellera elmixen har OnSSET och OSeMOSYS som är två modeller utvecklade på KTH dESA använts. Beräkningar på vattentillgänglighet har gjorts med hjälp av vattentillgång utifrån flera klimatscenarion samt prognoser av framtida vattenbehov från Ministry of Natural Resources i Rwanda. De framtagna resultaten visade att vattenkraften år 2030 bidrar med 7 - 47% till elmixen beroende på klimatscenario och elbehov. Denna variation beror dock framförallt på skillnaderna i de årliga variationerna i nederbördsmönster mellan olika klimatscenarion snarare än minskad total vattentillgång pga klimatförändringar. Oberoende av klimatförändringarna kommer vattentillgången inte kunna täcka det uppskattade vattenbehovet och de framtida vattenplanerna kan därför behöva omprövas.
APA, Harvard, Vancouver, ISO, and other styles
5

Magnusson, Elsa. "The Energy-Gender Nexus: Another layer of wickedness to the Swedish energy transition." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448537.

Full text
Abstract:
Currently, the world as we know it is undergoing many different transformations towards a more sustainable future, one of which is the energy transition. The energy transition is a wicked problem that requires transformative and creative thinking to be solved. One way to foster an innovative environment in organizations is by having a diverse workforce with different backgrounds, experiences, and perspectives. However, the energy sector, which has a major responsibility in the transition, is currently gender-segregated. Thus, not taking advantage of diverse capabilities. This thesis studies the energy-gender nexus within a Swedish context and explores what implications a male-dominated energy sector could entail for the energy transition. This is done through a qualitative research design using two methods, (1) a document review to analyze how important actors in the Swedish energy transition currently address gender equality, (2) expert interviews to further explore these findings. The results showed that the energy-gender nexus is a complex paradigm and that opportunities and challenges to integrate more diversity often are interconnected. The main challenges were showed to be connected to presumptions of generalized gender norms, the sectorial image, and the need for structural change. Opportunities were connected to affirmative action and advocacy from initiatives or role models, and benefits from specific measurable targets. It was also concluded that more perspectives and a diversified energy sector could potentially benefit the energy transition through acceleration.
APA, Harvard, Vancouver, ISO, and other styles
6

Hoover, Joseph Hamilton. "THE ARIZONA WATER-ENERGY NEXUS: ELECTRICITY FOR WATER AND WASTEWATER SERVICES." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193342.

Full text
Abstract:
The water-energy nexus is the dependent relationship between water and energy resources. The nexus results in complex policy and management challenges for resources that have been historically managed independently. This study quantifies electricity used for water service provision in Arizona. Employing the water use cycle as an analysis tool, this study divides municipal water use for the Tucson metropolitan area and city of Phoenix into four components. The findings suggest that energy intensity differences between Phoenix and Tucson exists due to geographic variables. The city of Phoenix and Tucson metropolitan area currently consume 1.2% of statewide electricity for water and wastewater service. Electricity demand for water and wastewater service in Tucson for 2008-2030 will be 110-131%, which is greater than the 85% electricity growth statewide. Water and wastewater agencies now face decisions regarding future plans to meet water demand and maintain a low overall energy use for service provision.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xinyue. "Understanding the water-energy nexus: A case study of Ningxia." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232234.

Full text
Abstract:
Using Ningxia Hui Autonomous Region in China as a case study, the thesis addresses the interconnectedness between water and energy and investigates the regional water-energy nexus to assess the coherence of relevant policies and to explore opportunities to achieve sustainable development. Ningxia is extremely scarce in water but abundant in coal. On one hand, the government sets stringent targets to conserve water; on the other hand, the region has ambitious plans to develop the water intensive coal and relevant industries. Based on current development status and policies, the water and energy systems are modeled by WEAP and LEAP, respectively. The regional water-energy nexus is mapped to reveal the interactions between water and energy sectors. From the water policies, it is estimated that the water demand would decrease slightly in 2015; from the energy policies, the energy demand and production would increase greatly. Through the nexus approach, it is found that while energy is abundant to satisfy the increasing demand by the water sector for production and supply, water, however, cannot support the aggressive energy development. The huge water deficit indicates the potential incoherence of current policies and the unsustainable development mode. Nevertheless, there are opportunities to secure resources sustainability. This thesis highlights the viability of the water-energy nexus approach for comprehensive cross-sectorial assessment in policy making and resource management.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Yaoping. "Climate Change and Its Effects on the Energy-Water Nexus." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534307556870925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barbarà, Mir Laia. "The water-energy-food nexus to tackle climate change in Morocco." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670228.

Full text
Abstract:
The water, energy and food nexus is a theoretical approach to better understand and systematically examine the interactions between the natural environment and human activities, and to work towards a more organized management and use of natural resources across sectors and scales (FAO, 2014). It looks at the way a group of people -regionally, nationally, and locally- utilize resources and analyzes how they can be more efficiently managed. In implementing the WEF Nexus, there are ripple effects through the 17 Sustainable Development Goals (SDGs). In fact, several governments have already incorporated the WEF Nexus as part of their governmental policy in order to promote a more sustainable future. The WEF Nexus has four objectives: to help eradicate food insecurity, hunger, and malnutrition; make fisheries, forestry, and agriculture more productive and sustainable; help eliminate rural poverty; and enable efficient and sustainable food systems (FAO, 2019). In order to fully understand the challenges, trends, and opportunities presented by the WEF Nexus, this research covers what it is and where it comes from by studying the interlinks and trade-offs among these three resources; and suggests best practices to relieve the pressures that threaten resource availability and better manage them. However, problems arise in the implementation of those goals. For example, the rising number of climate migrants indicates that there are still problem areas in achieving the Nexus to its fullest potential. This Thesis also analyzes the current status of the WEF Nexus in these areas and provides policy recommendations for the particular case of Morocco. Within the MENA region, Morocco is probably the most vulnerable country to climate change: desertification, sea-level rise, groundwater salinization, climate migration as well as sudden flooding and storms affect the life of people in all parts of the country. Such a unique and fragile situation motivated the choice of the country as the case study for this research work. A WEF approach to managing a country’s resources is a great first step towards achieving the targets of the 2030 Agenda. The WEF Nexus is a catalyzing force for development: it underpins equality and democracy whilst setting the foundation to achieve the Sustainable Development Goals. Protecting the world’s most vital resources, without which human life is impossible, is the Nexus first priority.
El nexe aigua, energia i aliments (a partir d'ara: "WEF Nexus", de les seves sigles en anglès), és un enfocament teòric que permet comprendre millor i examinar sistemàticament les interaccions entre el medi natural i les activitats humanes, per tal d'aconseguir una gestió i un ús més racionalitzat dels recursos naturals (FAO, 2014). El WEF Nexus analitza de quina manera un grup de persones utilitzen els recursos -regionalment, nacionalment i localment- a la vegada que analitza com es podrien gestionar de manera més eficient. La implementació del WEF Nexus, té efectes en tots els 17 objectius de desenvolupament sostenible (ODS). De fet, diversos governs ja han incorporat el WEF Nexus en la seva política governamental per tal de promoure un futur més sostenible. El WEF Nexus té quatre objectius: ajudar a erradicar la inseguretat alimentària, la fam i la desnutrició; contribuir a que la pesca, la silvicultura i l’agricultura siguin més productives i sostenibles; ajudar a eliminar la pobresa rural; i promoure sistemes alimentaris eficients i sostenibles (FAO, 2019). Per tal de comprendre els reptes, les tendències i les oportunitats que presenta el WEF Nexus, aquesta investigació comença definint què és i d’on prové per després suggerir bones pràctiques per alleujar les pressions que amenacen la disponibilitat de recursos i gestionar-les millor. No obstant, quan s'implementen aquests objectius encara sorgeixen problemes com exemplifica el creixent nombre de migrants climàtics, que posa de relleu que encara hi ha marge de millora per assolir el màxim potencial del Nexus. Aquesta Tesi també analitza l'estat actual del WEF Nexus i proposa un paquet de polítiques públiques pel cas concret del Marroc. Dins de la regió MENA, el Marroc és probablement el país més vulnerable al canvi climàtic: la desertització, l’augment del nivell del mar, la salinització de les aigües subterrànies, la migració climàtica, així com les inundacions sobtades i les tempestes, afecten la vida de les persones de totes les parts del país. Una situació tan única i tan fràgil ha motivat l’elecció del país com a cas d’estudi per aquesta Tesi. Gestionar els recursos d’un país amb un enfocament del WEF Nexus, és un gran primer pas per assolir els objectius de l’Agenda 2030. El WEF Nexus és una força catalitzadora per al desenvolupament: sustenta la igualtat i la democràcia alhora que estableix les bases per assolir els objectius de desenvolupament sostenible. La prioritat del WEF Nexus és la protecció dels recursos vitals, sense els quals la vida humana és impossible.
APA, Harvard, Vancouver, ISO, and other styles
10

Rahman, Md Mizanur <1980&gt. "Legal Ontology for Nexus: Water, Energy and Food in EU Regulations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7261/.

Full text
Abstract:
The objectives of the thesis are – (a) to identify the problems in water-energy-food nexus from ICT and Law point of view and to propose theoretically a legal knowledge framework for water-energy-food nexus in order to reduce those problems technologically, (b) to construct and implement legal ontology for nexus extracted from EU water, energy and food Regulations in OWL 2 language, which is a part of the grater work of implementing legal knowledge framework for water-energy-food nexus proposed through the compilation of objective (a). Considering these objectives, this thesis presents total five chapters. First chapter investigates current start of art of nexus in order to identify (1) major knowledge gaps in the nexus and (2) ontological existence of the nexus in the EU regulations, particularly in the legal definitions accommodated in EU Regulations and Directives associated with nexus domains. It also rationalizes the need for legal ontology for nexus. Second chapter evaluates existing perspectives and methodologies available for constructing legal ontology. The purpose of such evaluation was to select correct perspective and methodology for constructing legal ontology for nexus. It, at the end, justifies the need for developing new methodology for constructing the legal ontology for nexus. Third chapter explains the methodology used for engineering legal definitional knowledge extracted from the selected EU regulations in order to construct the legal ontology for nexus. Fourth chapter explains in detail the legal ontology for nexus while fifth chapter evaluates legal ontology for nexus. In addition, conclusion of the thesis shares critical issues faced throughout this doctoral thesis work. Furthermore, annexes contain a list of all formulas of restrictions implemented in legal ontology for nexus and links of all modules of legal ontology for nexus. LODE documentation of the legal ontology for nexus is available at http://codexml.cirsfid.unibo.it/post-doctoralresearchers/mizanur-rahman/.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Energy Nexus"

1

Salam, P. Abdul, Sangam Shrestha, Vishnu Prasad Pandey, and Anil Kumar Anal, eds. Water-Energy-Food Nexus. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saundry, Peter, and Benjamin L. Ruddell, eds. The Food-Energy-Water Nexus. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29914-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Endo, Aiko, and Tomohiro Oh, eds. The Water-Energy-Food Nexus. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7383-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, Peter D. Exploring the energy-water nexus. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mujtaba, I., R. Srinivasan, and N. Elbashir. The Water–Food–Energy Nexus. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuzemko, Caroline. The Energy Security-Climate Nexus. London: Palgrave Macmillan UK, 2013. http://dx.doi.org/10.1057/9781137307835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muthu, Subramanian Senthilkannan, ed. The Water–Energy–Food Nexus. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0239-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leal Filho, Walter, and Dinesh Surroop, eds. The Nexus: Energy, Environment and Climate Change. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63612-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dodds, Felix. The Water, Food, Energy and Climate Nexus. London ; New York : Routledge, 2016. | Series: Earthscan: Routledge, 2016. http://dx.doi.org/10.4324/9781315640716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Army War College (U.S.). Strategic Studies Institute, ed. The energy and security nexus: A strategic dilemma. Carlisle Barracks, PA: Strategic Studies Institute, U.S. Army War College, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Energy Nexus"

1

Storey, Donovan, Lorenzo Santucci, and Banashri Sinha. "Urban Nexus." In Water-Energy-Food Nexus, 43–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Olsson, Gustaf. "Water water and Energy Nexus water energy nexus." In Encyclopedia of Sustainability Science and Technology, 11932–46. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hightower, Michael. "Water and Energy Nexus." In Sustainability in the Mineral and Energy Sectors, 347–75. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315369853-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Olsson, Gustaf. "Water and Energy Nexus." In Encyclopedia of Sustainability Science and Technology, 1–18. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-2493-6_331-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pradhanang, Soni M. "Water-Energy-Food Nexus." In Water-Energy-Food Nexus, 141–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shinde, Victor R. "Water-Energy-Food Nexus." In Water-Energy-Food Nexus, 67–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Noureldeen Mohamed, Nader. "Water Energy Food Nexus." In SpringerBriefs in Climate Studies, 47–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38010-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benson, David, Animesh K. Gain, Josselin Rouillard, and Carlo Giupponi. "Governing for the Nexus." In Water-Energy-Food Nexus, 77–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Urban, Frauke. "The energy–poverty–climate nexus." In Energy and Development, 84–99. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020. | Series: Rethinking development: Routledge, 2019. http://dx.doi.org/10.4324/9781351047487-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barkat, Sophia, and Zachary A. Smith. "The Food-Water-Energy Nexus in Modern Rice Cultivation in Bangladesh and Competing Discourses of Rice Research Institutions." In Water-Energy-Food Nexus, 191–205. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy Nexus"

1

Khalil, Essam E. "Strategic Roadmap for Water Energy Nexus." In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kadengal, Jamsheeda, Sivabalan Thirunavukkarasu, Arunchandar Vasan, Venkatesh Sarangan, and Anand Sivasubramaniam. "The Energy-Water Nexus in Campuses." In the 5th ACM Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2528282.2528288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khalil, Essam E. "Thermal management and Building Codes Nexus." In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-4457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Islam, Syed M. "Teaching research nexus — An australian experience." In Energy Society General Meeting (PES). IEEE, 2009. http://dx.doi.org/10.1109/pes.2009.5275261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Wanghuai, and Zuankai Wang. "Nature-Inspired Surfaces for Water-Energy Nexus." In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). IEEE, 2021. http://dx.doi.org/10.1109/transducers50396.2021.9495644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weimann, Jacob, Matthew Schmidt, Arthur Bergles, and Marc Compere. "Representing the Water-Energy Nexus With Decision Matrices." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36918.

Full text
Abstract:
The global water nexus is still in the formative stages as a area of study. The needs are mostly clear: people need adequate water for drinking, for growing food, for cooling steam-based power plants, and for sustaining the natural habitats that keep the carbon and hydrologic cycles functioning properly. What has emerged is a growing awareness of how finite the earth’s water resources are and how this creates a complex set of interconnected challenges in both developed and developing nations. What has also emerged are predictions with increasing urgency for water and energy crises in the next 20–50 years, especially if these concerns are left unaddressed. The Water-Nexus is not new, but its emerging importance now is driven primarily by population growth, climate change, and our growing awareness of societal impact on ecosystems. Providing energy for buildings, homes, and transportation is an increasingly difficult task for the growing population and aging infrastructure. Most individual issues within the Water-Energy Nexus are fairly well known with quantifiable water impacts. What is lacking is a clear representation of the Nexus relationships that show how changes in one sector impact another. What is needed is a compact way to represent the interrelationships that provide both insight and perspective on how much influence one proposed change has compared to another. Such an understanding should surface the most strategic, viable methods for simultaneously meeting water and energy needs while being a good steward of finances and natural resources. We propose the use of decision matrices from engineering design to represent the interconnected relationships that form the Water-Energy Nexus. The customers in this case are water-centric stakeholders such as government and corporate decision makers, educators, and water-oriented development agencies. Both quantitative and qualitative research methods are used to integrate the nexus topics into the decision matrix. Both positive and negative correlations in water impacts are indicated with their relative level of influence. Common units are used when possible to quantify water consumption or savings. Decision matrices are presented for transportation fuels and utility power generation. The transportation fuels matrix includes evaluation criteria for water impact, sustainability, convenience, emissions, public opinion, and geographic considerations. The utility power decision matrix has similar evaluation criteria except capacity factor is considered instead of convenience. These criteria are intended to aid policy makers in strategically navigating the legislative and policy generation process to emphasize or reduce emphasis on different fuel types. Recommendations are provided for strategic, viable methods to mitigate future effects of the Water-Energy crisis.
APA, Harvard, Vancouver, ISO, and other styles
7

Xianjun Zhang, G. G. Karady, K. R. Piratla, and S. T. Ariaratnam. "Nexus between distributed generation and urban water infrastructure." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6345424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Ding. "The nexus of energy and water in China." In 4th International Conference on Renewable Energy and Environmental Technology (ICREET 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icreet-16.2017.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wong, Kaufui V., and Sarmad Chaudhry. "Climate Change Aggravates the Energy-Water-Food Nexus." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36502.

Full text
Abstract:
There are regions in the world experiencing the energy-food-water nexus problems. These regions tend to have high population density, economy that depends on agriculture and climates with lower annual rainfall that may have been adversely affected by climate change. A case in point is the river basin of the Indus. The Indus River is a large and important river running through four countries in East Asia and South Asia: China, India, Afghanistan, and Pakistan. The region is highly dependent on water for both food and energy. The interlinkage of these three components is the cause for the energy-water-food nexus. The difficulty in effectively managing the use of these resources is their very interdependence. For instance, water availability and policies may influence food production, which is governed by agricultural policies, which will further affect energy production from both water and biofuel sources, which will in turn require the usage of water. The situation is further complicated when climate change is taken into account. On the surface, an increase in temperatures would be devastating during the dry season for a region that uses up to 70% of the total land for agriculture. There are predictions that crop production in the region would decrease; the Threedegreeswarmer organization estimated that crop production in the region could decrease by up to 30% come 2050. Unfortunately, the suspected effects of climate change are more than just changes in temperature, precipitation, monsoon patterns, and drought frequencies. A huge concern is the accelerating melting of glaciers in the Himalayas. Some models predict that a global increase in temperature of just 1°C can decrease glacial volume by 50%. The loss of meltwaters from the Himalayan glaciers during the dry season will be crippling for the Indus River and Valley. In a region where up to 90% of accessible water is used for agriculture, there will be an increased strain on food supply. This will further deteriorate the current situation in the region, where almost half of the world’s hungry and undernourished people reside. While the use of hydropower to generate electricity is already many times lower than the potential use, future scarcity of water will limit the potential ability of hydropower to supply energy to people who already experience less than 50% access to electricity. In the current work, suggestions have been put forward to save the increased glacier melt for current and future use where necessary, improve electricity generation efficiency, use sea water for Rankine power cycle cooling and combined cycle cooling, and increase use desalination for drinking water. Energy conservation practices should also be practiced. All of these suggestions must be considered to address the rising issues in the energy-water-food nexus.
APA, Harvard, Vancouver, ISO, and other styles
10

WEBBER, MICHAEL E., David Hafemeister, Daniel Kammen, Barbara Goss Levi, and Peter Schwartz. "THE NEXUS OF ENERGY AND WATER IN THE UNITED STATES." In PHYSICS OF SUSTAINABLE ENERGY II: USING ENERGY EFFICIENTLY AND PRODUCING IT RENEWABLY. AIP, 2011. http://dx.doi.org/10.1063/1.3653847.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy Nexus"

1

Reinhard, Stijn, Jan Verhagen, Wouter Wolters, and Ruerd Ruben. Water-food-energy nexus : A quick scan. Wageningen: Wageningen Economic Research, 2017. http://dx.doi.org/10.18174/424551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhaduri, Budhendra L., A. J. Simon, Melissa R. Allen, Jibonananda Sanyal, Robert N. Stewart, and Ryan A. McManamay. Energy-Water Nexus Knowledge Discovery Framework, Experts' Meeting. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1479798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kishore, Avinash. The changing energy: Irrigation nexus in Eastern India. Washington, DC: International Food Policy Research Institute, 2019. http://dx.doi.org/10.2499/p15738coll2.133588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pumphrey, Carolyn W. The Energy and Security Nexus: A Strategic Dilemma. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada571177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hannon, John P. The Growing Nexus: Energy, Environmental Causes and Sovereignty. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada561670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Author, Not Given. Energy Production Through Anaerobic Digestion in the Food-Waste-Energy Nexus. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1477441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Author, Not Given. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1163430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tidwell, Vincent C., and Barbara Denise Moreland. Mapping the Energy-Water Nexus around the Pacific Rim. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1235808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhaduri, Budhendra L., AJ Simon, Melissa R. Allen, Jibonananda Sanyal, Robert N. Stewart, and Ryan A. McManamay. Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1426570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Daw, Jennifer A., and Sherry R. Stout. Building Island Resilience through the Energy, Water, Food Nexus. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography