Academic literature on the topic 'Engine fault diagnosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Engine fault diagnosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Engine fault diagnosis"
Cheng, Jian, Chuan Mei Bao, Yi Su Huang, Ye Sun, and Zhe Jing Yi. "Fuzzy Diagnosis Method of Aero-Engine Fault." Advanced Materials Research 1037 (October 2014): 147–51. http://dx.doi.org/10.4028/www.scientific.net/amr.1037.147.
Full textAdaileh, Wail M. "Engine Fault Diagnosis Using Acoustic Signals." Applied Mechanics and Materials 295-298 (February 2013): 2013–20. http://dx.doi.org/10.4028/www.scientific.net/amm.295-298.2013.
Full textAntory, D., U. Kruger, G. Irwin, and G. McCullough. "Fault diagnosis in internal combustion engines using non-linear multivariate statistics." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219, no. 4 (June 1, 2005): 243–58. http://dx.doi.org/10.1243/095965105x9614.
Full textChen, Jian, Robert Randall, Bart Peeters, Wim Desmet, and Herman Van der Auweraer. "Artificial Neural Network Based Fault Diagnosis of IC Engines." Key Engineering Materials 518 (July 2012): 47–56. http://dx.doi.org/10.4028/www.scientific.net/kem.518.47.
Full textZabihi-Hesari, Alireza, Saeed Ansari-Rad, Farzad A. Shirazi, and Moosa Ayati. "Fault detection and diagnosis of a 12-cylinder trainset diesel engine based on vibration signature analysis and neural network." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 6 (June 3, 2018): 1910–23. http://dx.doi.org/10.1177/0954406218778313.
Full textTian, Feng, Wen Jie Li, Zhi Gang Feng, and Rui Zhang. "Fault Diagnosis for Aircraft Engine Based on SVM Multiple Classifiers Fusion." Applied Mechanics and Materials 433-435 (October 2013): 607–11. http://dx.doi.org/10.4028/www.scientific.net/amm.433-435.607.
Full textSun, Zhao Rong, Yi Gang Sun, and Chun Lin Sun Sun. "Research of Hard Fault Diagnosis Simulation Platform of Aero-Engine's Key Sensors Based on Neural Network." Applied Mechanics and Materials 391 (September 2013): 150–54. http://dx.doi.org/10.4028/www.scientific.net/amm.391.150.
Full textSkliros, Christos. "A CASE STUDY OF VIBRATION FAULT DIAGNOSIS APPLIED AT ROLLS-ROYCE T-56 TURBOPROP ENGINE." Aviation 23, no. 3 (January 17, 2020): 78–82. http://dx.doi.org/10.3846/aviation.2019.11900.
Full textAretakis, N., K. Mathioudakis, and A. Stamatis. "Nonlinear Engine Component Fault Diagnosis From a Limited Number of Measurements Using a Combinatorial Approach." Journal of Engineering for Gas Turbines and Power 125, no. 3 (July 1, 2003): 642–50. http://dx.doi.org/10.1115/1.1582494.
Full textWang, Bo, Hongwei Ke, Xiaodong Ma, and Bing Yu. "Fault Diagnosis Method for Engine Control System Based on Probabilistic Neural Network and Support Vector Machine." Applied Sciences 9, no. 19 (October 2, 2019): 4122. http://dx.doi.org/10.3390/app9194122.
Full textDissertations / Theses on the topic "Engine fault diagnosis"
Zedda, M. "Gas turbine engine and sensor fault diagnosis." Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/9117.
Full textFrisk, Erik. "Model-based fault diagnosis applied to an SI-Engine." Thesis, Linköpings universitet, Fordonssystem, 1996. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141630.
Full textLee, Y. H. "Gas turbine engine health monitoring by fault pattern matching method." Thesis, Cranfield University, 1998. http://dspace.lib.cranfield.ac.uk/handle/1826/10714.
Full textPernestål, Anna. "A Bayesian approach to fault isolation with application to diesel engine diagnosis." Licentiate thesis, KTH, School of Electrical Engineering (EES), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4294.
Full textUsers of heavy trucks, as well as legislation, put increasing demands on heavy trucks. The vehicles should be more comfortable, reliable and safe. Furthermore, they should consume less fuel and be more environmentally friendly. For example, this means that faults that cause the emissions to increase must be detected early. To meet these requirements on comfort and performance, advanced sensor-based computer control-systems are used. However, the increased complexity makes the vehicles more difficult for the workshop mechanic to maintain and repair. A diagnosis system that detects and localizes faults is thus needed, both as an aid in the repair process and for detecting and isolating (localizing) faults on-board, to guarantee that safety and environmental goals are satisfied.
Reliable fault isolation is often a challenging task. Noise, disturbances and model errors can cause problems. Also, two different faults may lead to the same observed behavior of the system under diagnosis. This means that there are several faults, which could possibly explain the observed behavior of the vehicle.
In this thesis, a Bayesian approach to fault isolation is proposed. The idea is to compute the probabilities, given ``all information at hand'', that certain faults are present in the system under diagnosis. By ``all information at hand'' we mean qualitative and quantitative information about how probable different faults are, and possibly also data which is collected during test drives with the vehicle when faults are present. The information may also include knowledge about which observed behavior that is to be expected when certain faults are present.
The advantage of the Bayesian approach is the possibility to combine information of different characteristics, and also to facilitate isolation of previously unknown faults as well as faults from which only vague information is available. Furthermore, Bayesian probability theory combined with decision theory provide methods for determining the best action to perform to reduce the effects from faults.
Using the Bayesian approach to fault isolation to diagnose large and complex systems may lead to computational and complexity problems. In this thesis, these problems are solved in three different ways. First, equivalence classes are introduced for different faults with equal probability distributions. Second, by using the structure of the computations, efficient storage methods can be used. Finally, if the previous two simplifications are not sufficient, it is shown how the problem can be approximated by partitioning it into a set of sub problems, which each can be efficiently solved using the presented methods.
The Bayesian approach to fault isolation is applied to the diagnosis of the gas flow of an automotive diesel engine. Data collected from real driving situations with implemented faults, is used in the evaluation of the methods. Furthermore, the influences of important design parameters are investigated.
The experiments show that the proposed Bayesian approach has promising potentials for vehicle diagnosis, and performs well on this real problem. Compared with more classical methods, e.g. structured residuals, the Bayesian approach used here gives higher probability of detection and isolation of the true underlying fault.
Både användare och lagstiftare ställer idag ökande krav på prestanda hos tunga lastbilar. Fordonen ska var bekväma, tillförlitliga och säkra. Dessutom ska de ha bättre bränsleekonomi vara mer miljövänliga. Detta betyder till exempel att fel som orsakar förhöjda emissioner måste upptäckas i ett tidigt stadium.
För att möta dessa krav på komfort och prestanda används avancerade sensorbaserade reglersystem.
Emellertid leder den ökade komplexiteten till att fordonen blir mer komplicerade för en mekaniker att underhålla, felsöka och reparera.
Därför krävs det ett diagnossystem som detekterar och lokaliserar felen, både som ett hjälpmedel i reparationsprocessen, och för att kunna detektera och lokalisera (isolera) felen ombord för att garantera att säkerhetskrav och miljömål är uppfyllda.
Tillförlitlig felisolering är ofta en utmanande uppgift. Brus, störningar och modellfel kan orsaka problem. Det kan också det faktum två olika fel kan leda till samma observerade beteende hos systemet som diagnosticeras. Detta betyder att det finns flera fel som möjligen skulle kunna förklara det observerade beteendet hos fordonet.
I den här avhandlingen föreslås användandet av en Bayesianska ansats till felisolering. I metoden beräknas sannolikheten för att ett visst fel är närvarande i det diagnosticerade systemet, givet ''all tillgänglig information''. Med ''all tillgänglig information'' menas både kvalitativ och kvantitativ information om hur troliga fel är och möjligen även data som samlats in under testkörningar med fordonet, då olika fel finns närvarande. Informationen kan även innehålla kunskap om vilket beteende som kan förväntas observeras då ett särskilt fel finns närvarande.
Fördelarna med den Bayesianska metoden är möjligheten att kombinera information av olika karaktär, men också att att den möjliggör isolering av tidigare okända fel och fel från vilka det endast finns vag information tillgänglig. Vidare kan Bayesiansk sannolikhetslära kombineras med beslutsteori för att erhålla metoder för att bestämma nästa bästa åtgärd för att minska effekten från fel.
Användandet av den Bayesianska metoden kan leda till beräknings- och komplexitetsproblem. I den här avhandlingen hanteras dessa problem på tre olika sätt. För det första så introduceras ekvivalensklasser för fel med likadana sannolikhetsfördelningar. För det andra, genom att använda strukturen på beräkningarna kan effektiva lagringsmetoder användas. Slutligen, om de två tidigare förenklingarna inte är tillräckliga, visas det hur problemet kan approximeras med ett antal delproblem, som vart och ett kan lösas effektivt med de presenterade metoderna.
Den Bayesianska ansatsen till felisolering har applicerats på diagnosen av gasflödet på en dieselmotor. Data som har samlats från riktiga körsituationer med fel implementerade används i evalueringen av metoderna. Vidare har påverkan av viktiga parametrar på isoleringsprestandan undersökts.
Experimenten visar att den föreslagna Bayesianska ansatsen har god potential för fordonsdiagnos, och prestandan är bra på detta reella problem. Jämfört med mer klassiska metoder baserade på strukturerade residualer ger den Bayesianska metoden högre sannolikhet för detektion och isolering av det sanna, underliggande, felet.
Baravdish, Ninos. "Information Fusion of Data-Driven Engine Fault Classification from Multiple Algorithms." Thesis, Linköpings universitet, Fordonssystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176508.
Full textPernestål, Anna. "A Bayesian approach to fault isolation with application to diesel engine diagnosis /." Stockholm : KTH School of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4294.
Full textAvram, Remus C. "A UNIFIED NONLINEAR ADAPTIVE APPROACH FOR THE FAULT DIAGNOSIS OF AIRCRAFT ENGINES." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1332784433.
Full textAfrashteh, Reza. "Modeling, fault detection and diagnosis of an automotive engine using artificial neural networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0025/MQ51278.pdf.
Full textBourassa, M. A. J. "Autoassociative neural networks with an application to fault diagnosis of a gas turbine engine." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0004/MQ44834.pdf.
Full textNyman, David. "Injector diagnosis based on engine angular velocity pulse pattern recognition." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414967.
Full textBooks on the topic "Engine fault diagnosis"
Litt, John. Sensor fault detection and diagnosis simulation of a helicopter engine in an intelligent control framework. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textauthor, Tian Gan, Xu Zhigao author, and Yang Zhengwei author, eds. Ye ti dao dan fa dong ji gu zhang te xing fen xi yu zhen duan: Failure Characteristics Analysis and Fault diagnosis for Liquid Missile Engine. Beijing Shi: Guo fang gong ye chu ban she, 2014.
Find full textGreen, Michael D. Model-based fault diagnosis for turboshaft engines. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textGreen, Michael D. Model-based fault diagnosis for turboshaft engines. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textGreen, Michael D. Model-based fault diagnosis for turboshaft engines. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textFerguson, David. Diesel engines fault finding & diagnostics manual. Hereford: Porter Publishing, 1998.
Find full textZhang, Wei. Failure Characteristics Analysis and Fault Diagnosis for Liquid Rocket Engines. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49254-3.
Full textBickmore, Timothy W. SSME HPOTP post-test diagnostic system enhancement project. Cleveland, Ohio: Lewis Research Center, 1995.
Find full textYe ti huo jian fa dong ji gu zhang jian ce zhen duan li lun yu fang fa: Theory an Method of Fault Dection and Diagnosis for Liquid- propellant Rocket Engines. Beijing: Guo fang gong ye chu ban she, 2013.
Find full textA, Duyar, and United States. National Aeronautics and Space Administration., eds. Implementation of a model based fault detection and diagnosis for actuation faults of the space shuttle main engine. [Washington, DC: National Aeronautics and Space Administration, 1991.
Find full textBook chapters on the topic "Engine fault diagnosis"
Isermann, Rolf. "Fault-tolerant components." In Combustion Engine Diagnosis, 269–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49467-7_8.
Full textDenton, Tom. "Engine systems." In Advanced Automotive Fault Diagnosis, 143–226. Fifth edition. | Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.1201/9780429317781-6.
Full textIsermann, Rolf. "Supervision, fault-detection and fault-diagnosis methods – a short introduction." In Combustion Engine Diagnosis, 25–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49467-7_2.
Full textIsermann, Rolf. "Terminology in fault detection and diagnosis." In Combustion Engine Diagnosis, 295–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49467-7_9.
Full textWu, Xiaobing, Xueshan Gao, and Dharmendra Sharma. "A Multiagent Based Vehicle Engine Fault Diagnosis." In Lecture Notes in Computer Science, 541–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74827-4_68.
Full textZhu, Feixiang, Benwei Li, Zhao Li, and Yun Zhang. "Sensor Fault Diagnosis and Classification in Aero-engine." In Proceedings of the First Symposium on Aviation Maintenance and Management-Volume I, 397–411. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54236-7_45.
Full textSingh, Vrijendra, and Narendra Meena. "Engine Fault Diagnosis using DTW, MFCC and FFT." In Proceedings of the First International Conference on Intelligent Human Computer Interaction, 83–94. New Delhi: Springer India, 2009. http://dx.doi.org/10.1007/978-81-8489-203-1_6.
Full textWang, Fengli, and Shulin Duan. "Fault Diagnosis of Diesel Engine Using Vibration Signals." In Communications in Computer and Information Science, 285–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18134-4_46.
Full textZhang, Wei. "Fault Prediction Methods of Liquid Rocket Engine (LRE)." In Failure Characteristics Analysis and Fault Diagnosis for Liquid Rocket Engines, 307–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49254-3_11.
Full textCheng, Rui, and Jiayuan Dan. "Missile Turbofan Engine Fault Diagnosis Technology and Its Application." In Advances in Intelligent Systems and Computing, 751–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37835-5_65.
Full textConference papers on the topic "Engine fault diagnosis"
Loboda, Igor, Sergey Yepifanov, and Yakov Feldshteyn. "An Integrated Approach to Gas Turbine Monitoring and Diagnostics." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51449.
Full textDavison, Craig R., and A. M. Birk. "Automated Fault Diagnosis for Small Gas Turbine Engines." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30029.
Full textAretakis, N., I. Roumeliotis, and K. Mathioudakis. "Performance Model “Zooming” for In-Depth Component Fault Diagnosis." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23262.
Full textOgaji, S. O. T., Y. G. Li, S. Sampath, and R. Singh. "Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38423.
Full textTan, Daoliang, Ai He, Xiangxing Kong, and Xi Wang. "Integration of Unknown Input Observers and Classification for Turbofan Engine Diagnosis." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46429.
Full textLi, Wenfei, and Rama K. Yedavalli. "Dynamic Threshold Method Based Aircraft Engine Sensor Fault Diagnosis." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2262.
Full textMohammadi, Rasul, Shahin Hashtrudi-Zad, and Khashayar Khorasani. "Hybrid Fault Diagnosis: Application to a Gas Turbine Engine." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-60075.
Full textZhang, Xiaodong, Remus C. Avram, Liang Tang, and Michael J. Roemer. "A Unified Nonlinear Approach to Fault Diagnosis of Aircraft Engines." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95803.
Full textRomessis, C., and K. Mathioudakis. "Bayesian Network Approach for Gas Path Fault Diagnosis." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53801.
Full textHu, Xiao, Neil Eklund, and Kai Goebel. "A Data Fusion Approach for Aircraft Engine Fault Diagnostics." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27941.
Full text