Academic literature on the topic 'Energy Nexus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy Nexus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Energy Nexus"
Schnoor, Jerald L. "Water–Energy Nexus." Environmental Science & Technology 45, no. 12 (June 15, 2011): 5065. http://dx.doi.org/10.1021/es2016632.
Full textGuven, Huseyin, and Aysegul Tanik. "Water-energy nexus." Smart and Sustainable Built Environment 9, no. 1 (August 14, 2018): 54–70. http://dx.doi.org/10.1108/sasbe-07-2017-0030.
Full textLiu, Yu, Han-Qing Yu, Wun Jern Ng, and David C. Stuckey. "Wastewater-Energy Nexus." Chemosphere 140 (December 2015): 1. http://dx.doi.org/10.1016/j.chemosphere.2015.06.012.
Full textKahrl, Fredrich, and David Roland-Holst. "China's water–energy nexus." Water Policy 10, S1 (March 1, 2008): 51–65. http://dx.doi.org/10.2166/wp.2008.052.
Full textLoeb, Barry L. "Water-Energy-Food Nexus." Ozone: Science & Engineering 38, no. 3 (April 8, 2016): 173–74. http://dx.doi.org/10.1080/01919512.2016.1166029.
Full textKrampe, Jörg, and Norbert Kreuzinger. "Water-Energy-Food-Nexus." Österreichische Wasser- und Abfallwirtschaft 68, no. 3-4 (March 15, 2016): 84–85. http://dx.doi.org/10.1007/s00506-016-0300-0.
Full textBlumberga, Dagnija, Haralds Vigants, Einars Cilinskis, Valdis Vitolins, Irina Borisova, Asset Khabdullin, Arman Khabdullin, Zauresh Khabdullina, Guldana Khabdullina, and Ivars Veidenbergs. "Energy Efficiency and Energy Management Nexus." Energy Procedia 95 (September 2016): 71–75. http://dx.doi.org/10.1016/j.egypro.2016.09.023.
Full textKim, Dae-Jung. "Sogang Energy-Water Nexus Laboratory." Journal of the Korean Society of Visualization 10, no. 1 (April 30, 2012): 3–7. http://dx.doi.org/10.5407/jksv.2012.10.1.003.
Full textBess, Mike, and Mark Whiteley. "The energy, environment, technology nexus." International Journal of Global Energy Issues 14, no. 1/2/3/4 (2000): 33. http://dx.doi.org/10.1504/ijgei.2000.004351.
Full textKeairns, D. L., R. C. Darton, and A. Irabien. "The Energy-Water-Food Nexus." Annual Review of Chemical and Biomolecular Engineering 7, no. 1 (June 7, 2016): 239–62. http://dx.doi.org/10.1146/annurev-chembioeng-080615-033539.
Full textDissertations / Theses on the topic "Energy Nexus"
Hussien, Wa'el Abdul-Bari. "Multi-scale investigation of water-energy-food nexus." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/28299.
Full textWang, Xuechao. "Critical Transmission Sectors of Energy-Water-GHG Nexus." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433461.
Full textNussbaumer, Patrick. "Energy for Sustainable Development – An Assessment of the Energy-Poverty-Development Nexus." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96873.
Full textEnergy is central to many aspects of socio-economic emancipation. The services that most people in industrialised countries take from granted – adequate lighting, low-polluting heating and cooking energy, telecommunication and entertainment, motive power – are out of reach to large parts of the world’s population. A lack of access to affordable and reliable energy services represents a key obstacle to human, social, and economic development and the achievement of the Millennium Development Goals. As unacceptable and unsustainable as it is, widespread energy poverty represents a stark reality which must be dealt alongside other pressing global issues. Despite the significant efforts by local institutions and governments, utilities and international organisations, the absolute number of energy poor is expected to rise in coming decades in the absence of additional dedicated action. History has shown, however, that significant progress can be achieved with regard to improving energy access in a short timeframe. Remarkable improvements occurred rapidly in several Asian countries (e.g. Vietnam), South Africa and Brazil in the recent past. However, current initiatives to eradicate energy poverty are insufficient in scale and scope, and attempting to address the issue in the same incremental fashion as in the past is clearly inappropriate. Energy for development strategies must go well beyond merely providing light to poor households. They should aim at transformative changes that bring about sustainable development. The recent succession of crises has set back some development progress. The international community needs to adjust swiftly to the new circumstances and provide advice and assistance that is resilient and long-lasting, and creates an environment that is conducive to enhancing endogenous development. Today, there is no technical barrier to providing the billions of energy poor with modern, safe, reliable and affordable energy services. It is our duty to deal with the aspiration of countries to move towards modern economies, and energy is paramount to such transformation. Fortunately, the issue of energy access is receiving greater and greater attention. As an illustrative example, 2012 has been declared by the General Assembly, the main deliberative, policymaking and representative organ of the United Nations, as the International Year of Sustainable Energy for All. It is crucial to capitalise on this momentum, as energy is central to facing many of today's key development challenges. Addressing the issue of energy poverty in a comprehensive manner would have enormous multiple benefits (e.g. health, education, gender equality). The various chapters of this thesis form a coherent ensemble of individual pieces of analysis around a core topic, namely the nexus between energy and socio-economic development. The different chapters, which are based on stand-alone articles, provide contrasting and complementary perspectives around the issue at hand. It consists of applied research as well as methodological development, and forms altogether an integrated assessment of energy for sustainable development. The thesis is organised in such a way so as to present a consistent and structured narrative. In terms of broad structure, the first chapters gauge the issue of energy poverty, or the lack of access to modern energy services. They offer a sense of the magnitude of the challenge at hand, as well as present an assessment of scenarios towards universal energy access. This is followed by insights on the scale of investment required to address the issue. Finally, concrete interventions to overcome some of the issues are discussed. Energy and the Millennium Development Goals While intuitive, the relationship between energy and development is difficult to quantitatively ascertain and has not been analytically explored in detail in the scientific literature. The correlation between access to energy services and development is, however, often addressed in aggregate in the literature, for example by using composite indexes such as the Human Development Index (HDI), or by focusing strictly on economic impacts. This analysis presents a statistical articulation of the link between energy and various proxies of development, using the Millennium Development Goals as a framework. The outcomes confirm the potentially positive influence of access to energy services on development. The assessment provides a perspective on a number of often employed assumptions about the correlation between energy and development, and challenges claims of its universally positive benefits to specific development priorities. It is found that the benefits to development of access to energy services vary considerably. Measuring Energy Poverty Effective policies to dramatically expand modern energy access need to be grounded in a robust information-base. Metrics that can be used for comparative purposes and to track progress towards targets therefore represent an essential support tool. This analysis reviews the relevant literature, and discusses the adequacy and applicability of existing instruments to measure energy poverty. Drawing on those insights, it proposes a new composite index to measure energy poverty. Both the associated methodology and initial results for several African countries are discussed. Whereas most existing indicators and composite indices focus on assessing the access to energy, or the degree of development related to energy, the new index developed – the Multidimensional Energy Poverty Index (MEPI) – focuses on the deprivation of access to modern energy services. It captures both the incidence and intensity of energy poverty, and provides a new tool to support policy-making. Energy Access Scenarios to 2030 for sub-Saharan Africa In order to reach a goal of universal access to modern energy services by 2030, consideration of various electricity sector pathways is required to help inform policy-makers and investors, and help guide power system design. To that end, and building on existing tools and analysis, several ‘high-level’, transparent, and economy-wide scenarios for the sub-Saharan African power sector to 2030 are presented. These simple scenarios are constructed against the backdrop of historical trends and various interpretations of universal access. They are designed to provide the international community with an indication of the overall scale of the effort required. Most existing projections, using typical long-term forecasting methods for power planning, show roughly a threefold increase in installed generation capacity occurring by 2030, but more than a tenfold increase would likely be required to provide for full access – even at relatively modest levels of electricity consumption. This equates to approximately a 13% average annual growth rate, compared to a historical one (in the last two decades) of 1.7%. Scale of Investment for Universal Energy Access To help provide clarity, support political decision making, and inform the design of financial responses, the overall scale of spending required to meet universal access to modern energy services is considered. The existing literature at the global, regional, national, and project levels and disaggregate cost estimates is reviewed in order to provide increased transparency through comparable metrics. A new methodology is developed to calculate three new cost scenarios that attempt to address several existing analytical gaps. As a conclusion, the total cost of providing (near) universal access is expected to be likely considerably higher than published estimates which often focus primarily on capital costs. While recognizing the coarse nature of the analysis, the annual cost of universal access to electricity and clean cooking is estimated at ranging from USD 14 to 136 billion (USD 12 - 134 billion for electrification and USD 1.4 to 2.2 billion for clean cooking) depending on the various scenarios and assumptions. Current Financial Flows related to Energy Access To help inform the design of appropriate and effective policies to reduce energy poverty, this analysis presents an assessment of the current macro financial flows in the electricity and gas distribution sectors in developing countries. It builds on the methodology used to quantify the flows of investment in the climate change area. The approach relies on national gross fixed capital formation, overseas development assistance, and foreign direct investment. These high-level and aggregated investment figures provide a sense of the scale to policy-makers, but are only a small part of the information required to design financial vehicles. In addition, these figures tend to mask numerous variations between sectors and countries, as well as trends and other temporal fluctuations. Nonetheless, for the poorest countries, one can conclude that the current flows are considerably short (at least five times) of what will be required to provide a basic level of access to clean, modern energy services to the ‘energy poor’. Clean Development Mechanism and Sustainable Development The Clean Development Mechanism (CDM) has a twofold objective, to offset greenhouse gas emissions and to contribute to sustainable development in the host country. The contribution to the latter objective seems marginal in most CDM activities. Also, CDM activities are unevenly spread among developing countries. In response to these concerns, initiatives with the objective of promoting CDM projects with broad local sustainable development dividends have been launched, such as the Gold Standard and the Community Development Carbon Fund. The Gold Standard label rewards best-practice CDM projects while the Community Development Carbon Fund focuses on promoting CDM activities in underprivileged communities. Using a multi-criteria method, the potential contribution to local sustainable development of those CDM projects with particular attributes is compared with ordinary ones. This evaluation suggests that labelled CDM activities tend to slightly outperform comparable projects, although not unequivocally.
Johnson, Emelie, and Josefine Axelsson. "A nexus assessment of Energy and Water in Rwanda." Thesis, KTH, Industriell ekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210750.
Full textRwanda är ett litet land i centrala Afrika med mål att elektrifiera hela landet samt att ha en elmix med 60% förnyelsebart år 2030. Idag har 31% tillgång till el och vattenkraft står för 44% av elmixen. Vatten är emellertid en begränsad resurs med ökande behov från inte minst jordbruket. Denna rapport utreder vattenkraftens roll i Rwandas elektrifieringsplaner och klimatförändringars påverkan på vattentillgång. För att modellera elmixen har OnSSET och OSeMOSYS som är två modeller utvecklade på KTH dESA använts. Beräkningar på vattentillgänglighet har gjorts med hjälp av vattentillgång utifrån flera klimatscenarion samt prognoser av framtida vattenbehov från Ministry of Natural Resources i Rwanda. De framtagna resultaten visade att vattenkraften år 2030 bidrar med 7 - 47% till elmixen beroende på klimatscenario och elbehov. Denna variation beror dock framförallt på skillnaderna i de årliga variationerna i nederbördsmönster mellan olika klimatscenarion snarare än minskad total vattentillgång pga klimatförändringar. Oberoende av klimatförändringarna kommer vattentillgången inte kunna täcka det uppskattade vattenbehovet och de framtida vattenplanerna kan därför behöva omprövas.
Magnusson, Elsa. "The Energy-Gender Nexus: Another layer of wickedness to the Swedish energy transition." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448537.
Full textHoover, Joseph Hamilton. "THE ARIZONA WATER-ENERGY NEXUS: ELECTRICITY FOR WATER AND WASTEWATER SERVICES." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193342.
Full textLi, Xinyue. "Understanding the water-energy nexus: A case study of Ningxia." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232234.
Full textWang, Yaoping. "Climate Change and Its Effects on the Energy-Water Nexus." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534307556870925.
Full textBarbarà, Mir Laia. "The water-energy-food nexus to tackle climate change in Morocco." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670228.
Full textEl nexe aigua, energia i aliments (a partir d'ara: "WEF Nexus", de les seves sigles en anglès), és un enfocament teòric que permet comprendre millor i examinar sistemàticament les interaccions entre el medi natural i les activitats humanes, per tal d'aconseguir una gestió i un ús més racionalitzat dels recursos naturals (FAO, 2014). El WEF Nexus analitza de quina manera un grup de persones utilitzen els recursos -regionalment, nacionalment i localment- a la vegada que analitza com es podrien gestionar de manera més eficient. La implementació del WEF Nexus, té efectes en tots els 17 objectius de desenvolupament sostenible (ODS). De fet, diversos governs ja han incorporat el WEF Nexus en la seva política governamental per tal de promoure un futur més sostenible. El WEF Nexus té quatre objectius: ajudar a erradicar la inseguretat alimentària, la fam i la desnutrició; contribuir a que la pesca, la silvicultura i l’agricultura siguin més productives i sostenibles; ajudar a eliminar la pobresa rural; i promoure sistemes alimentaris eficients i sostenibles (FAO, 2019). Per tal de comprendre els reptes, les tendències i les oportunitats que presenta el WEF Nexus, aquesta investigació comença definint què és i d’on prové per després suggerir bones pràctiques per alleujar les pressions que amenacen la disponibilitat de recursos i gestionar-les millor. No obstant, quan s'implementen aquests objectius encara sorgeixen problemes com exemplifica el creixent nombre de migrants climàtics, que posa de relleu que encara hi ha marge de millora per assolir el màxim potencial del Nexus. Aquesta Tesi també analitza l'estat actual del WEF Nexus i proposa un paquet de polítiques públiques pel cas concret del Marroc. Dins de la regió MENA, el Marroc és probablement el país més vulnerable al canvi climàtic: la desertització, l’augment del nivell del mar, la salinització de les aigües subterrànies, la migració climàtica, així com les inundacions sobtades i les tempestes, afecten la vida de les persones de totes les parts del país. Una situació tan única i tan fràgil ha motivat l’elecció del país com a cas d’estudi per aquesta Tesi. Gestionar els recursos d’un país amb un enfocament del WEF Nexus, és un gran primer pas per assolir els objectius de l’Agenda 2030. El WEF Nexus és una força catalitzadora per al desenvolupament: sustenta la igualtat i la democràcia alhora que estableix les bases per assolir els objectius de desenvolupament sostenible. La prioritat del WEF Nexus és la protecció dels recursos vitals, sense els quals la vida humana és impossible.
Rahman, Md Mizanur <1980>. "Legal Ontology for Nexus: Water, Energy and Food in EU Regulations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7261/.
Full textBooks on the topic "Energy Nexus"
Salam, P. Abdul, Sangam Shrestha, Vishnu Prasad Pandey, and Anil Kumar Anal, eds. Water-Energy-Food Nexus. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.
Full textSaundry, Peter, and Benjamin L. Ruddell, eds. The Food-Energy-Water Nexus. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29914-9.
Full textEndo, Aiko, and Tomohiro Oh, eds. The Water-Energy-Food Nexus. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7383-0.
Full textWright, Peter D. Exploring the energy-water nexus. New York: Nova Science Publishers, 2011.
Find full textMujtaba, I., R. Srinivasan, and N. Elbashir. The Water–Food–Energy Nexus. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153209.
Full textKuzemko, Caroline. The Energy Security-Climate Nexus. London: Palgrave Macmillan UK, 2013. http://dx.doi.org/10.1057/9781137307835.
Full textMuthu, Subramanian Senthilkannan, ed. The Water–Energy–Food Nexus. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0239-9.
Full textLeal Filho, Walter, and Dinesh Surroop, eds. The Nexus: Energy, Environment and Climate Change. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63612-2.
Full textDodds, Felix. The Water, Food, Energy and Climate Nexus. London ; New York : Routledge, 2016. | Series: Earthscan: Routledge, 2016. http://dx.doi.org/10.4324/9781315640716.
Full textArmy War College (U.S.). Strategic Studies Institute, ed. The energy and security nexus: A strategic dilemma. Carlisle Barracks, PA: Strategic Studies Institute, U.S. Army War College, 2012.
Find full textBook chapters on the topic "Energy Nexus"
Storey, Donovan, Lorenzo Santucci, and Banashri Sinha. "Urban Nexus." In Water-Energy-Food Nexus, 43–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch5.
Full textOlsson, Gustaf. "Water water and Energy Nexus water energy nexus." In Encyclopedia of Sustainability Science and Technology, 11932–46. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_331.
Full textHightower, Michael. "Water and Energy Nexus." In Sustainability in the Mineral and Energy Sectors, 347–75. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315369853-20.
Full textOlsson, Gustaf. "Water and Energy Nexus." In Encyclopedia of Sustainability Science and Technology, 1–18. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-2493-6_331-3.
Full textPradhanang, Soni M. "Water-Energy-Food Nexus." In Water-Energy-Food Nexus, 141–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch13.
Full textShinde, Victor R. "Water-Energy-Food Nexus." In Water-Energy-Food Nexus, 67–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch7.
Full textNoureldeen Mohamed, Nader. "Water Energy Food Nexus." In SpringerBriefs in Climate Studies, 47–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38010-6_5.
Full textBenson, David, Animesh K. Gain, Josselin Rouillard, and Carlo Giupponi. "Governing for the Nexus." In Water-Energy-Food Nexus, 77–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch8.
Full textUrban, Frauke. "The energy–poverty–climate nexus." In Energy and Development, 84–99. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020. | Series: Rethinking development: Routledge, 2019. http://dx.doi.org/10.4324/9781351047487-6.
Full textBarkat, Sophia, and Zachary A. Smith. "The Food-Water-Energy Nexus in Modern Rice Cultivation in Bangladesh and Competing Discourses of Rice Research Institutions." In Water-Energy-Food Nexus, 191–205. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch17.
Full textConference papers on the topic "Energy Nexus"
Khalil, Essam E. "Strategic Roadmap for Water Energy Nexus." In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-1066.
Full textKadengal, Jamsheeda, Sivabalan Thirunavukkarasu, Arunchandar Vasan, Venkatesh Sarangan, and Anand Sivasubramaniam. "The Energy-Water Nexus in Campuses." In the 5th ACM Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2528282.2528288.
Full textKhalil, Essam E. "Thermal management and Building Codes Nexus." In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-4457.
Full textIslam, Syed M. "Teaching research nexus — An australian experience." In Energy Society General Meeting (PES). IEEE, 2009. http://dx.doi.org/10.1109/pes.2009.5275261.
Full textXu, Wanghuai, and Zuankai Wang. "Nature-Inspired Surfaces for Water-Energy Nexus." In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). IEEE, 2021. http://dx.doi.org/10.1109/transducers50396.2021.9495644.
Full textWeimann, Jacob, Matthew Schmidt, Arthur Bergles, and Marc Compere. "Representing the Water-Energy Nexus With Decision Matrices." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36918.
Full textXianjun Zhang, G. G. Karady, K. R. Piratla, and S. T. Ariaratnam. "Nexus between distributed generation and urban water infrastructure." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6345424.
Full textMa, Ding. "The nexus of energy and water in China." In 4th International Conference on Renewable Energy and Environmental Technology (ICREET 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icreet-16.2017.101.
Full textWong, Kaufui V., and Sarmad Chaudhry. "Climate Change Aggravates the Energy-Water-Food Nexus." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36502.
Full textWEBBER, MICHAEL E., David Hafemeister, Daniel Kammen, Barbara Goss Levi, and Peter Schwartz. "THE NEXUS OF ENERGY AND WATER IN THE UNITED STATES." In PHYSICS OF SUSTAINABLE ENERGY II: USING ENERGY EFFICIENTLY AND PRODUCING IT RENEWABLY. AIP, 2011. http://dx.doi.org/10.1063/1.3653847.
Full textReports on the topic "Energy Nexus"
Reinhard, Stijn, Jan Verhagen, Wouter Wolters, and Ruerd Ruben. Water-food-energy nexus : A quick scan. Wageningen: Wageningen Economic Research, 2017. http://dx.doi.org/10.18174/424551.
Full textBhaduri, Budhendra L., A. J. Simon, Melissa R. Allen, Jibonananda Sanyal, Robert N. Stewart, and Ryan A. McManamay. Energy-Water Nexus Knowledge Discovery Framework, Experts' Meeting. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1479798.
Full textKishore, Avinash. The changing energy: Irrigation nexus in Eastern India. Washington, DC: International Food Policy Research Institute, 2019. http://dx.doi.org/10.2499/p15738coll2.133588.
Full textPumphrey, Carolyn W. The Energy and Security Nexus: A Strategic Dilemma. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada571177.
Full textHannon, John P. The Growing Nexus: Energy, Environmental Causes and Sovereignty. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada561670.
Full textAuthor, Not Given. Energy Production Through Anaerobic Digestion in the Food-Waste-Energy Nexus. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1477441.
Full textAuthor, Not Given. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1163430.
Full textTidwell, Vincent C., and Barbara Denise Moreland. Mapping the Energy-Water Nexus around the Pacific Rim. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1235808.
Full textBhaduri, Budhendra L., AJ Simon, Melissa R. Allen, Jibonananda Sanyal, Robert N. Stewart, and Ryan A. McManamay. Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1426570.
Full textDaw, Jennifer A., and Sherry R. Stout. Building Island Resilience through the Energy, Water, Food Nexus. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569216.
Full text