Academic literature on the topic 'Enhanced fluorescence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enhanced fluorescence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Enhanced fluorescence"
Xu, Hongbo, Lingxiao Liu, Fei Teng, and Nan Lu. "Emission Enhancement of Fluorescent Molecules by Antireflective Arrays." Research 2019 (November 27, 2019): 1–8. http://dx.doi.org/10.34133/2019/3495841.
Full textMolesky, Sean J. "Metamaterial enhanced fluorescence detection." Eureka 3, no. 1 (March 26, 2012): 19–25. http://dx.doi.org/10.29173/eureka16989.
Full textGeddes, Chris D. "Metal-enhanced fluorescence." Physical Chemistry Chemical Physics 15, no. 45 (2013): 19537. http://dx.doi.org/10.1039/c3cp90129g.
Full textFort, Emmanuel, and Samuel Grésillon. "Surface enhanced fluorescence." Journal of Physics D: Applied Physics 41, no. 1 (December 17, 2007): 013001. http://dx.doi.org/10.1088/0022-3727/41/1/013001.
Full textPereverzev, N. V. "Metal enhanced fluorescence of thiacyanine dye in layered polymer films." Functional materials 21, no. 4 (December 30, 2014): 409–13. http://dx.doi.org/10.15407/fm21.04.409.
Full textFu, Qing, Xiaolin Zhang, Peipei Yan, Shichao Wang, Xinzhi Wang, Yao Wang, Linjun Huang, et al. "SPR-Enhanced Fluorescence of Solid Organic Dye Films." Journal of Nanomaterials 2018 (August 23, 2018): 1–9. http://dx.doi.org/10.1155/2018/5268458.
Full textWu, Jian, Yongjun Du, Chunyan Wang, and Tao Chen. "The Detection of a Fluorescent Dye by Surface-Enhanced Fluorescence with the Addition of Silver Nanoparticles and Its Application for the Space Station." Journal of Nanoscience and Nanotechnology 20, no. 5 (May 1, 2020): 3195–200. http://dx.doi.org/10.1166/jnn.2020.17383.
Full textLi, Jian-Feng, Chao-Yu Li, and Ricardo F. Aroca. "Plasmon-enhanced fluorescence spectroscopy." Chemical Society Reviews 46, no. 13 (2017): 3962–79. http://dx.doi.org/10.1039/c7cs00169j.
Full textDiana, Michele, Eric Noll, Pierre Diemunsch, Bernard Dallemagne, Malika A. Benahmed, Vincent Agnus, Luc Soler, et al. "Enhanced-Reality Video Fluorescence." Annals of Surgery 259, no. 4 (April 2014): 700–707. http://dx.doi.org/10.1097/sla.0b013e31828d4ab3.
Full textZhang, Yongxia, Kadir Aslan, and Chris D. Geddes. "Metal-Enhanced Fluorescence (MEF)." Biophysical Journal 96, no. 3 (February 2009): 45a. http://dx.doi.org/10.1016/j.bpj.2008.12.130.
Full textDissertations / Theses on the topic "Enhanced fluorescence"
Lee, Ming-Tao. "Plasmonic Enhanced Fluorescence using Gold Nanorods." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57680.
Full textThe aims of this study are to first immobilize positively charged gold nanorods to negatively charged cell culture surfaces. Second, to use polyelectrolytes for controlling the distance between gold nanorods and fluorophores. This is used to optimally determine the distance, of which maximum fluorescence enhancement is achieved, between gold nanorods and fluorophores. In order to approach these aims, we use UV/VIS absorption spectroscopy, fluorescence spectroscopy, atomic force microscopy, and ellipsometry. The results show that we could control the immobilization of gold nanorods on plastic microwell plates and create reproducible polyelectrolyte layers, in order to control the distance between the gold nanorods and fluorophores. In addition, the localized surface plasmon resonance wavelength red shifted as the PELs increased. In conclusion, we found that the maximum fluorescence enhancement of the fluorophores (Cy7) is about 2.3 times at a fluorophores-nanoparticles separation of approximately 9-12 nm. This work contributes some research information towards the design of optical biochip platforms based on plasmon-enhanced fluorescence.
Hwang, Kil Dong. "Improved fluorescence-enhanced optical imaging and tomography by enhanced excitation light rejection." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1062.
Full textHalil, Haithem. "Enhanced fluorescence of dyes in presence of DNA." Thesis, University of Manchester, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507953.
Full textJoshi, Amit. "Adaptive finite element methods for fluorescence enhanced optical tomography." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4419.
Full textBauch, Martin [Verfasser]. "New enhancement strategies for plasmon-enhanced fluorescence biosensors / Martin Bauch." Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1068723904/34.
Full textMorrill, Samuel. "Combined Metal-Enhanced Fluorescence-Surface Acoustic Wave (MEF-SAW) Biosensor." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5081.
Full textDorcéna, Cassandre Jenny. "Effects of Metallic Nanoalloys on Dye Fluorescence." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/35057.
Full textMaster of Science
Sahu, Amit K. "Objective assessment of image quality (OAIQ) in fluorescence-enhanced optical imaging." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1068.
Full textPang, Jing Sheng. "Engineered nanostructures for metal enhanced fluorescence applications in the near-infrared." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/43157.
Full textDesai, Darshan B. "Metal Enhanced Fluorescence in CdSe Quantum Dots by Gold Thin Films." Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1314234319.
Full textBooks on the topic "Enhanced fluorescence"
Geddes, Chris D., ed. Metal-Enhanced Fluorescence. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.
Full textGeddes, Chris D., ed. Surface Plasmon Enhanced, Coupled and Controlled Fluorescence. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.
Full textGeddes, Chris D. Metal-Enhanced Fluorescence. Wiley & Sons, Incorporated, John, 2010.
Find full textGeddes, Chris D. Surface Plasmon Enhanced, Coupled and Controlled Fluorescence. Wiley & Sons, Incorporated, John, 2017.
Find full textDavid, Shotton, ed. Electronic light microscopy: The principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy. New York: Wiley-Liss, 1993.
Find full textShotton, David M. Electronic Light Microscopy: The Principles and Practice of Video-Enhanced Contrast, Digital Intensified Fluorescence, and Confocal Scanning Light Microscopy ... (Techniques in Modern Biomedical Microscopy). Wiley-Liss, 1993.
Find full textBook chapters on the topic "Enhanced fluorescence"
Zhang, Yongxia, Kadir Aslan, and Chris D. Geddes. "Metal Enhanced Chemiluminescence." In Metal-Enhanced Fluorescence, 439–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch15.
Full textAslan, Kadir, and Chris D. Geddes. "Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description." In Metal-Enhanced Fluorescence, 1–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch1.
Full textZhang, Yongxia, Kadir Aslan, and Chris D. Geddes. "Metal-Enhanced Generation of Oxygen Rich Species." In Metal-Enhanced Fluorescence, 277–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch10.
Full textAherne, Damian, Deirdre M. Ledwith, and John M. Kelly. "Synthesis of Anisotropic Noble Metal Nanoparticles." In Metal-Enhanced Fluorescence, 295–362. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch11.
Full textHahm, Jong-in. "Enhanced Fluorescence Detection Enabled by Zinc Oxide Nanomaterials." In Metal-Enhanced Fluorescence, 363–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch12.
Full textOng, H. C., D. Y. Lei, J. Li, and J. B. Xu. "ZnO Platforms for Enhanced Directional Fluorescence Applications." In Metal-Enhanced Fluorescence, 393–418. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch13.
Full textMartiradonna, Luigi, S. Shiv Shankar, and Pier Paolo Pompa. "E-Beam Lithography and Spontaneous Galvanic Displacement Reactions for Spatially Controlled MEF Applications." In Metal-Enhanced Fluorescence, 419–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch14.
Full textLin, Chii-Wann, Nan-Fu Chiu, Jiun-Haw Lee, and Chih-Kung Lee. "Enhanced Fluorescence from Gratings." In Metal-Enhanced Fluorescence, 465–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch16.
Full textBlair, Steve, and Jérôme Wenger. "Enhancing Fluorescence with Sub-Wavelength Metallic Apertures." In Metal-Enhanced Fluorescence, 489–527. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch17.
Full textde Araujo, Renato E., Diego Rativa, and Anderson S. L. Gomes. "Enhanced Multi-Photon Excitation of Tryptophan-Silver Colloid." In Metal-Enhanced Fluorescence, 529–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470642795.ch18.
Full textConference papers on the topic "Enhanced fluorescence"
Ganesh, Nikhil, and Brian T. Cunningham. "Photonic Crystal Enhanced Fluorescence." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452907.
Full textCunningham, Brian T. "Photonic crystal enhanced fluorescence." In BiOS, edited by Philippe M. Fauchet. SPIE, 2010. http://dx.doi.org/10.1117/12.848224.
Full textBakker, Reuben M., Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus Pedersen, Alexandra Boltasseva, Alexander V. Kidishev, Vladimir P. Drachev, and Vladimir M. Shalaev. "Enhanced Fluorescence via Optical Nanoantennae." In Plasmonics and Metamaterials. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/meta_plas.2008.mwd6.
Full textLakowicz, Joseph R., Chris D. Geddes, Ignacy Gryczynski, Joanna B. Malicka, Zygmunt Gryczynski, Kadir Aslan, Joanna Lukomska, and Jun Huang. "Advances in surface-enhanced fluorescence." In Biomedical Optics 2004, edited by Tuan Vo-Dinh, Zygmunt Gryczynski, and Joseph R. Lakowicz. SPIE, 2004. http://dx.doi.org/10.1117/12.542458.
Full textIsaac, Justin, and Huizhong Xu. "Fluorescence Enhancement and Quenching in Tip-Enhanced Fluorescence Spectroscopy." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.91.
Full textWang, Susheng, Qin Li, and Xin Yu. "Enhanced fluorescence microscope and its application." In Optical Science, Engineering and Instrumentation '97, edited by Andrew Davidhazy, Takeharu G. Etoh, C. Bruce Johnson, Donald R. Snyder, and James S. Walton. SPIE, 1997. http://dx.doi.org/10.1117/12.294540.
Full textLee, Jangwoen, and Eva M. Sevick-Muraca. "Fluorescence-enhanced absorption and lifetime imaging." In BiOS '99 International Biomedical Optics Symposium, edited by Darryl J. Bornhop, Christopher H. Contag, and Eva M. Sevick-Muraca. SPIE, 1999. http://dx.doi.org/10.1117/12.351031.
Full textDiwekar, Mohit, Sachin Attavar, Steve Blair, Mark Davis, and Eric Gardner. "Enhanced fluorescence sensing with nano-apertures." In OPTO, edited by Jean-Emmanuel Broquin and Christoph M. Greiner. SPIE, 2010. http://dx.doi.org/10.1117/12.845615.
Full textSu, Yu-Zheng, Min-Wei Hung, Wen-Hong Wu, Kuo-Cheng Huang, and Huihua Kenny Chiang. "Application of metal-enhanced fluorescence technology in evanescent wave fluorescent biosensor." In 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010. http://dx.doi.org/10.1109/imtc.2010.5488270.
Full textLu, Yujie, and Eva M. Sevick-Muraca. "Fluorescence-enhanced optical tomography using phase information." In SPIE BiOS, edited by Bruce J. Tromberg, Arjun G. Yodh, Mamoru Tamura, Eva M. Sevick-Muraca, and Robert R. Alfano. SPIE, 2011. http://dx.doi.org/10.1117/12.873589.
Full textReports on the topic "Enhanced fluorescence"
Peter Rose, Joel Harris, Phaedra Kilbourn, James Kleimeyer, and Troy Carter. Greatly Enhanced Detectability of Geothermal Tracers Through Laser-Induced Fluorescence. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/806819.
Full textDavis, Scott C. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada488239.
Full textDavis, Scott C. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada485300.
Full textDavis, Scott C. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada468681.
Full textFeng Jin. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/945032.
Full textCorriveau, Elizabeth, Ashley Mossell, Holly VerMeulen, Samuel Beal, and Jay Clausen. The effectiveness of laser-induced breakdown spectroscopy (LIBS) as a quantitative tool for environmental characterization. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40263.
Full text