Dissertations / Theses on the topic 'Energy storage device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Energy storage device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kulsangcharoen, Ponggorn. "Characterization and emulation of a new supercapacitor-type energy storage device." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13143/.
Full textHawley, Christopher John. "Design and manufacture of a high temperature superconducting magnetic energy storage device." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060508.143200/index.html.
Full textLi, Dingyi. "Real-time simulation of shipboard power system and energy storage device management." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/17857.
Full textDepartment of Electrical and Computer Engineering
Noel Schulz
Many situations can cause a fault on a shipboard power system, especially in naval battleships. Batteries and ultra-capacitors are simulated to be backup energy storage devices (ESDs) to power the shipboard power system when an outage or damage occurs. Because ESDs have advantages such as guaranteed load leveling, good transient operation, and energy recovery during braking operation, they are commonly used for electrical ship applications. To fulfill these requirements, an energy management subsystem (EMS) with a specific control algorithm must connect ESDs to the dc link of the motor drive system. In this research, the real-time simulation of shipboard power system (SPS), bidirectional DC-DC converter, EMS, and ESDs are designed, implemented, and controlled on OPAL-RT system to test SPS survivability and ESD performance in various speed operations.
Campbell, Kevin Ryan. "Phase Change Materials as a Thermal Storage Device for Passive Houses." PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/201.
Full textBecker, Jared. "An investigation of measurement method and phase change in a latent heat energy storage device." Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6365.
Full textLi, Chuan. "Thermal energy storage using carbonate-salt-based composite phase change materials : linking materials properties to device performance." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7242/.
Full textSCALIA, ALBERTO. "New devices for energy harvesting and storage: integrated third generation photovoltaic solar cells and electrochemical double layer capacitors." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2724022.
Full textKrishnamoorthy, Sreenidhi. "Experimental Testing and Mathematical Modeling of a Thermoelectric Based Hydronic Cooling and Heating Device with Transient Charging of Sensible Thermal Energy Storage Water Tank." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1227299540.
Full textMartinez-Gonzalez, Pablo. "A study on the integration of a high-speed flywheel as an energy storage device in hybrid vehicles." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6082.
Full textSi, Wenping. "Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160049.
Full textHuman beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
Tanwilaisiri, Anan. "Design and fabrication of supercapacitors using 3D printing." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16338.
Full textHopkins, Mark. "Intelligent dispatch for distributed renewable resources." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1512.
Full textОмельяненко, Ольга Владимировна, and Валерий Петрович Северин. "Управление потоками мощности электропоезда с накопителем энергии." Thesis, Національний університет біоресурсів і природокористування України, 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33130.
Full textA system of a traction unit with an energy storage device was described, operation modes of this system were considered, energy management system which controls the power flow between traction engines, storage device and trolley line was proposed, it's energy efficiency was calculated.
Choi, DongWoong. "Novel materials for energy storage devices." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045888/.
Full textLing, Han Yeu. "Sustainable Materials for Energy Storage Devices." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/407555.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Chandrasekaran, Rajeswari. "Modeling of electrochemical energy storage and energy conversion devices." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37292.
Full textMellgren, Niklas. "Validated Modelling of Electrochemical Energy Storage Devices." Licentiate thesis, KTH, Mechanics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11052.
Full textThis thesis aims at formulating and validating models for electrochemical energy storage devices. More specifically, the devices under consideration are lithium ion batteries and polymer electrolyte fuel cells.
A model is formulated to describe an experimental cell setup consisting of a LixNi0.8Co0.15Al0.05O2 composite porous electrode with three porous separators and a reference electrode between a current collector and a pure Li planar electrode. The purpose of the study being the identification of possible degradation mechanisms in the cell, the model contains contact resistances between the electronic conductor and the intercalation particles of the porous electrode and between the current collector and the porous electrode. On the basis of this model formulation, an analytical solution is derived for the impedances between each pair of electrodes in the cell. The impedance formulation is used to analyse experimental data obtained for fresh and aged LixNi0.8Co0.15Al0.05O2 composite porous electrodes. Ageing scenarios are formulated based on experimental observations and related published electrochemical and material characterisation studies. A hybrid genetic optimisation technique is used to simultaneously fit the model to the impedance spectra of the fresh, and subsequently also to the aged, electrode at three states of charge. The parameter fitting results in good representations of the experimental impedance spectra by the fitted ones, with the fitted parameter values comparing well to literature values and supporting the assumed ageing scenario.
Furthermore, a steady state model for a polymer electrolyte fuel cell is studied under idealised conditions. The cell is assumed to be fed with reactant gases at sufficiently high stoichiometric rates to ensure uniform conditions everywhere in the flow fields such that only the physical phenomena in the porous backings, the porous electrodes and the polymer electrolyte membrane need to be considered. Emphasis is put on how spatially resolved porous electrodes and nonequilibrium water transport across the interface between the gas phase and the ionic conductor affect the model results for the performance of the cell. The future use of the model in higher dimensions and necessary steps towards its validation are briefly discussed.
Mahmoudzadeh, Ahmadi Nejad Mohammad Ali. "Integrated solar energy harvesting and storage devices." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52899.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Javaid, Atif. "Structural polymer composites for energy storage devices." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9464.
Full textZulkifli, Muhammad. "Microalgae derived carbon for energy storage devices." Thesis, Zulkifli, Muhammad (2017) Microalgae derived carbon for energy storage devices. Honours thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/41924/.
Full textOh, Sang Joon. "Electromagnetics of inertial energy storage systems with fast electromechanical energy conversion /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Full textKan, Hon-pang. "Development of electromechanical energy storage systems." Click to view the E-thesis via HKUTO, 2003. http://sunzi.lib.hku.hk/hkuto/record/B43895153.
Full text簡瀚澎 and Hon-pang Kan. "Development of electromechanical energy storage systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B43895153.
Full textFuller, Jason C. "Temperature dependent control of community energy storage devices." Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/j_fuller_042310.pdf.
Full textTitle from PDF title page (viewed on July 15, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 71-75).
Wang, Kuilong. "Surface science studies of electrochemical energy storage devices." Case Western Reserve University School of Graduate Studies / OhioLINK, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=case1056555985.
Full textSözen, Zeki Ziya. "Thermal energy storage by agitated capsules of phase change material." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25974.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
In, Hyun Jin. "Origami nanofabrication of three-dimensional electrochemical energy storage devices." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32368.
Full textIncludes bibliographical references (p. 143-154).
The Nanostructured (TM) 3D Fabrication and Assembly Process was developed as a novel method of creating three-dimensional (3D) nanostructured devices using two- dimensional micro- and nanopatterning tools and techniques. The origami method of fabrication is a two-part process in which two-dimensional (2D) membranes are first patterned and then folded into the desired 3D configuration. This thesis presents an origami fabrication method based on the use of SU-8 membranes and elastic gold hinges. Magnetic actuation, stress-induced folding, vertical spacing, and lateral alignment of the membranes are discussed. This thesis also reports on the used of the Nanostructured OrigamiTM process to create a functional electrochemical energy storage device. An electrochemical capacitor, or a supercapacitor, is selected because its performance can be readily improved by the addition of 3D geometry and nanoarchitecture. In addition to improved performance, the origami fabrication method allows such devices to be integrated into preexisting MEMS and IC processes, thus enabling the fabrication of complete micro- and nanosystems with an integrated power supply. The supercapacitors were created by selectively depositing carbon-based electrode materials on the SU-8 membrane and then folding the structure so that oppositely-charged electrode regions face each other in a 3D arrangement. The fabrication process, electrochemical testing procedure, and analysis of the results are presented.
by Hyun Jin In.
S.M.
Qiu, Jingxia. "Carbonaceous and Hydrogenated Nanostructured Materials for Energy Storage Devices." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367984.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
TAMVAKOS, DIMITRIOS. "Nano-materials employment in energy harvesting and storage devices." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2598393.
Full textPiechowski, Miroslaw. "A ground coupled heat pump system with energy storage /." Connect to thesis, 1996. http://eprints.unimelb.edu.au/archive/00000724.
Full textMirvakili, Seyed M. (Seyed Mohammad). "High performance materials for artificial muscles and energy storage devices." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111738.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Artificial muscles (i.e., stimuli-responsive materials) are muscle-like materials and devices that mimic muscle's functionality (e.g., contraction, rotation, and bending) in different aspects. Some of the common performance metrics used for evaluating artificial muscles are cycle life, gravimetric/volumetric energy and/or power density, efficiency, cost, and controllability of muscle. Having a good combination of these performance metrics is very desirable and an active field of research. Many of the state-of-the-art designs are made from some exotic materials such as carbon nanotubes and metal nanowires which are not yet commercially available; here, new designs are proposed which their performance favorably compares to those of the rival materials and yet made of readily available materials. In addition to artificial muscles, designs for fast charging micro-supercapacitors are also proposed. Fast charging energy storage devices such as supercapacitors have applications in different industries ranging from automobile to telecommunication. Cellphones, for example, use fast charging micro-supercapacitors in their GSM/GPRS modulus to generate high current pulses for signal transmission purposes. The current technologies, such as tantalum/niobium oxide micro-supercapacitors are evolving around enhancing the energy and power density by increasing the specific capacitance and operating voltage. Yet, increasing the specific capacitance is still a major challenge. In this thesis, aside from discrete component geometry, flexible (e.g., yam-based) supercapacitors have various applications from flexible circuits to wearable devices. Design and fabrication of high performance supercapacitors by utilizing metal nanowires (e.g., niobium nanowires) in both forms (i.e., flexible and solid/rigid devices) are investigated as well.
by Seyed M. Mirvakili.
Ph. D.
Jiang, Meng. "Processing and properties of nanostructured thin film energy storage devices." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e651c635-6d92-4217-8442-43b2619c9c82.
Full textHuang, Chun. "Processing and properties of nanostructured solid-state energy storage devices." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:f97b7c40-35cc-4cd8-96d4-9928ec62b368.
Full textChukwuka, Chukwubuikem Oluchukwu. "A study of the solar energy systems and storage devices." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/5263.
Full textIncludes bibliographical references.
Following the 2008 severe electricity shortage in South Africa, domestic and industrial users faced incessant periods of blackouts. It is generally believed to be associated with lack of generation capacity. Since then research efforts have been directed towards boosting the generation capacity of the South African network by investing in a mix of power generation projects which include coal, nuclear and renewable energy schemes such as solar and wind. The renewable energy resources are considered a more viable option because of their many advantages such as lower greenhouse gas emissions, inexhaustible, reliable and even cheaper energy cost on the long term. Africa has huge potentials of solar power because of the abundance of direct sunshine in most days of the year. The rising cost of the fossil electricity has made the solar power an attractive option bearing in mind that the cost of the solar power has plummeted steadily in the past few years. Two main technologies are prevalent in the solar power research. These are photovoltaic (PV) systems and the concentrated solar power (CSP). The PV systems are made of solar panels and power electronic circuits. They are mostly economical in small residential units. The CSPs on the other hand which are made of solar field, thermal storage and steam turbine/generator units are economical only in large scale. In this thesis, a 2.5 kW Residential PV system and a 100 MW Molten Salt Power Tower Concentrated Solar Power were developed. The technical model of the photovoltaic panel and the power electronic circuits that connect it to the grid were also developed with Matlab/Simulink while the economic simulation of the PV, as well as the Concentrated Solar Power were carried out with Systems Advisor Model (SAM) using the climate data of Cape Town. The simulation results of this work compared the cost of PV electricity first with Renewable Energy Feed-in Tariff (REFIT) of National Energy Regulator of South Africa (NERSA), and then with the residential tariff charged by the City of Cape Town. Also the cost of electricity using CSP is compared NERSA`s REFIT. Finally the cost of PV electricity is compared with that of CSP. We therefore conclude that, with government incentives, CSP and PV are viable technologies however electricity produced by CSP is cheaper than that of the PV.
DiLeo, Roberta A. "Nanomaterial synthesis and characterization for energy storage and conversion devices /." Online version of thesis, 2008. http://hdl.handle.net/1850/7367.
Full textAl, Haik Mohammad Yousef. "Nanoparticle-based Organic Energy Storage with Harvesting Systems." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79815.
Full textPh. D.
Zhang, Xiaodan. "Fabrication of electronic devices for energy storage and harvest using microfibrillated cellulose." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53057.
Full textLeijonmarck, Simon. "Preparation and Characterization of Electrochemical Devices for Energy Storage and Debonding." Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120199.
Full textQC 20130403
Krishna, Prasad Rahul. "Feasibility of polyaniline electrodes for lithium titanate based energy storage devices." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35547.
Full textGamble, Stephen R. "Reversible solid oxide fuel cells as energy conversion and storage devices." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2454.
Full textHallam, Philip Mark. "Next generation screen-printed energy-storage devices based on carbon nanomaterials." Thesis, Manchester Metropolitan University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.592029.
Full textLiu, Cheng. "In situ infrared study on interfacial electrochemistry in energy storage devices." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1598305190634383.
Full textZhang, Liyan. "Advanced Control and Optimization for Future Grid with Energy Storage Devices." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14117.
Full textChen, Hao. "Exploring Advanced Polymeric Binders and Solid Electrolytes for Energy Storage Devices." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/406053.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Yuan, Ding. "Atomically Thin Nanomaterials for Next-Generation Energy Storage and Conversion Devices." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/405191.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Colis, Julie Clarissa F. "Energy Transfer and Optical Memory Studies of d^10 Closed Shell Homo and Heterometallic Dicyanide Systems." Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/ColisJCF2004.pdf.
Full textRaut, Prasad S. "Towards Development Of Polymeric Compounds For Energy Storage Devices And For Low Energy Loss Tires." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1493947416353888.
Full textZhang, Panpan, Faxing Wang, Minghao Yu, Xiaodong Zhuang, and Xinliang Feng. "Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems." Royal Society of Chemistry, 2018. https://tud.qucosa.de/id/qucosa%3A34566.
Full textChien, Chih-Tao. "Carbon-based nanomaterials for solar energy harvesting and storage devices towards integrated power platform." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708903.
Full textNavarrete, Algaba Laura. "New electrochemical cells for energy conversion and storage." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/78458.
Full textEn la presente tesis doctoral se han desarrollado materiales para su uso en celdas electroquímicas. Las celdas electroquímicas estudiadas, se podrían separar en dos grandes grupos: materiales de óxido sólido y sales ácidas. En el primer grupo, se optimizaron materiales para su uso como electrodos en pilas de combustible y electrolizadores, basados en electrolitos con conducción puramente iónica. Dentro de este grupo, se comprobó la influencia de dopar la perovskita Ba0.5Sr0.5Co0.8Fe0.2O3-d, con un 3% de Y, Zr y Sc en la posición B (ABO3-d). Esta optimización llevó a la reducción de la resistencia de polarización así como a una mejora de la estabilidad con el tiempo. Así mismo, se determinaron los mecanismos limitantes en la reacción de reducción de oxígeno, y se comprobó la influencia de la presencia de CO2 en condiciones de operación. El La2NiO4+d perteneciente a la serie de Ruddlesden-Popper, es un conductor mixto de iones oxígeno y electrones. Éste, fue dopado tanto en la posición del La (con Nd y Pr) como en la posición del Ni (con Co). Los dopantes introducidos además de producir cambios estructurales, provocaron mejoras en el rendimiento de la celda, reduciendo para alguno de ellos, como el La1.5Pr0.5Ni0.8Co0.2O4+d, en casi un orden de magnitud la resistencia de polarización del electrodo de referencia (La2NiO4+d). De la misma manera, se optimizaron las propiedades del electrodo basado en el conductor electrónico puro La0.8Sr0.2MnO3-d (LSM). La adición de una segunda fase, con conductividad iónica, permitió aumentar los puntos triples (TPB) en los que la reacción de reducción de oxígeno tiene lugar y reducir la resistencia de polarización. Con el fin de mejorar la reacción de reducción de oxígeno, se estudió la adición de nanocatalizadores mediante la técnica de infiltración. Los diferentes óxidos infiltrados produjeron el cambio de las propiedades electroquímicas del electrodo, siendo el óxido de praseodimio el catalizador que consiguió disminuir en dos órdenes de magnitud la resistencia de polarización del composite no infiltrado. De la misma manera, la mejora de la eficiencia del electrodo infiltrado con Pr, mejoró los resultados de la celda electroquímica trabajando como pila (mayores densidades de potencia) y como electrolizador (menores voltajes). En lo que respecta a los materiales seleccionados para su uso como electrodos en electrolitos con conductividad protónica, se optimizó la eficiencia del cátodo basado en LSM, mediante el uso de una segunda fase conductora protónica (La5.5WO12-d) y variando la temperatura de sinterización del electrodo. Finalmente, se mejoró la actividad catalítica mediante la infiltración de nanopartículas de ceria dopada con samario, produciendo mayores densidades de corriente de la pila de combustible. Los materiales pertenecientes a la serie de Ruddlesden-Popper y usados para cátodos en pilas iónicas, fueron empleados también para cátodos en pilas protónicas. Después de comprobar que el material electrolítico (LWO) era compatible con los compuestos de la serie de Ruddlesden-Popper, se estudió la influencia de la temperatura de sinterización de los electrodos en el rendimiento, así como de la composición de la atmosfera de aire (seca, H2O y D2O). Finalmente, se diseñó y optimizó las celdas electroquímicas basadas en sales ácidas (CsH2PO4). En este sentido, se estudiaron diferentes configuraciones de celda, que permitieran obtener un electrolito denso con el menor espesor posible y unos electrodos activos a la reacción de reducción/oxidación de hidrógeno. Se consiguió reducir el espesor del electrolito soportando la celda en discos de acero y níquel porosos. Se añadió una resina tipo epoxi al material electrolítico para aumentar sus propiedades mecánicas. De la misma manera, se cambió la configuración de los electrodos pasando por conductores electrónicos puros a electrodos compuestos por conductores
En la present tesis doctoral es van desenvolupar materials per al seu ús en cel·les electroquímiques. Les cel·les electroquímiques estudiades poden ser dividides en dos grans grups: materials d'òxid sòlid i sals àcides. En el primer grup, es van optimitzar materials per al seu ús com a elèctrodes en piles de combustible i electrolitzadors, basats en electròlits amb conducció purament iònica. Dins d'este grup, es va comprovar la influència de dopar la perovskita Ba0.5Sr0.5Co0.8Fe0.2O3-d amb un 3% de Y, Zr i Sc en la posició B (ABO3-d;). Esta optimització va portar a la reducció de la resistència de polarització així com a una millora de l'estabilitat amb el temps. Així mateix, es van determinar els mecanismes limitants en la reacció de reducció d'oxigen, i es va comprovar la influència de la presència de CO2 en condicions d'operació. El La2NiO4+d pertanyent a la sèrie de Ruddlesden-Popper, és un conductor mixt d'ions oxigen i electrons. Este, va ser dopat tant en la posició del La (amb Nd i Pr) com en la posició del Ni (amb Co). Els dopants introduïts a més de produir canvis estructurals, van provocar millores en el rendiment de la cel·la, reduint per a algun d'ells, com el La1.5Pr0.5Ni0.8Co0.2O4+d, en quasi un ordre de magnitud la resistència de polarització de l'elèctrode de referència (La2NiO4+d). De la mateixa manera, es van optimitzar les propietats de l'elèctrode basat en el conductor electrònic pur La0.8Sr0.2MnO3-d (LSM). L'addició d'una segona fase, amb conductivitat iònica, va permetre augmentar els punts triples (TPB), en els que la reacció de reducció d'oxigen té lloc, i reduir la resistència de polarització. A fi de millorar la reacció de reducció d'oxigen, es va estudiar l'adició de nanocatalitzadors per mitjà de la tècnica d'infiltració. Els diferents òxids infiltrats van produir el canvi de les propietats electroquímiques de l'elèctrode, sent l'òxid de praseodimi el catalitzador que va aconseguir disminuir en dos ordres de magnitud la resistència de polarització del composite no infiltrat. De la mateixa manera, la millora de l'eficiència de l'elèctrode infiltrat amb Pr, va millorar els resultats de la cel·la electroquímica treballant com a pila (majors densitats de potència) i com a electrolitzador (menors voltatges). Pel que fa als materials seleccionats per al seu ús com a elèctrodes en electròlits amb conductivitat protònica, es va optimitzar l'eficiència del càtode basat en LSM, per mitjà de l'ús d'una segona fase conductora protònica (La5.5WO12-d;) i variant la temperatura de sinterització de l'elèctrode. Finalment, es va millorar l'activitat catalítica mitjançant la infiltració de nanopartícules de ceria dopada amb samari, produint majors densitats de corrent de la pila de combustible. Els materials pertanyents a la sèrie de Ruddlesden-Popper i usats per a càtodes en piles iòniques, van ser empleats també per a càtodes en piles protòniques. Després de comprovar que el material electrolític (LWO) era compatible amb els compostos de la sèrie de Ruddlesden-Popper, es va estudiar la influència de la temperatura de sinterització dels elèctrodes en el rendiment, així com de la composició de l'atmosfera d'aire (seca, H2O i D2O). Finalment, es van dissenyar i optimitzar les cel·les electroquímiques basades en sals àcides (CsH2PO4). En este sentit, es van estudiar diferents configuracions de cel·la, que permeteren obtindre un electròlit dens amb el menor espessor possible i uns elèctrodes actius a la reacció de reducció/oxidació d'hidrogen. Es va aconseguir reduir l'espessor de l'electròlit suportant la cel·la en discos d'acer i níquel porosos. Es va afegir una resina tipus epoxi al material electrolític per a augmentar les seues propietats mecàniques. De la mateixa manera, es va canviar la configuració dels elèctrodes passant per conductors electrònics purs a elèctrodes compostos per conductors protònics
Navarrete Algaba, L. (2017). New electrochemical cells for energy conversion and storage [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/78458
TESIS