Academic literature on the topic 'Energy sustainability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Energy sustainability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Energy sustainability"

1

Kohli, Anil Kumar. "Study of Management of Energy Resources Towards Energy Sustainability." Paripex - Indian Journal Of Research 2, no. 2 (January 15, 2012): 177–78. http://dx.doi.org/10.15373/22501991/feb2013/63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BAUM, RUDY M. "Energy Sustainability." Chemical & Engineering News 86, no. 40 (October 6, 2008): 3. http://dx.doi.org/10.1021/cen-v086n040.p003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

RITTER, STEVE. "ENERGY DEFINES SUSTAINABILITY." Chemical & Engineering News 86, no. 15 (April 14, 2008): 11. http://dx.doi.org/10.1021/cen-v086n015.p011a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holdren, J. P. "Energy and Sustainability." Science 315, no. 5813 (February 9, 2007): 737. http://dx.doi.org/10.1126/science.1139792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Orecchini, Fabio. "Energy sustainability pillars." International Journal of Hydrogen Energy 36, no. 13 (July 2011): 7748–49. http://dx.doi.org/10.1016/j.ijhydene.2011.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Anika. "Net Zero Energy Buildings as A Sustainability Solution." Journal of Advanced Research in Construction and Urban Architecture 03, no. 1&2 (May 5, 2018): 1–3. http://dx.doi.org/10.24321/2456.9925.201801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rathore, Dheeraj, Anoop Singh, Divakar Dahiya, and Poonam Singh Nigam. "Sustainability of biohydrogen as fuel: Present scenario and future perspective." AIMS Energy 7, no. 1 (2019): 1–19. http://dx.doi.org/10.3934/energy.2019.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dingman, Erica M. "Arctic Sustainability: The Predicament of Energy and Environmental Security." Connections: The Quarterly Journal 11, no. 1 (2011): 1–10. http://dx.doi.org/10.11610/connections.11.1.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LePoire, David. "Rocketing to Energy Sustainability." Journal of Big History 2, no. 2 (May 1, 2018): 103–14. http://dx.doi.org/10.22339/jbh.v2i2.2304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Benson, Sally M., and Franklin M. Orr. "Sustainability and Energy Conversions." MRS Bulletin 33, no. 4 (April 2008): 297–302. http://dx.doi.org/10.1557/mrs2008.257.

Full text
Abstract:
AbstractA sustainable global energy system requires a transition away from energy sources with high greenhouse emissions. Vast energy resources are available to meet our needs, and technology pathways for making this transition exist. Lowering the cost and increasing the reliability and quality of energy from sustainable energy sources will facilitate this transition. Changing the world's energy systems is a huge challenge, but it is one that can be undertaken now with improvements in energy efficiency and with continuing deployment of a variety of technologies. Numerous opportunities exist for research in material sciences to contribute to this global-scale challenge.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Energy sustainability"

1

Razmjoo, Ali (Armin). "Measuring energy sustainability by using energy sustainability indicators." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671796.

Full text
Abstract:
The main aim of this thesis is investigating energy sustainability in developing countries using useful indicators. As it is known, serious issues such as global warming and inefficient consumption of energy will lead to severe problems in the future in the world and in particular in developing countries. Those countries which have a proper policy and practical actions by policymakers and energy experts can prevent these problems confidently. For these reasons, the present thesis has focused on developing indicators that can measure the grade of energy sustainability in order to achieve energy sustainability the countries analyzed. In this sense, the thesis starts to investigate the Sustainable Energy Development Index (SEDI) method and improves this method by finding and evaluating the useful indicators to improve and complete the SEDI methodology. In this regard, a numerical analysis of 12 countries has been realized. Following the methodology, new indicators associated with energy are proposed in line with the Habitat III and the SDGs from the UN. Additionally, appropriate strategies to combine the different UN goals are analyzed, and indicators are chosen to provide the best performance of the index. For this research, it is needed to analyze many related data and find novel indicators based on these data that can be obtained and applied by policymakers and energy experts for application in developing countries due to high percentage of energy consumption sector in these communities. Therefore, the main findings of this thesis are proposed indicators for improving the quality life of the inhabitants of different areas in the world with respect with the different aspects of the energy such as access energy, affordable energy and saving energy. For achieving to these goals, is the need to a correct policy, the evaluation of energy sustainability based on energy systems of a country, the close collaboration of policymakers with energy experts, using useful indicators, the balance of the energy supply, equity in access to energy and environmental sustainability of the urban and remote areas. These actions will lead to achieving energy sustainability confidently.
El objetivo principal de esta tesis es investigar la sostenibilidad energética en los países en desarrollo utilizando indicadores efectivos. Como es sabido, problemas como el calentamiento global y el consumo ineficiente de energía conducirán a serios problemas en el futuro del mundo y en particular en los países en desarrollo. Aquellos países que cuentan con políticas adecuadas y acciones efectivas por parte de los legisladores y expertos en energía pueden prevenir estos problemas con confianza. Por estas razones, la presente tesis se ha centrado en desarrollar indicadores que puedan medir el grado de sostenibilidad energética para lograr la sostenibilidad energética que los países analizaron. En este sentido, la tesis comienza a investigar el método del Índice de Desarrollo de Energía Sostenible (SEDI) y mejora este método al encontrar y evaluar los indicadores efectivos para mejorar y completar la metodología SEDI. En este sentido, se realizó un análisis numérico de 12 países. Siguiendo la metodología, se proponen nuevos indicadores asociados con la energía en línea con el Hábitat III y los ODS de la ONU. Además, se analizan las estrategias apropiadas para combinar los diferentes objetivos de las Naciones Unidas y se eligen los indicadores para proporcionar el mejor rendimiento del índice. Para esta investigación, es necesario analizar muchos datos relacionados y encontrar nuevos indicadores basados en estos datos que puedan ser obtenidos y aplicados por los formuladores de políticas y expertos en energía para su aplicación en los países en desarrollo debido al alto porcentaje del sector de consumo de energía en estas comunidades. Por lo tanto, los principales hallazgos de esta tesis son indicadores propuestos para mejorar la calidad de vida de los habitantes de diferentes áreas del mundo con respecto a los diferentes aspectos de la energía, como el acceso a la energía, la energía asequible y el ahorro de energía. Para alcanzar estos objetivos, se necesita corregir las políticas, la evaluación de la sostenibilidad energética basada en los sistemas energéticos de un país, la estrecha colaboración de los encargados de formular políticas con los expertos en energía, utilizando indicadores efectivos, el equilibrio del suministro de energía, la equidad en el acceso a sostenibilidad energética y ambiental de las zonas urbanas y remotas. Estas acciones conducirán a lograr la sostenibilidad energética con confianza.
APA, Harvard, Vancouver, ISO, and other styles
2

Villa-Arrieta, Manuel. "Energy sustainability of smart cities." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/671008.

Full text
Abstract:
The increase in the energy consumption of cities forecasted for the coming years makes these urban areas tend to be representative of the energy sustainability of their countries. In this sense, on the basis of the analysis of the management model and technological development "Smart City", the objective of this Thesis is to study the scalability from buildings to country level of the reduction in the energy consumption and the increase of the photovoltaic self-consumption . The contribution of this Thesis is based on its relevance in the process of energy transition towards a decarbonised economy, more specifically,in the study of the flexibilization of the functioning of the electrical system through the empowerment of the consumer. Thus ,through its six chapters ,this Thesis addresses broad research focused on identifying the relationship between energy sustainability and "Smart Cities", based on the study of active demand management and the evaluation of the technical-economic performance of buildings and cities with almost zero energy consumption. Chapter 1 serves as a preface to the research of the Thesis describing the relationship between the study of climate change, energy sustainability and the energy transition under the "Smart City" concept. In Chapter 2,"Contribution of Cities to Transition and Energy Sustainability" presents an analysis of the relationship between both concepts. The main contribution of this chapter is the presentation of the hypothesis of the representativeness of the energy sustainability of cities in the energy sustainability of their countries. In Chapter 3, "Electricity strategic conservation through Smart Meters and Demand Side Response: A review", the contribution of the consumer to the flexibilization of the operation of the electrical system is studied. Based on a systematic review of references ,this chapter analyzes the results of the empirical works on the reduction of electricity consumption in households through the feedback of energy information. Chapter 4,"A model for an economic evaluation of energy systems using TRNSYS", contributes with the description and validation of the economic calculation methodology of a model proposed to evaluate "Nearly Zero Energy Buildings " and distributed generation systems. Continuing with this contribution, in Chapter 5 "Economic evaluation of Nearly Zero Energy Cities", the economic evaluation model is applied to a simulation model of the energy performance of the urban energy self­ consumption, performance which is based on the distribution of energy among consumers, prosumers and energy producers and the increase in the consumption of local renewable energy resources to the detriment of the consumption of external sources. Both of these two Chapters 4 and 5 were published in the scientific journal Applied Energy (Q1). Finally,Chapter 6 presents the conclusions of the research, highlighting among them that to maintain the balance of the security of electricity supply,equity in access to energy and environmental sustainability of the city-country, the evaluation of energy sustainability should be addressed from the effectiveness of the electric systems of "Smart Cities". The research covered in this Thesis opens the possibility of addressing the following three research works in the future. 1) Designing a methodology to assess the energy sustainability of cities, which links the evaluation of the effectiveness of "Smart Energy Systems" with the evaluation of local and national climate targets. 2) Expanding the application of the "Nearly Zero Energy City" model to convert its results into an indicator of the flexibility of urban electrical systems. And 3) evaluating other cities in the world with this model, and including electrical storage systems and urban wind generation .
El aumento del consumo energético de las ciudades previsto para los próximos años hace que estas urbes tiendan a ser representativas de la sostenibilidad energética de sus países. En este sentido, en base al análisis del modelo de gestión y desarrollo tecnológico para áreas urbanas "Smart City", el objetivo de esta Tesis es estudiar la escalabilidad desde edificios hasta el nivel de país, de la reducción del consumo energético y el aumento del autoconsumo fotovoltaico. La contribución de esta Tesis se basa en su relevancia en el proceso de transición energética hacia una economía descarbonizada. Específicamente, en el estudio de la flexibilización del funcionamiento del sistema eléctrico a través del empoderamiento del consumidor. Así, dividida en seis capítulos, esta Tesis aborda un amplio trabajo de investigación centrado en identificar la relación entre la sostenibilidad energética y las "Smart Cities", en base al estudio de la gestión activa de la demanda y la evaluación del desempeño técnico-económico de edificios y ciudades de consumo energético casi nulo. El Capítulo 1 sirve de prefacio a la investigación de la Tesis describiendo la relación entre el estudio del cambio climático, la sostenibilidad energética y la transición energética bajo el concepto "Smart City". En el capítulo 2, "Contribution of Cities to Transition and Energy Sustainability", se presenta el análisis de la relación entre ambos conceptos . La principal contribución de este capitulo es la presentación de la hipótesis de la representatividad de la sostenibilidad energética de las ciudades en la sostenibilidad energética de sus países. En el capítulo 3, "Electricity strategic conservation through Smart Meters and Demand Side Response: A review", se estudia la contribución del consumidor a la flexibilización de la operación del sistema eléctrico. Basado en una revisión sistemática de referencias, este capítulo analiza los resultados de los trabajos empíricos sobre la reducción del consumo eléctrico en los hogares a través de la retroalimentación de la información energética. El Capítulo 4, "A model for an economic evaluation of energysystems using TRNSYS", contribuye con la descripción y validación de la metodología de cálculo económico de un modelo propuesto para evaluar "Nearly Zero Energy Buildings" y sistemas de generación distribuida. Continuando con esta contribución, en el capítulo 5 "Economic evaluation of Nearly Zero Energy Cities", el modelo de evaluación económica es aplicado a un modelo de simulación del desempeño energético del autoconsumo energético de ciudades. Desempeño el cual, se basa en la distribución de energía entre consumidores, prosumidores y productores de energía, y el aumento del consumo de recursos energéticos renovables locales en detrimento del consumo de fuentes externas. Cada uno de estos dos capítulos 4 y 5, fue publicado en la revista científica Applied Energy (Q1). Finalmente, el capítulo 6 presenta las conclusiones de la investigación, destacando entre ellas que para mantener en equilibrio la seguridad del suministro eléctrico, la equidad en el acceso a la energía y la sostenibilidad ambiental del binomio entre ciudad y país, la evaluación de la sostenibilidad energética debe abordarse desde la efectividad de los sistemas eléctricos de las Smart Cities. La investigación cubierta en esta Tesis abre a la posibilidad de abordar los siguientes tres trabajos de investigación en el futuro. 1) Diseñar una metodología para evaluar la sostenibilidad energética de las ciudades que vincule la evaluación de la efectividad de "Smart Energy Systems" con la evaluación de objetivos climáticos locales y nacionales .2) Ampliar la aplicación del modelo "Nearly Zero Energy Cities" para convertir sus resultados en un indicador de la flexibilidad de los sistemas eléctricos urbanos. Y 3) evaluar con este modelo otras ciudades del mundo,
APA, Harvard, Vancouver, ISO, and other styles
3

Sánchez, Balvás Lizeth Artemisa. "Sustainability for energy-efficient lighting." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671451.

Full text
Abstract:
The social, environmental and economic side effects of the street lighting are the foremost concern for this thesis, since the expanding use of light at night, along with an inappropriate design, has led a large energy consumption, light pollution and impact on human health and the environment. With increasing consideration on the negative side-effects, it has introduced new recommendations for energy efficient lighting, indicators, and new energy classifications systems to evaluate the energy performance of lighting systems. According to the literature, the energy classification systems are based on installed power and lighting parameters (luminance or illuminance), which influence by regulating the energy consumption and the light levels entering the eye. However, recent studies on the advances of lighting technologies, i.e. light-emitting diode (LED), control systems and luminaires, and developments in mesopic photometry and its influence in energy reduction and vision performance, demand for new requirements. This implies a new quantification system to measure energy efficiency by incorporating all the elements that affect the overall efficiency of the installation. Within this context, an alternative tool to aid decision-makers in choosing the best energy efficiency system to be implemented and to support evidence on the energy savings on street lighting was proposed. This alternative approach takes into consideration the improvement of visual performance by correcting the standard photometry system (photopic) by the mesopic system recommended within the CIE 191:2010 and the operational hours of the lighting system, which are usually disregarded by the most commonly used energy classification approaches. The research outlined in this thesis proposes to use the value function approach that allowed standardizing the proposed energy consumption indicator within a value scale ranging from 0 to 1, which also represents satisfaction degree: the less energy is consumed the more grade of satisfaction. A case study comprising 13 representative streets of the Eixample District of Barcelona was used to validate the alternative approach proposed, and results were compared with those obtained by considering three energy efficiency classifications currently used in Spain, Netherlands and Italy. For the sample, a systematic procedure was carried out to collect data regarding lighting class and geometrical characteristics of the streets, and to the main characteristics of the lighting system. The results derived from the application of the proposed method can be used straightforwardly to quantify the potential energy savings that can be obtained when using different energy classifications. Moreover, these results provide a critical analysis by pointing out the strengths and weakness of the most significant energy performance indicators along with their corresponding energy classification systems. In conclusion, this thesis constitutes a conceptual and empirical approach to the energy classification systems applied in Europe to the street lighting. Thanks to the methodological contribution and the knowledge obtained, this thesis intends to contribute to improving the energy efficiency-based classification systems, and consequently, to move forward into a sustainable and smart assessment tool.
La principal motivación para el estudio del alumbrado público en este trabajo, radica en la influencia que éste ejerce a nivel social, ambiental y económico. El aumento del consumo energético, la contaminación lumínica y el impacto tanto en la salud como en el medio ambiente, son efectos secundarios causados por el uso excesivo de la luz durante la noche junto con un diseño inadecuado del alumbrado público. Por ello, han surgido recomendaciones en el ámbito de eficiencia energética, indicadores y sistemas de clasificación energética que ayudan a evaluar las mejoras necesarias para obtener una instalación de alumbrado público eficiente. La mayoría de los sistemas de clasificación energética están basados en parámetros como la potencia instalada y los niveles de iluminación. Sin embargo, existen estudios que confirman los recientes avances tecnológicos en iluminación y, en el desarrollo de la fotometría mesópica que influye en la reducción del consumo energético y en el rendimiento visual. Esto pone de manifiesto que la evaluación de eficiencia energética del alumbrado público a través de los sistemas de clasificación energética actuales, no deberían basarse solamente en los parámetros básicos, si no que también deberían considerarse otros parámetros que incidan en la eficiencia global de la instalación y que tomen en cuenta las demandas actuales del sector. En este contexto, se ha propuesto una herramienta alternativa que ayude a los responsables de tomar decisiones a seleccionar e implementar el mejor sistema de eficiencia energética, y a evidenciar los ahorros energéticos en el alumbrado público. Este enfoque alternativo toma en cuenta la mejora del rendimiento visual al corregir el sistema de fotometría estándar (fotópico) por el sistema mesópico recomendado en el reporte técnico CIE 191: 2010, así como las horas de funcionamiento del sistema de iluminación. Estos dos parámetros, generalmente son ignorados por los sistemas de clasificación energética usados comúnmente. Esta investigación propone utilizar la Función de Valor, la cual refleja el grado de satisfacción del indicador de consumo energético a partir de un valor estandarizado en una escala del 0 al 1: menos energía es consumida, mayor es el grado de satisfacción que se obtiene. El nuevo enfoque se ha validado en un caso de estudio conformado por 13 calles representativas del distrito del Eixample de Barcelona, cuyos resultados fueron correlacionados con tres sistemas de clasificación energética utilizados actualmente en España, Países Bajos e Italia. Se llevó a cabo un procedimiento sistemático para la colección de datos del caso de estudio, donde se obtuvieron las características geométricas de las calles y sus respectivas clases de iluminación, así como las características principales del sistema de iluminación. Los resultados obtenidos de la aplicación del método propuesto y de las diferentes clasificaciones energéticas, se pueden utilizar de forma sencilla para cuantificar el ahorro energético. Además, estos resultados proporcionan un análisis crítico al resaltar las fortalezas y debilidades de los indicadores de eficiencia energética junto con sus correspondientes sistemas de clasificación energética. En conclusión, este trabajo constituye un enfoque conceptual y empírico de los sistemas de clasificación energética del alumbrado público aplicados en Europa. Gracias al aporte metodológico y al conocimiento obtenido, este trabajo pretende contribuir a la mejora de los sistemas de clasificación basados en la eficiencia energética y, en consecuencia, avanzar hacia una herramienta de evaluación sostenible e inteligente.
APA, Harvard, Vancouver, ISO, and other styles
4

Kaplan, Abram Walden. "Energy Sustainability: The Case of Photovoltaics." Oberlin College Honors Theses / OhioLINK, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1503314549048876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noori, Mehdi. "Sustainability Assessment of Wind Energy for Buildings." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5995.

Full text
Abstract:
Due to increasing concerns for global climate change, onshore and offshore wind energy technologies have stimulated a tremendous interest worldwide, and are considered as a viable solution to mitigate the environmental impacts related to electricity generation. Although wind energy technologies have been considered as one of the cleanest energy sources, they have a wide range of direct and indirect environmental impacts when the whole supply chain is considered. This study aims to quantify the direct and indirect environmental impacts of onshore and offshore wind power technologies by tracing all of the economy-wide supply chain requirements. To accomplish this goal, we developed a comprehensive hybrid life cycle assessment (LCA) model in which process-based LCA model is combined with the economic input-output (EIO) analysis. The analysis results show that on average, concrete and steel and their supply chains are responsible for 37% and 24% of carbon footprint, consequently. On average, offshore wind turbines produce 48% less greenhouse gas emissions per kWh produced electricity than onshore wind turbines. For the onshore wind turbines, concrete, aggregates, and crushed stone approximately consume 95% of total water in this construction phase. On the other hand, concrete, lead, copper, and aggregate are responsible for around 90% of total water for the offshore wind turbines. It is also found that the more capacity the wind turbine has, the less environmental impact the wind turbine generates per kWh electricity. Moreover, based on the economic and environmental impacts of studied wind turbines and also three more nonrenewable energy sources, this study develops a decision making framework to understand the best energy source mix for a building in the state of Florida. This framework accounts for the uncertainty in the input material by deploying a Monte Carlo simulation approach. The results of decision making framework show that natural gas is a better option among nonrenewable sources. On the other hand, V90-3.0 MW offshore wind turbine is the best source of energy among renewable energy sources for a building. The findings of this research are critical for policy makers to understand the direct and indirect environmental impacts of different onshore and offshore wind energy systems. Also this study furnishes the decision maker with a range of possible energy mixes based on different economic and environmental weights.
M.S.C.E.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Civil Engineering
APA, Harvard, Vancouver, ISO, and other styles
6

Gholamhosseinian, Ashkan, and Ahmad Khalifeh. "Cloud Computing and Sustainability: Energy Efficiency Aspects." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17368.

Full text
Abstract:
Cloud computing promises a new era of service delivery and deployment in such a way that every person can access any kind of services like storage, application, operating system and so on from anywhere any time using any device having internet connection. Cloud computing opens new possibilities approaching sustainable solutions to deploy and advance their services upon that platform. Sustainability of Cloud computing is to be addressed in terms of environmental and economic effects.In this thesis we explore the energy efficient approaches inside data centres from the site and IT infrastructure perspective incorporating Cloud networking from the access network technologies and network equipment point of view to give a comprehensive prospect toward achieving energy efficiency of Cloud computing. Traditional and Cloud data centres would by compared to figure out which one is more recommended to be deployed. Virtualization as heart of energy efficient Cloud computing that can integrates some technologies like consolidation and resource utilization has been introduced to prepare a background for implementation part. Finally approaches for Cloud computing data centres at operating system and especially data centre level are presented and Green Cloud architecture as the most suitable green approach is described in details. In the experiment segment we modelled and simulated Facebook and studied the behaviour in terms of cost and performance and energy consumption to reach a most appropriate solution.
APA, Harvard, Vancouver, ISO, and other styles
7

Titheridge, Helena. "Sustainability assessment of future energy strategies for Milton Keynes." n.p, 2004. http://ethos.bl.uk/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mainali, Brijesh. "Sustainability of rural energy access in developing countries." Doctoral thesis, KTH, Energi och klimatstudier, ECS, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140949.

Full text
Abstract:
The importance of access to modern energy has been well understood by governments and donor agencies in many developing countries, and significant effort has been made in recent years to address energy access challenges. However, despite these efforts, the International Energy Agency (IEA) has predicted that the energy access problem will remain unresolved by 2030. Therefore, adequate and appropriate action is needed to resolve this problem more quickly. This dissertation analyses policies and their impacts and will help researchers and policy makers in developing countries to (i) understand the impact of policies in the formation of a renewable energy (RE) market, (ii) consider the determinants of technological choices when promoting access to energy services and, (iii) better appreciate the sustainability performance of rural energy. For the purpose of analysis, several country cases from Asia and Sub-Saharan Africa region were carried out as these are the two main regions where the energy access problem are most acute. To understand the impact of policies in the formation of RE based rural electrification market, a case study was conducted in Nepal. The study has shown that rural electrification has been expanding as a consequence of market-oriented policies. When it comes to selection of electrification path-ways, different technological alternatives are analysed in Afghanistan and Nepal, taking levelized cost of electricity (LCOE) as the means to select cost effective options. The analysis has presented best-fit conditions for these various technological pathways in the two countries and verified whether they are following the appropriate and cost effective course in their efforts to expand rural electrification. For understanding the determinants of cooking fuel choices and to analyse policy implications in the transition of large populations from traditional to modern fuels, fuel choices are modelled in the case of China. Choices are modelled (using MESSAGE–ACCESS mod-el) with standard economic variables such as income, technology costs and fuel prices, along with some unique variable such as inconvenience costs. Future access scenarios are designed considering different policy options to accelerate the transition. Sustainability is one of the key concerns in terms of energy access. This dissertation introduces methods for evaluating (i) the sustainability performance of energy technologies and (ii) the status and progress of developing countries in providing sustainable energy access. Different sets of sustainability indicators are considered for the rural energy sector and aggregated to form a single composite index. The energy technology sustainability index (ETSI) is used for assessing the performance of different energy technological systems in the case of India. The analysis reveals that mature technologies such as biomass gasifiers, biogas and micro hydro have relatively better sustainability performance among the options considered, while solar and wind, though showing fairly good improvement in sustainability performance, still have difficulties competing with more mature and conventional technologies without policy support. The Energy Sustainability Index (ESI) has been applied to China, India, South Africa, Sri-Lanka, Bangladesh and Ghana between 1990 and 2010 to evaluate the status and progress made by these countries in rural energy sustainability. The analysis suggests that South Africa’s rural energy sustainability index is highest followed by China, Sri Lanka, India, Bangladesh and Ghana respectively. The rural energy sustainability has improved relatively over time in all countries except Ghana. The dissertation shows that policies are helping the rapid expansion of the RE market though with uneven penetration in rural Nepal. Access to credit and cumbersome subsidy delivery mechanism are perceived as the major factors affecting the expansion of rural electrification, requiring innovation. The electrification pathways taken by Nepal seem functional and moving in the right direction but some flaws in the delivery mechanisms require attention. Meanwhile in Afghanistan, pathways are not well defined and the country lacks a clear-cut national policy framework for the expansion of rural electrification. The analysis on fuel transition shows that even a fast developing country such as China will continue to have serious problems guaranteeing the access to solid fuels for cooking for one third of its rural population by 2030. The problem could be more severe in poorer nations. There-fore, further policy intervention addressing the high implicit discount rate of the poorer section of the population, reducing the upfront cost of more efficient technology (stoves) or the costs of cleaner fuels with subsidies must be considered to promote energy transition. Overall, this dissertation has analysed key issues in the global discussion about sustainable energy access. The methods for sustainability assessment suggested have been specially designed for rural settings in developing countries and are instrumental to assess the performance of rural energy technologies and track the progress of sustainable energy access efforts among rural households.

QC 20140210

APA, Harvard, Vancouver, ISO, and other styles
9

Dlamini, Ndumiso G. "Energy sustainability indicators for South Africa : 2004 report." Master's thesis, University of Cape Town, 2005. http://hdl.handle.net/11427/4974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elshahat, Ayah Elsayed. "Enhancing nuclear energy sustainability using advanced nuclear reactors." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/enhancing-nuclear-energy-sustainability-using-advanced-nuclear-reactors(2c39b9ca-86a9-446f-8832-ae9469485a2d).html.

Full text
Abstract:
The safety performance of nuclear power reactors is a very important factor in evaluating nuclear energy sustainability. Improving the safety performance of nuclear reactors can enhance nuclear energy sustainability as it will improve the environmental indicator used to evaluate the overall sustainability of nuclear energy. Great interest is given now to advanced nuclear reactors especially those using passive safety components. Investigation of the improvement in nuclear safety using advanced reactors was done by comparing the safety performance of a conventional reactor which uses active safety systems, such as Pressurized Water Reactor (PWR), with an advanced reactor which uses passive safety systems, such as AP1000, during a design basis accident, such as Loss of Coolant Accident (LOCA), using the PCTran as a simulation code. To assess the safety performance of PWR and AP1000, the “Global Safety Index” GSI model was developed by introducing three indicators: probability of accident occurrence, performance of safety system in case of an accident occurrence, and the consequences of the accident. Only the second indicator was considered in this work. A more detailed model for studying the performance of passive safety systems in AP1000 was developed. That was done using SCDAPSIM/RELAP5 code as it is capable of modelling design basis accidents (DBAs) in advanced nuclear reactors.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Energy sustainability"

1

Randolph, John, and Gilbert M. Masters. Energy for Sustainability. Washington, DC: Island Press/Center for Resource Economics, 2018. http://dx.doi.org/10.5822/978-1-61091-821-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Atul, and Sanjay Kumar Kar, eds. Energy Sustainability Through Green Energy. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2337-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bucharest, Romania) International Conference on Energy and Sustainability (4th 2013. Energy and sustainability IV. Southampton: WIT, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tokyo), International Conference on Science and Technology for Sustainalibity (2003. Energy and sustainability science. Tokyo: Science Council of Japan, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

A, Brebbia C., and Mammoli, A. A. (Andrea Alberto), eds. Energy and sustainability II. Southampton, UK: WIT Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Conference on Energy and Sustainability (3rd 2011 Alicante, Spain). Energy and sustainability III. Edited by Villacampa Esteve Y, Brebbia C. A, Mammoli, A. A. (Andrea Alberto), Universidad de Alicante, Wessex Institute of Technology, University of New Mexico, Spain. Ministerio de Ciencia e Innovación, and Caja Mediterráneo. Southampton, UK: Witt Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Raj, Baldev, Marcel Van de Voorde, and Yashwant Mahajan, eds. Nanotechnology for Energy Sustainability. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527696109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weber, Gregor. Sustainability and Energy Management. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20222-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Golding, Barry, and Suzanne D. Golding. Metals, Energy and Sustainability. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51175-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curran, Giorel. Sustainability and Energy Politics. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137352330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Energy sustainability"

1

Rosen, Marc A. "Energy Sustainability." In Building Sustainable Cities, 27–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45533-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sikdar, Subhas K., Debalina Sengupta, and Rajib Mukherjee. "Energy Sustainability, Water Sustainability." In Measuring Progress Towards Sustainability, 221–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42719-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Demirel, Yaşar. "Sustainability in Energy Technologies." In Energy, 441–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29650-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Demirel, Yaşar. "Sustainability in Energy Technologies." In Energy, 429–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56164-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lechtenböhmer, Stefan, and Lars J. Nilsson. "Sustainable Energy Systems." In Sustainability Science, 231–46. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7242-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Glawischnig-Piesczek, Eva, and Stefan Wallner. "It’s the energy …" In Communicating Sustainability, 99–104. Wien: Böhlau Verlag, 2012. http://dx.doi.org/10.7767/boehlau.9783205792376.99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Majumder, Suvra. "Enabling Energy Sustainability." In Sustainable Development Goals, 107–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42488-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shukla, Manjari, Sanjay Singh, Sarfaraj Ahmad Siddiqui, and A. Shukla. "Energy Sustainability by Biomass." In Energy Sustainability Through Green Energy, 267–85. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2337-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robertson, Margaret. "Energy." In Sustainability Principles and Practice, 197–230. 3rd ed. 3rd Edition. | New York : Routledge, 2021. | Revised edition of the author's Sustainability principles and practice, 2017.: Routledge, 2021. http://dx.doi.org/10.4324/9780429346668-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Afgan, Naim Hamdia, and Maria da Graça Carvalho. "Sustainability." In Sustainable Assessment Method for Energy Systems, 15–28. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4479-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Energy sustainability"

1

Kayser-Bril, Clara, Cindy Liotard, Nadia Maizi, and Vincent Mazauric. "Power Grids on Islands: from Dependency to Sustainability?" In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

WONG, EVIA, and ERIC K. S. CHAN. "ENERGY EFFICIENCY TOWARDS SUSTAINABILITY." In Tall Buildings from Engineering to Sustainability - Sixth International Conference on Tall Buildings, Mini Symposium on Sustainable Cities, Mini Symposium on Planning, Design and Socio-Economic Aspects of Tall Residential Living Environment. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701480_0156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fisher, Emily Bartholomew, and Erica Schoenberger. "Who's Driving the Bus: The Importance of Interdisciplinary Awareness on the Road to Sustainability." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SCHOCK, ROBERT N. "ENERGY, CITIES, AND GLOBAL SUSTAINABILITY." In Proceedings of the 45th Session of the International Seminars on Nuclear War and Planetary Emergencies. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814531788_0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Energy Sustainability in Cooperating Clouds." In 3rd International Conference on Cloud Computing and Services Science. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004371200830089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brandon C Harvey, Gregory C Langley, Wayne C Martens, and Leon G Schumacher. "Masters of Energy and Sustainability." In 2012 Dallas, Texas, July 29 - August 1, 2012. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.42104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abdelrahman, Ahmad, Lisa Lamont, and Lana El Chaar. "Energy Storage Systems for Intermittent Renewable Energy Systems." In The 2nd World Sustainability Forum. Basel, Switzerland: MDPI, 2012. http://dx.doi.org/10.3390/wsf2-00972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fiorini, Laura, Linda Steg, and Marco Aiello. "Sustainability Choices when Cooking Pasta." In e-Energy '20: The Eleventh ACM International Conference on Future Energy Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3396851.3397698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LEE, YOUAH, SUNGJUN HONG, and HYOUN JONG KIM. "WHAT ARE THE FUTURE ENERGY ISSUES TO BE SOLVED BY ENERGY TECHNOLOGY?" In ENERGY AND SUSTAINABILITY 2017. Southampton UK: WIT Press, 2017. http://dx.doi.org/10.2495/esus170021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dutil, Yvan, and Daniel Rousse. "Energy Cost of Energy Saving in Building: A Review." In The 1st World Sustainability Forum. Basel, Switzerland: MDPI, 2011. http://dx.doi.org/10.3390/wsf-00561.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Energy sustainability"

1

Erickson, Andrew W. Site sustainability & energy mangement. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1057619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crabtree, George W. Summer institute of sustainability and energy. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1227461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, Alastair, Cindy Regnier, Kevin Settlemyre, and Zorana Bosnic. MIT - Mighty Steps toward Energy Sustainability. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1170594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

El-Katiri, Laura. Energy Sustainability in the Gulf States. Oxford Institute for Energy Studies, March 2013. http://dx.doi.org/10.26889/9781907555701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gabel, Steve. Automated Demand Response for Energy Sustainability. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada626264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Uthoff, Jay, Jon Jensen, and Andrew Bailey. Integrated Renewable Energy and Campus Sustainability Initiative. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1097405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bruce Folkedahl, Christopher Martin, and David Dunham. Subtask 5.3 - Water and Energy Sustainability and Technology. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1001340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kneifel, Joshua. Prototype residential buildings for energy and sustainability assessment. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.tn.1688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Author, Not Given. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/15009910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, May. Energy and Water Sustainability in the U.S. Biofuel Industry. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1571243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography