Academic literature on the topic 'Enhanced permeability and retention (EPR) effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enhanced permeability and retention (EPR) effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Enhanced permeability and retention (EPR) effect"

1

Huang, Dong, Lingna Sun, Leaf Huang, and Yanzuo Chen. "Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect." Journal of Personalized Medicine 11, no. 2 (2021): 124. http://dx.doi.org/10.3390/jpm11020124.

Full text
Abstract:
The use of nanomedicine for antitumor therapy has been extensively investigated for a long time. Enhanced permeability and retention (EPR) effect-mediated drug delivery is currently regarded as an effective way to bring drugs to tumors, especially macromolecular drugs and drug-loaded pharmaceutical nanocarriers. However, a disordered vessel network, and occluded or embolized tumor blood vessels seriously limit the EPR effect. To augment the EPR effect and improve curative effects, in this review, we focused on the perspective of tumor blood vessels, and analyzed the relationship among abnormal angiogenesis, abnormal vascular structure, irregular blood flow, extensive permeability of tumor vessels, and the EPR effect. In this commentary, nanoparticles including liposomes, micelles, and polymers extravasate through the tumor vasculature, which are based on modulating tumor vessels, to increase the EPR effect, thereby increasing their therapeutic effect.
APA, Harvard, Vancouver, ISO, and other styles
2

Inagaki, Fuyuki F., Aki Furusawa, Peter L. Choyke, and Hisataka Kobayashi. "Enhanced nanodrug delivery in tumors after near-infrared photoimmunotherapy." Nanophotonics 8, no. 10 (2019): 1673–88. http://dx.doi.org/10.1515/nanoph-2019-0186.

Full text
Abstract:
AbstractTo date, the delivery of nanosized therapeutic agents to cancers largely relies on the enhanced permeability and retention (EPR) effects that are caused by the leaky nature of cancer vasculature. Whereas leaky vessels are often found in mouse xenografts, nanosized agents have demonstrated limited success in humans due to the relatively small magnitude of the EPR effect in naturally occurring cancers. To achieve the superior delivery of nanosized agents, alternate methods of increasing permeability and retention are needed. Near-infrared photoimmunotherapy (NIR-PIT) is a recently reported therapy that relies on an antibody-photon absorber conjugate that binds to tumors and then is activated by light. NIR-PIT causes an increase in nanodrug delivery by up to 24-fold compared to untreated tumors in which only the EPR effect is present. This effect, termed super-EPR (SUPR), can enhance the delivery of a wide variety of nanosized agents, including nanoparticles, antibodies, and protein-binding small-molecular-weight agents into tumors. Therefore, taking advantage of the SUPR effect after NIR-PIT may be a promising avenue to use a wide variety of nanodrugs in a highly effective manner.
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Jun. "The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application." Journal of Personalized Medicine 11, no. 8 (2021): 771. http://dx.doi.org/10.3390/jpm11080771.

Full text
Abstract:
Chemotherapy for human solid tumors in clinical practice is far from satisfactory. Despite the discovery and synthesis of hundreds of thousands of anticancer compounds targeting various crucial units in cancer cell proliferation and metabolism, the fundamental problem is the lack of targeting delivery of these compounds selectively into solid tumor tissue to maintain an effective concentration level for a certain length of time for drug-tumor interaction to execute anticancer activities. The enhanced permeability and retention effect (EPR effect) describes a universal pathophysiological phenomenon and mechanism in which macromolecular compounds such as albumin and other polymer-conjugated drugs beyond certain sizes (above 40 kDa) can progressively accumulate in the tumor vascularized area and thus achieve targeting delivery and retention of anticancer compounds into solid tumor tissue. Targeting therapy via the EPR effect in clinical practice is not always successful since the strength of the EPR effect varies depending on the type and location of tumors, status of blood perfusion in tumors, and the physical-chemical properties of macromolecular anticancer agents. This review highlights the significance of the concept and mechanism of the EPR effect and discusses methods for better utilizing the EPR effect in developing smarter macromolecular nanomedicine to achieve a satisfactory outcome in clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Tahara, Yu, Takuma Yoshikawa, Hikari Sato, et al. "Encapsulation of a nitric oxide donor into a liposome to boost the enhanced permeation and retention (EPR) effect." MedChemComm 8, no. 2 (2017): 415–21. http://dx.doi.org/10.1039/c6md00614k.

Full text
Abstract:
We propose a method to improve the enhanced permeability and retention (EPR) effect of nanomedicines based on tumor-specific vasodilation using a nitric oxide (NO) donor-containing PEGylated liposome.
APA, Harvard, Vancouver, ISO, and other styles
5

Kobayashi, Hisataka, and Peter L. Choyke. "Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy." Nanoscale 8, no. 25 (2016): 12504–9. http://dx.doi.org/10.1039/c5nr05552k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bonferoni, Maria Cristina, Giovanna Rassu, Elisabetta Gavini, et al. "Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible “EPR Effect Enhancer” to Improve Cancer Nanomedicine Efficacy." Cancers 13, no. 17 (2021): 4437. http://dx.doi.org/10.3390/cancers13174437.

Full text
Abstract:
Surgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment. The “enhanced permeability and retention” (EPR) effect is believed to play a fundamental role in the passive uptake of drug-loaded nanocarriers, for example polymeric nanoparticles, in deep-seated tumors. However, criticisms of the EPR effect were recently raised, particularly in advanced human cancers: obstructed blood vessels and suppressed blood flow determine a heterogeneity of the EPR effect, with negative consequences on nanocarrier accumulation, retention, and intratumoral distribution. Therefore, to improve the nanomedicine uptake, there is a strong need for “EPR enhancers”. Electrochemotherapy represents an important tool for the treatment of deep-seated tumors, usually combined with the systemic (intravenous) administration of anticancer drugs, such as bleomycin or cisplatin. A possible new strategy, worthy of investigation, could be the use of this technique as an “EPR enhancer” of a target tumor, combined with the intratumoral administration of drug-loaded nanoparticles. This is a general overview of the rational basis for which EP could be envisaged as an “EPR enhancer” in nanomedicine.
APA, Harvard, Vancouver, ISO, and other styles
7

Keereweer, Stijn, Isabel M. Mol, Jeroen D. F. Kerrebijn, et al. "Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer." Journal of Surgical Oncology 105, no. 7 (2011): 714–18. http://dx.doi.org/10.1002/jso.22102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fang, Jun, Rayhanul Islam, Waliul Islam, et al. "Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents." Pharmaceutics 11, no. 7 (2019): 343. http://dx.doi.org/10.3390/pharmaceutics11070343.

Full text
Abstract:
One obstacle to the successful delivery of nanodrugs into solid tumors is the heterogeneity of an enhanced permeability and retention (EPR) effect as a result of occluded or embolized tumor blood vessels. Therefore, the augmentation of the EPR effect is critical for satisfactory anticancer nanomedicine. In this study, we focused on one vascular mediator involved in the EPR effect, carbon monoxide (CO), and utilized two CO generating agents, one is an extrinsic CO donor (SMA/CORM2 micelle) and another is an inducer of endogenous CO generation via heme oxygenase-1 (HO-1) induction that is carried out using pegylated hemin. Both agents generated CO selectively in solid tumors, which resulted in an enhanced EPR effect and a two- to three-folds increased tumor accumulation of nanodrugs. An increase in drug accumulation in the normal tissue did not occur with the treatment of CO generators. In vivo imaging also clearly indicated a more intensified fluorescence of macromolecular nanoprobe in solid tumors when combined with these CO generators. Consequently, the combination of CO generators with anticancer nanodrugs resulted in an increased anticancer effect in the different transplanted solid tumor models. These findings strongly warrant the potential application of these CO generators as EPR enhancers in order to enhance tumor detection and therapy using nanodrugs.
APA, Harvard, Vancouver, ISO, and other styles
9

Kobayashi, Hisataka, Rira Watanabe, and Peter L. Choyke. "Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target?" Theranostics 4, no. 1 (2014): 81–89. http://dx.doi.org/10.7150/thno.7193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keereweer, S., I. M. Mol, J. D. F. Kerrebijn, A. L. Vahrmeijer, R. J. Baatenburg de Jong, and C. W. G. M. Lowik. "O125. Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer." Oral Oncology 47 (July 2011): S70—S71. http://dx.doi.org/10.1016/j.oraloncology.2011.06.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Enhanced permeability and retention (EPR) effect"

1

Sat, Nee Yee. "Factors that influence tumour targeting by the enhanced permeability and retention (EPR) effect." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dong, Xiaowei. "LIPID-BASED PACLITAXEL AND DOXORUBICIN NANOPARTICLES TO OVERCOME P-GP-MEDIATED DRUG RESISTANCE IN SOLID TUMORS." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/724.

Full text
Abstract:
Multidrug resistance (MDR) is a major obstacle limiting chemotherapeutic efficacy. The purpose of these studies was to investigate the potential application of injectable paclitaxel (PX) and doxorubicin (Dox)-loaded nanoparticles (NPs) engineered from oil-in-water microemulsion precursors for overcoming P-glycoprotein (P-gp)- mediated drug resistance in solid tumors. An in-vitro study was performed to test whether the oil (stearyl alcohol and cetyl alcohol) used to make lipid nanoparticles could be metabolized. The results showed that the concentrations of the fatty alcohols within nanoparticles, which were quantitatively determined over time by gas chromatography, decreased to only 10-20% of the initial concentration after 15-24 h of incubation with horse liver dehydrogenase (HLADH) and NAD+ at 37ºC. Moreover, the surfactant Brij 78 (polyoxyethylene 20-sterayl ether) in the nanoparticles influenced the activity of the enzyme. Novel Cremophor EL-free paclitaxel-loaded nanoparticles were developed using experimental design combining Taguchi array and sequential simplex optimization. The resulting PX G78 and PX BTM NPs were stable at 4ºC over five months and in PBS at 37ºC over 102 h. Release of PX from PX NPs was slow and sustained without initial burst release. Interestingly, PX BTM NPs could be lyophilized without cryoprotectants and without changing any physiochemical properties and bioactivities. Cytotoxicity studies in breast cancer MDA-MB-231 cells showed that PX NPs have similar anti-cancer activities compared to Taxol. Optimized Dox-loaded NPs were prepared using an ion-pair agent, sodium tetradecyl sulfate (STS), to mask Dox charge and to enhance its entrapment in NPs. In-vitro cytotoxicity studies were carried out in both sensitive and resistant human cancer cells treated with PX and Dox-loaded NPs. All of drug-loaded NPs decreased IC50 values by 6-13-fold in resistant cells compared to free drugs. A series of in-vitro assays were used to understand the underlying mechanisms. The results, in part, showed that the NPs inhibited P-gp and transiently depleted ATP, leading to enhanced uptake and prolonged retention of the drugs in P-gp-overexpressing cancer cells. Finally, in-vivo anti-cancer efficacy studies were performed using pegylated PX BTM NPs after intravenous (i.v.) injection and showed marked anti-cancer efficacy in nude mice bearing resistant NCI/ADR-RES tumors versus all control groups. These results suggest that NPs may be used to both target drug and biological mechanisms to overcome MDR.
APA, Harvard, Vancouver, ISO, and other styles
3

Antoni, Florent. "Conception & études de biodistribution de liposomes ciblant CD44 dans un modèle de cancer du sein." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC063.

Full text
Abstract:
Ce projet a eu pour objectif d’étudier la biodistribution in vivo de nanoparticules liposomales ciblant CD44, et en particulier d’évaluer l’effet de l’agent de ciblage (aptamère anti-CD44 greffé en surface des liposomes) sur leur accumulation tumorale. Des liposomes anti-CD44 fluorescents et radiomarqués pour l’imagerie en Tomographie par Emission de Positons ont été conçus. La méthode que nous avons développée a l’avantage d’être applicable à tout type de nanoparticule liposomale, quel que soit l’agent de ciblage. Les résultats de biodistribution obtenus chez des souris porteuses de xénogreffes de cancer du sein surexprimant CD44 ont montré que les liposomes ciblant CD44 ont une accumulation tumorale supérieure à celle des liposomes sans antigène cible, et que cette différence est liée à l’interaction spécifique Aptamère-CD44. Ceci confirme l’intérêt des liposomes fonctionnalisés avec l’aptamère anti-CD44 à visée thérapeutique (après chargement en drogues) dans les types tumoraux surexprimant CD44. Enfin les nanoparticules que nous avons développées constituent de bons agents d’ « imagerie compagnon », permettant de vérifier en imagerie isotopique l’accumulation tumorale de leurs équivalents thérapeutiques avant administration chez les patients<br>This project aimed to study the in vivo biodistribution of liposomal nanoparticles targeting CD44, and particularly to evaluate the effect of the targeting agent (anti-CD44 aptamer grafted on the surface of liposomes) on their tumor accumulation. Fluorescent and radiolabeled anti-CD44 liposomes for Positron Emission Tomography imaging were designed. The method we developed has the advantage of being applicable to any type of liposomal nanoparticle, regardless of the targeting agent. The biodistribution results obtained in mice bearing CD44 overexpressing breast cancer xenografts showed that CD44-targeting liposomes had greater tumor accumulation than liposomes without a target antigen, and that this difference was related to the specific Aptamer-CD44 interaction. This confirms the interest of liposomes functionalized with the anti-CD44 aptamer as therapeutic agents (after loading in drugs) in tumor types overexpressing CD44. Finally, the nanoparticles that we have developed are good "companion imaging" agents, making it possible to verify by isotopic imaging the tumor accumulation of the therapeutic counterparts before their administration in patients
APA, Harvard, Vancouver, ISO, and other styles
4

Su, Chia-Yu, and 蘇家妤. "Targeting delivery of Lecithin-Stabilized Micellar Drug Delivery System (LsbMDDs) by Enhanced Permeability and Retention (EPR) effect and Bispecific Antibodies to Enhance Chemotherapeutic Efficacy: Physical and Biopharmaceutical Characterizations." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/u68jtf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ke, Shan. "Avidin-biotin-PEG-CPA complexes as potential enhanced permeability and retention effect directed therapeutic protein carriers : preparation and characterization /." 2007. http://www.library.wisc.edu/databases/connect/dissertations.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Σεργίδης, Ανδρέας. "Μελέτη των παραμέτρων της σύνθεσης υβριδικών κολλοειδών νανοκρυστάλλων με υπερπαραμαγνητικές ιδιότητες για την ανάπτυξη πολυλειτουργικών συστημάτων ελεγχόμενης χορήγησης αντικαρκινικών ουσιών". Thesis, 2014. http://hdl.handle.net/10889/8576.

Full text
Abstract:
Η Πακλιταξέλη (PTX) αποτελεί ένα ευρέως διαδεδομένο αντινεοπλασματικό φάρμακο και ενδείκνυται σε μεταστατικό καρκίνο του μαστού, καρκίνο ωοθηκών, μη μικροκυτταρικό καρκίνο του πνεύμονα και σε σάρκωμα Kaposi ασθενών με AIDS. Παρ’ όλα αυτά, η σημαντική τοξικότητα που εμφανίζει (μυελοκαταστολή, νευροτοξικότητα, αντιδράσεις υπερευαισθησίας), υπογραμμίζει την αναγκαιότητα για μορφοποίησή της σε Συστήματα Ελεγχόμενης Χορήγησης Φαρμάκων (DDS), με σκοπό τη μείωση των ανεπιθύμητων ενεργειών και την αύξηση της βιοδιαθεσιμότητας του φαρμάκου. Τα πολυμερικά μικκύλια έχουν μελετεθεί εκτενώς τα τελευταία χρόνια ως Συστήματα Ελεγχόμενης Χορήγησης Φαρμάκων. Η ενσωμάτωση υπερπαραμαγνητικών νανοκρυσταλλιτών οξειδίου του σιδήρου (SPIONs) στον πυρήνα των PTX-μικκυλίων, παρέχει τη δυνατότητα μαγνητικής στόχευσης του φαρμάκου στην επιθυμητή περιοχή δράσης, καθώς και τη θεραπεία του καρκίνου μέσω επαγωγής μαγνητικής υπερθερμίας, με την εφαρμογή εναλλασσόμενου μαγνητικού πεδίου. Επιπλεόν, η χρήση των SPIONs ως σκιαγραφικά μέσα (Τ2-contrast enhancement) στη μαγνητική τομογραφία πυρηνικού συντονισμού (MRI), εξασφαλίζει το πλεονέκτημα ταυτόχρονης διάγνωσης και θεραπείας (Theranostics), αποκαλύπτοντας την πολυλειτουργικότητα των συστημάτων αυτών. Οι συγκεκριμένοι νανοφορείς, έχοντας μικρό μέγεθος (100-200nm), θεωρούνται κατάλληλοι για να αποφύγουν την οψωνινοποίηση απο τις λιποπρωτεϊνες του αίματος, την επίθεση απο τα φαγοκύτταρα του Δικτυοενδοθηλιακού συστήματος (RES) καθώς και την ταχεία νεφρική κάθαρση, με αποτέλεσμα την παρατεταμένη κυκλοφορία τους στο αίμα (stealth systems) και την εκλεκτική πρόσληψη τους απο τους συμπαγείς καρκινικούς όγκους, μέσω του φαινομένου της ενισχυμένης διαπερατότητας και κατακράτησης (EPR effect). Οι ιδιότητες αυτές, καθιστούν τα συγκεκριμένα συστήματα πολύτιμα εργαλεία στον τομέα της νανοϊατρικής. Η παρούσα μεταπτυχιακή διατριβή πραγματεύεται τη σύνθεση υδρόφοβων SPIONs μέσω της τεχνικής της θερμικής αποικοδόμησης. Μελετήθηκαν οι συνθετικές παράμετροι (πρόδρομη ένωση, ποσότητα ελαϊκού οξέος, θερμοκρασία και διάρκεια αντίδρασης, ρυθμός αύξησης της θερμοκρασίας κ.α) που επηρεάζουν το μέγεθος, το σχήμα και τη διασπορά του μεγέθους των σχηματιζομένων νανοκρυσταλλιτών (5-13nm, σ: 10-20%), καθώς διαδραματίζουν σημαντικό ρόλο στη μαγνητική συμπεριφορά των υβριδικών νανονοφορέων. Στη συνέχεια, πραγματοποιήθηκε σύνθεση υβριδικών νανοφορέων με εγκλωβισμό των SPIONs σε πολυμερικά μικκύλια. Η παρασκευή των υπερπαραμαγνητικών μικκυλίων επιτελέστηκε με την τεχνικη solvent diffusion and evaporation (nanoprecipitation), με χρήση του αμφίφιλου συμπολυμερούς πολυ(γαλακτικό οξύ)-πολυ(αιθυλενογλυκόλη) (PLA-PEG). Στον υδρόφοβο πυρήνα των μικκυλίων (PLA) δεσμεύονται υδρόφοβες ενώσεις (PTX, SPIONs), ενώ το υδρόφιλο κέλυφος (PEG) προσδίδει κολλοειδή σταθερότητα σε υδατικά μέσα (δομή πυρήνα-κελύφους). Διερευνήθηκαν διάφορες συνθετικές παράμετροι (μοριακό βάρος συμπολυμερούς, ποσότητα SPIONs, ρυθμός προσθήκης οργανικής φάσης κ.α) και προσδιορίστηκαν οι βέλτιστες συνθήκες για την παρασκευή υπερπαραμαγνητικών μικκυλίων μεγέθους <200nm, με αξιοσημείωτη κολλοειδή σταθερότητα (μέχρι και έξι μήνες), σε συνθήκες παρόμοιες με αυτές του ανθρώπινου πλάσματος (pH: 7.4, ιοντική ισχύς: 0.15Μ). Στο επόμενο στάδιο της παρούσας εργασίας, μελετήθηκαν οι παράγοντες που επηρεάζουν τη φόρτωση-ενκαψυλίωση της PTX και των SPIONs στα πολυμερικά μικκύλια (ποσότητα PTX, ποσότητα και μέγεθος SPIONs, μοριακό βάρος PLA-PEG, ρυθμός προσθήκης οργανικής φάσης κ.α), σε φυσιολογικές συνθήκες (pH:7.4, ιοντική ισχύς: 0.15Μ). Αναπτύχθηκε πρωτόκολλο μέσω του οποίου έγινε κατορθωτός ο διαχωρισμός των μαγνητικών νανοφορέων απο τους μη μαγνητικούς, καθώς και ο υπολογισμός της φόρτωσης-ενκαψυλίωσης PTX και SPIONs ξεχωριστά, τόσο στους μαγνητικούς και μη μαγνητικούς νανοφορείς, όσο και στο μέιγμα αυτών. Οι συγκεκριμένοι νανοφορείς χαρακτηρίζονται απο εξαιρετικά υψηλή απόδοση ενκαψυλίωσης φαρμάκου (93 %wt.) και φόρτωση φαρμάκου που ανέρχεται στο 4.8 %wt. Oι αμιγώς μαγνητικοί νανοφορείς επιδεικνύουν υψηλή απόδοση ενκαψυλίωσης νανοκρυσταλλιτών (70 %wt.), ενώ η φόρτωση σε φάρμακο και SPIONs ανέρχεται σε 5.2 και 20 %wt. αντίστοιχα. Σε αμφότερες τις περιπτώσεις οι νανοφορείς, μεγέθους (υδροδυναμική διάμετρος) 170nm, χαρακτηρίζονται απο ικανοποιητική μαγνητική συμπεριφορά. Εξετάστηκε η επίδραση του μεγέθους των νανοκρυσταλλιτών στη μαγνητική συμπεριφορά των νανοφορέων. Οι αμιγώς μαγνητικοί νανοφορείς με μεγαλύτερο μέγεθος SPIONs παρουσιάζουν καλύτερη μαγνητική συμπεριφορά. Τέλος, πραγματοποιήθηκαν μελέτες αποδέσμευσης του φαρμάκου σε PBS (0.14Μ, pH:7.4) στους 37oC και διερευνήθηκε η επίδραση της εφαρμογής εναλλασσόμενου μαγνητικού πεδίου στην αποδέσμευση της PTX απο τους μαγνητικούς νανοφορείς (Triggered Drug Release). Σε κάθε περίπτωση, παρατηρήθηκε ελεγχόμενη αποδέσμευση του φαρμάκου για 24 ώρες, σε συνθήκες που προσομοιάζουν με αυτές του πλάσματος. Ο φυσικοχημικός χαρακτηρισμός των νανοφορέων πραγματοποιήθηκε με HPLC, DLS, TGA, TEM και μαγνητοφόρηση.<br>Paclitaxel (PTX) is one of the most successful anticancer drugs against a broad range of solid tumors, such as metastatic breast cancer, ovarian cancer, non-small-cell lung cancer and AIDS-related Kaposi sarcoma. However, the serious systematic side effects of PTX (myelosuppression, neurotoxicity, hypersensitivity) underline the need for formulation of PTX in Drug Delivery Systems (DDS), in order to reduce the side effects and increase the bioavailability of the drug. Among DDS, polymeric micelles have drawn much attention due to their great flexibility in tuning drug solubility, micelle size, targeted drug delivery and stability. Incorporation of Superparamagnetic Iron Oxide Nanocrystals (SPIONs) inside the core of drug-loaded polymeric micelles, imparts to the final Drug Delivery System the prospect of physical (magnetic) targeting, intrinsic therapeutic function (hyperthermia-based cancer therapy under alternating external magnetic field), T2-based contrast enhancement in magnetic resonance imaging (MRI) and remotely triggered drug release. These core-shell polymeric micelles having small size (100-200nm), are considered appropriate for avoiding both opsonization, macrophages attack by ReticuloEndothelial System (RES) and rapid renal clearance, thus allowing micelles to be taken up preferably by solid tumors through Enhanced Permeability and Retention (EPR) effect. Therefore, such nanoassemblies encode high potential in nanomedicine, due to their dual nature (Therapeutic+Diagnostic = Theranostics). In particular, we have studied the synthesis of organophilic SPIONs through thermal decomposition. The synthetic parameters (precursor, precursor:oleic acid ratio, reaction temperature and duration, heat rate, etc.) affecting the size, shape and size distribution of the nanocrystals have also been examined thoroughly, since they play a key-role concerning the magnetic behavior of the final hybrid. Nanosized SPIONs with narrow size distribution were synthesized (5-13nm, σ: 10-20%). The preparation of poly(lactic acid)-block-poly(ethyleneglycol) (PLA-PEG) micelles encapsulating hydrophobic SPIONs, by varying the molecular weight of the polymers, the amount of SPIONs and the addition rate during micelle assembly, has also been investigated. The core-shell superparamagnetic micelles were prepared through solvent diffusion and evaporation technique (nanoprecipitation). PTX and SPIONs are being incorporated into the micelle’s hydrophobic core (PLA) through hydrophobic interactions, whereas the hydrophilic shell (PEG) stabilizes the micelles in aqueous dispersions, optimizing their colloidal stability and providing prolonged circulating time. The optimum parameters were determined, conferring to the micelles (Hydrodynamic Diameter < 200nm) high colloidal stability (up to six months) at biorelevant conditions (pH:7.4, ionic strenght: 0.15M). The next phase of the present master thesis focused on studying the factors (amount of PTX and SPIONs, molecular weight of PLA-PEG, addition rate, etc.) affecting the Loading of PTX and SPIONs into the polymeric micelles and how they can be fine-tuned towards high drug loading, while retaining their size at a scale where long circulation would not be precluded. Through protocol establishment, we have managed to separate the magnetic and non magnetic micelles, and to determine individually the loading of PTX and SPIONs for magnetic, non magnetic micelles, as well as for the mixture of them. The micelles’ mixture exhibits very high Drug Encapsulation Efficiency (93 %wt.) and 4.8 %wt. Drug Loading (D.L). Magnetic nanocarriers display high Magnetic Encapsulation Efficiency (70 %wt.), with D.L and Magnetic Loading of 5.2 and 20 %wt. respectively, In both cases, micelles demonstrate adequate magnetic behavior and small sizes (hydrodynamic diameter: 170nm), under conditions which simulate with human plasma (pH:7.4, ionic strenght: 0.15M). The effect of SPIONs’ size on the magnetic behavior of hybrid colloids, was also examined. Magnetic nanocarriers encapsulating SPIONs of greater size exhibit better magnetic behavior. Finally, we have conducted Drug release studies in PBS (0.14M, pH:7.4) at 37oC. The effect of SPIONs presence on the release profile of PTX, including triggered drug-release by application of AC magnetic field, has also been investigated. PTX-magnetic micelles exhibit Controlled Drug release for 24 hours. Several techniques have been used for the characterization of such nanoassemblies, like: HPLC, DLS, TGA, TEM, XRD, Magnetophoresis and Triggered Drug release by application of AC magnetic field.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Enhanced permeability and retention (EPR) effect"

1

Russell, Luisa M., Charlene M. Dawidczyk, and Peter C. Searson. "Quantitative Evaluation of the Enhanced Permeability and Retention (EPR) Effect." In Methods in Molecular Biology. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6646-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Onzi, Giovana, Silvia S. Guterres, Adriana R. Pohlmann, and Luiza Abrahão Frank. "Passive Targeting and the Enhanced Permeability and Retention (EPR) Effect." In The ADME Encyclopedia. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51519-5_108-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Greish, Khaled. "Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting." In Methods in Molecular Biology. Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-609-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maeda, Hiroshi. "Enhanced Permeability and Retention (EPR) Efect: Basis for Drug Targeting to Tumor." In Biomedical Aspects of Drug Targeting. Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-4627-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maeda, Hiroshi. "Enhanced Permeability and Retention Effect in Relation to Tumor Targeting." In Drug Delivery in Oncology. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634057.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seki, Takahiro, Jun Fang, and Hiroshi Maeda. "Tumor-Targeted Macromolecular Drug Delivery Based on the Enhanced Permeability and Retention Effect in Solid Tumor." In Pharmaceutical Perspectives of Cancer Therapeutics. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0131-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greish, K., A. K. Iyer, J. Fang, M. Kawasuji, and H. Maeda. "Enhanced Permeability and Retention (EPR) Effect and Tumor-Selective Delivery of Anticancer Drugs." In Delivery of Protein and Peptide Drugs in Cancer. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/9781860948039_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Janapati, Yasodha Krishna, Sunil Junapudi, and Sudharshan Reddy Dachani. "Overview of Nano-Strategies for Combating Cancer." In Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5049-6.ch012.

Full text
Abstract:
Cancer is one of the prime rationales for mortality in humanity and remains a difficult disease to treat. Contemporary problems allied with conventional cancer chemotherapies embrace the insolubility of drugs in an aqueous medium, delivery of sub-therapeutic doses to target cells, lack of bioavailability, and most importantly, non-specific toxicity to normal tissues. Recent advances in nanotechnology investigation tackle potential solutions to these riddles. However, there are challenges regarding targeting specific sites, tracking the delivery system and control over the release of the drug to the target site. The nanodevices are 100 to 1000 times smaller than cells in humans; their size is comparable to the enzymes, the receptors. This enables them to have a large surface area and ability to interact with biomolecules on both the surface and inside cells. Nanomedicines between 8-100 nm have an enhanced permeability and retention (EPR) effect, which make these medicines to target passively the solid tumours.
APA, Harvard, Vancouver, ISO, and other styles
9

Fakhri, Khalid Umar, Armiya Sultan, Md Mushtaque, et al. "Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies." In Handbook of Research on Advancements in Cancer Therapeutics. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6530-8.ch026.

Full text
Abstract:
In this chapter, the authors first review nano-devices that are mixtures of biologic molecules and synthetic polymers like nano-shells and nano-particles for the most encouraging applications for different cancer therapies. Nano-sized medications additionally spill especially into tumor tissue through penetrable tumor vessels and are then held in the tumor bed because of diminished lymphatic drainage. This procedure is known as the enhanced penetrability and retention (EPR) impact. Nonetheless, while the EPR impact is generally held to improve conveyance of nano-medications to tumors, it in certainty offers not exactly a 2-overlay increment in nano-drug conveyance contrasted with basic ordinary organs, bringing about medication concentration that is not adequate for restoring most malignant growths. In this chapter, the authors likewise review different obstructions for nano-sized medication conveyance and to make the conveyance of nano-sized medications to tumors progressively successful by expanding on the EPR impact..
APA, Harvard, Vancouver, ISO, and other styles
10

Jasim, Anfal, Sara Abdelghany, and Khaled Greish. "Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine." In Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-809717-5.00002-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Enhanced permeability and retention (EPR) effect"

1

Li, Shidong, and Ole Torsæter. "The Impact of Nanoparticles Adsorption and Transport on Wettability Alteration of Intermediate Wet Berea Sandstone." In SPE Middle East Unconventional Resources Conference and Exhibition. SPE, 2015. http://dx.doi.org/10.2118/spe-172943-ms.

Full text
Abstract:
AbstractNanoparticles as part of nanotechnology have drawn the attention for its great potential of increasing oil recovery. From authors' previous studies (Li et al., 2013a), wettability alteration was proposed as one of the main Enhanced Oil Recovery (EOR) mechanisms for nanoparticles fluid, as adsorption of nanoparticles on pore walls leads to wettability alteration of reservoir. We conducted a series of wettability measurement experiments for aged intermediate-wet Berea sandstone, where the core plugs were treated by different concentration and type of nanoparticles fluid. Nanoparticles transport experiments also were performed for core plugs with injection of varying concentration and type of nanoparticles fluid. Pressure drop across the core plug during injection was recorded to evaluate nanoparticles adsorption and retention inside core, as well as desorption during brine postflush. Both hydrophilic silica nano-structure particles and hydrophilic silica colloidal nanoparticles were utilized in above two experiments.The results of wettability alteration experiments indicated that hydrophilic nanoparticles have ability of making intermediate-wet Berea sandstone to be more water wet, and basically the higher concentration the more water wet will be. And different type of nanoparticles has different effect on the wettability alteration process. For nanoparticles transport experiments, the results showed that the nanoparticles undergo both adsorption and desorption as well as retention during injection. Pressure drop curves showed that absorption and retention of nano-structure particles inside core was significant while colloidal nanoparticles did not adsorb much. Permeability impairment was observed during nano-structure particles fluid injection, but on the contrary colloidal nanoparticles dispersion injection made core more permeable.
APA, Harvard, Vancouver, ISO, and other styles
2

Baek, Sungchul, Robert A. Taylor, and Tracie J. Barber. "Development of a Dynamic Testing Device for Predicting the Enhanced Permeation and Retention (EPR) Effect of Different Nanoparticles in Tumor Vessels." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93075.

Full text
Abstract:
A microfluidic device was developed to simulate the dynamic conditions of the transvascular transport of nanoparticles. The device utilizes a microfluidic channel, filter paper, collagen gel—which represent the blood vessel, porous vessel wall, and interstitial matrix of the tumor, respectively. By controlling these components, the fluid-dynamic conditions of the tumor blood vessels can be simulated. For the initial study, Durapore® filters with the nominal diameter of 0.22 μm and 5 mg/ml type 1 collagen gel were used. The transvascular transport parameters of the membrane for a model particle, 20 nm gold spheres, were similar to those of rabbit VX2 carcinoma model. Overall, this design allows for fundamental research into the fluid dynamic transport of particles inside different organs, cancer types and stages. To investigate the physiological conditions of cancer, future studies will include modification of the filter membranes with proteins as well as subsequent culturing of endothelial cells on the filter and tumor cells in the gel matrix. Through this device, we will be able to prescribe nanoparticle fluids for to obtain enhanced permeation and retention.
APA, Harvard, Vancouver, ISO, and other styles
3

Kobayashi, Hisataka, Kohei Sano, Takahito Nakajima, and Peter L. Choyke. "Abstract 4512: Super-enhanced permeability and retention (SUPR) effect induced by photo-immunotherapy (PIT) can accommodate massive nano-sized reagents deep into tumors." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kobayashi, Hisataka, Kohei Sano, Takahito Nakajima, Kazuhide Sato, and Peter L. Choyke. "Abstract 5400: Photoimmunotherapy (PIT) combined with a nanosized cancer agent successfully treated heterogenous antigen-expressing tumors based on super-enhanced permeability and retention (SUPR) effect." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kwak, Bongseop, Kinam Park, and Bumsoo Han. "Tumor-on-Chip: Simulation of Complex Transport Around Tumor." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93314.

Full text
Abstract:
Nanoparticles (NP) offer great potential as drug carriers for targeted delivery to tumor by increasing the delivery efficacy and reducing non-specific accumulation at non-targeted sites [1]. Despite these promising early outcomes [2], the NP delivery to target tumor site is still significantly limited due to complex in vivo transport barriers [3–5]. In order to improve the in vivo delivery efficacy, the NPs should be designed considering all these complex transport barriers beyond currently used enhanced permeation and retention (EPR) effect [6]. However, testing of NP delivery are primarily based on simple 2D or 3D in vitro cell cultures or animal models. However, these static 2D or 3D tumor models oversimplify the actual in vivo tumor environment including the absence of tissue-tissue interactions such as blood-endothelium, endothelium-intersititum, high interstitial fluid pressure, and interstitium-lymphatics [2, 3]. The animal models can provide the testbed with these tissue-tissue interactions, but it is very difficult to establish quantitative understanding of the NP transport at these tissue-tissue interfaces. To address these challenges and bridge the in vitro static models with the animal models, here we developed a 3D multi-layered microfluidic system that mimics the tissue-tissue interactions at tumor microenvironment is developed. The system is then used to investigate the transvascular and interstitial transport of NPs in tumor.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!