Academic literature on the topic 'Enseignement des équations différentielles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enseignement des équations différentielles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Enseignement des équations différentielles"
Bézivin, Jean-Paul. "Fonctions multiplicatives et équations différentielles." Bulletin de la Société mathématique de France 123, no. 3 (1995): 329–49. http://dx.doi.org/10.24033/bsmf.2262.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 114 (July 1, 2015): 93–102. http://dx.doi.org/10.4000/annuaire-cdf.11879.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 115 (November 1, 2016): 109–17. http://dx.doi.org/10.4000/annuaire-cdf.12505.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 116 (June 15, 2018): 19. http://dx.doi.org/10.4000/annuaire-cdf.12780.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 108 (December 1, 2008): 87–91. http://dx.doi.org/10.4000/annuaire-cdf.128.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 111 (April 1, 2012): 91–100. http://dx.doi.org/10.4000/annuaire-cdf.1313.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 113 (April 1, 2014): 97. http://dx.doi.org/10.4000/annuaire-cdf.2284.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 109 (March 1, 2010): 93–101. http://dx.doi.org/10.4000/annuaire-cdf.231.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 112 (April 1, 2013): 101–7. http://dx.doi.org/10.4000/annuaire-cdf.685.
Full textFourré, F., and H. Barbason. "Équations différentielles déterministes en cytocinétique." Pathologie Biologie 51, no. 4 (June 2003): 225–26. http://dx.doi.org/10.1016/s0369-8114(03)00028-2.
Full textDissertations / Theses on the topic "Enseignement des équations différentielles"
Malonga, Moungabio Fernand. "Interactions entre les mathématiques et la physique dans l'enseignement secondaire en france : cas des équations différentielles du premier ordre." Paris 7, 2008. http://www.theses.fr/2008PA070026.
Full textThe French mathematics curriculum encourages strongly the mathematics and physics teachers of upper Sixth to cooperate in the teaching of differential equations. This fact has led us to take an interest in the teaching of this theme in both matters. In this aim, we were driven to characterize the viability of a synergy between mathematics and physics in terms of didactical continuity. Taking former researches about interactions between mathematics and physics teaching as a basis, we have organized our research around some specific questions, namely: How do differential equations appear in mathematics and physics textbooks? Does a didactical continuity exist between the two matters and, if yes, in which form? Is the Euler method a theme able to foster this didactical continuity? How do the teachers perceive this didactic continuity and put it into play? Our research showed that the didactical continuity that could be expected from official injunction is far from being assured and encounters many difficulties, as an analysis of textbooks brings it to the fore. Moreover, studying how they deal with the Euler method shows that the two curricula ignore completely each other, to such extent that they give the impression that there are indeed two different methods of Euler, according to the matter. To end with, the study of the answers given by teachers of both matters to a questionnaire confirms the difficulties of implementing a didactical continuity and allows identify some reasons for it
Moreno, Gordillo Julio Antonio. "Articulation des registres graphique et symbolique pour l'étude des équations différentielles avec Cabri géomètre : analyse des difficultés des étudiants et du rôle du logiciel." Grenoble 1, 2006. http://www.theses.fr/2006GRE10046.
Full textThe teaching of the differential equations privileges the aigebraic approach, in spite of the existence of the numericai and qualitative approaches. Ln the algebraic approach, the link between the symbolic and the graphic registers is indirect: it passes by the symbolic expression of the solutions. On the other hand, making the direct connection between these registers requires the mobilization ofknowledge ofvarious frameworks: functions, analytical geometry, analysis, etc. It requires reasoning on functions which one does not know the symbolic expression. The CUITent efforts to change the dominating algebraic paradigm cali upon the new technology tools. However, software programs as CABRI Géomètre allow creating contexts of browsing of graphic phenomena related to differential equations. Here we study the difficulties of CAPES 'students building links between the graphic and the symbolic registers, as weil as the contribution of the software in helping to develop these links. Ln chapter l, we review sorne reference works. Using certain theoretical tools, we clarify the problematic to articulate these registers. Then, we study the potentialities of the software in the study of differential equations. Ln chapter 2, we present the experimental device designed to check our hypotheses. We dedicate then two chapters to the study 0 the experiments carried out. Ln chapter 5, we draw an assessment from these experiments and we show the difficulties students found, as weil as the contributions of the software. Ln the conclusions, we reconsider the initial questions and the elements ofresponse, and the prospects for our work
Rodriguez, Gallegos Ruth. "Les équations différentielles comme outil de modélisation mathématique en Classe de Physique et de Mathématiques au lycée : une étude de manuels et de processus de modélisation d’élèves en Terminale S." Grenoble 1, 2007. http://www.theses.fr/2007GRE10193.
Full textThis study deals with the learning and teaching of modelling in classes of Physics and Mathematics at the last year of high-school, in France. The new syllabi that started out in 2002 for these two classes, emphasize the role of mathematics as a tool for modelling in other sciences. The analysis of textbooks that are usually used in Physics and Mathematics classes allowed us to characterize the proposed modelling process to be taught at this school level. These analyses revealed the transposition process of the « modelling process » as achieved by experts into a different process adapted for school. The setting up of an experimental situation including some unusual tasks (out of the scope of the usual didactic contract) for students at the last year of highschool, allows us to identify the influence of the praxeologies existing at these classes onto students solving processes. But this situation also gave evidence of the role of the « pseudo concrete » model of the initial real situation and of the physical model constructed by the students upon the modelling approach. The influence of external interventions to help students overcome their difficulties, or the role of some feedback of one task onto another one, are also addressed and discussed. The type of modelling that is finally taught (“taught” knowledge) in classes of Physics and Mathematics presents an important gap with respect to the modelling process as practiced by experts (“wise” knowledge). Some of the difficulties linked to the setting up of this transposition process are analyzed in the present study
Saglam, Ayse. "Les équations différentielles en mathématiques et en physique : étude des conditions de leur enseignement et caractérisation des rapports personnels des étudiants de première année d'université à cet objet de savoir." Grenoble 1, 2004. http://www.theses.fr/2004GRE10160.
Full textEstablished at the 17th century, differential equations are among the most important ones which form the relationships between mathematics and physics. This thesis aims to clarify the characteristics of these relationships in the current teaching. The main focus is on the teaching and learning conditions of this concept in first year of the university. First, a brief historical study which aims at distinguishing the role played by the physical sciences during the emergence of this concept and throughout its historical evolution has been done. Then, the "institutional relation" to differential equations is analysed based on the anthropological theory of didactics. For this purpose, both ecological and praxeological analyses are performed based on the handboobs of the last year of the secondary science teaching (in France). Furthermore, handouts and lecture notes from mathematics and physics courses of the first year of the university has been also used. This study enabled us to describe the general characteristics of the teaching of this concept in the two disciplines. Finally, this study is completed by an analysis of the "personal relation" of students to the differential equation. For this purpose, we analysed their score to some mathematics and physical science tests provided them. The so-called tests ask students to both consider the "object" and the "model" status of the differential equations, respectively in mathematics and physical sciences
Provencher, Annie. "La compréhension de l'équation : un éclairage des conduites d'élèves à la fin de la 3e secondaire." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23842/23842.pdf.
Full textLazrag, Lanouar. "Intégrabilité des équations différentielles." Thesis, Lyon, École normale supérieure, 2012. http://www.theses.fr/2012ENSL0782.
Full textThis thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Full textThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Lassoued, Dhaou. "Fonctions presque-périodiques et Équations Différentielles." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00942969.
Full textLassoued, Rafika. "Contributions aux équations d'évolution frac-différentielles." Thesis, La Rochelle, 2016. http://www.theses.fr/2016LAROS001/document.
Full textIn this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system
Touzet, Frédéric. "Équations différentielles admettant des solutions liouvilliennes." Rennes 1, 1995. http://www.theses.fr/1995REN10136.
Full textBooks on the topic "Enseignement des équations différentielles"
Ramis, E. Cours de mathématiques spéciales: Classes préparatoires et enseignement supérieur (1er cycle) : séries équations différentielles et intégrales multiples. Paris: Masson, 1993.
Find full textC, DiPrima Richard, ed. Équations différentielles. Montréal: Chenelière / McGraw-Hill, 2002.
Find full textPetrovskii, I. G. Théorie des équations différentielles ordinaires et des équations intégrales. Moscou: Mir, 1988.
Find full textDemailly, Jean-Pierre. Analyse numérique et équations différentielles. Les Ulis, France: EDP Science, 2006.
Find full textDemailly, Jean-Pierre. Analyse numérique et équations différentielles. Grenoble: Presses universitaires de Grenoble, 1996.
Find full textDemailly, Jean-Pierre. Analyse numérique et équations différentielles. Grenoble: Presses universitaires de Grenoble, 1991.
Find full textYOCCOZ, J. C. Cours de topologie, calcul différentiel, équations différentielles. Orsay (91): Orsay Plus, 1990.
Find full textM, Aroca José, and Société mathématique de France, eds. Équations différentielles et singularités: En l'honneur de J.M. Aroca. Paris, France: Socíeté mathématique de France, 2009.
Find full textBenzoni-Gavage, Sylvie. Calcul différentiel et équations différentielles: Cours et exercices corrigés. Paris: Dunod, 2010.
Find full textBook chapters on the topic "Enseignement des équations différentielles"
Jedrzejewski, Franck. "Équations différentielles stochastiques." In Modèles aléatoires et physique probabiliste, 287–306. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-99308-4_13.
Full textCépa, Emmanuel. "Équations différentielles stochastiques multivoques." In Lecture Notes in Mathematics, 86–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0094202.
Full text"Équations différentielles ordinaires." In Mathématiques & Applications, 101–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34016-5_6.
Full text"8 ÉQUATIONS DIFFÉRENTIELLES." In Mathématiques et statistique pour les sciences de la nature, 293–316. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0898-4-010.
Full text"8 ÉQUATIONS DIFFÉRENTIELLES." In Mathématiques et statistique pour les sciences de la nature, 293–316. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0898-4.c010.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 107–36. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6-006.
Full text"14. Équations différentielles linéaires." In Eléments d'analyse réelle, 381–416. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2378-9-015.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 119–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3-006.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 107–36. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6.c006.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 119–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3.c006.
Full text