Academic literature on the topic 'Ensemble Based Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ensemble Based Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ensemble Based Classification"
Gui, Wenli, Liping Jing, Liu Yang, and Jian Yu. "Unsupervised Cross-Language Classification with Stratified Sampling-Based Cluster Ensemble." International Journal of Machine Learning and Computing 5, no. 3 (June 2015): 165–71. http://dx.doi.org/10.7763/ijmlc.2015.v5.502.
Full textJurek, Anna, Yaxin Bi, Shengli Wu, and Chris Nugent. "A survey of commonly used ensemble-based classification techniques." Knowledge Engineering Review 29, no. 5 (May 3, 2013): 551–81. http://dx.doi.org/10.1017/s0269888913000155.
Full textKilimci, Zeynep H., and Selim Akyokus. "Deep Learning- and Word Embedding-Based Heterogeneous Classifier Ensembles for Text Classification." Complexity 2018 (October 9, 2018): 1–10. http://dx.doi.org/10.1155/2018/7130146.
Full textWang, Bo, Yu Kai Yao, Xiao Ping Wang, and Xiao Yun Chen. "PB-SVM Ensemble: A SVM Ensemble Algorithm Based on SVM." Applied Mechanics and Materials 701-702 (December 2014): 58–62. http://dx.doi.org/10.4028/www.scientific.net/amm.701-702.58.
Full textAlsawalqah, Hamad, Neveen Hijazi, Mohammed Eshtay, Hossam Faris, Ahmed Al Radaideh, Ibrahim Aljarah, and Yazan Alshamaileh. "Software Defect Prediction Using Heterogeneous Ensemble Classification Based on Segmented Patterns." Applied Sciences 10, no. 5 (March 3, 2020): 1745. http://dx.doi.org/10.3390/app10051745.
Full textKO, ALBERT HUNG-REN, ROBERT SABOURIN, and ALCEU DE SOUZA BRITTO. "COMPOUND DIVERSITY FUNCTIONS FOR ENSEMBLE SELECTION." International Journal of Pattern Recognition and Artificial Intelligence 23, no. 04 (June 2009): 659–86. http://dx.doi.org/10.1142/s021800140900734x.
Full textAlizadeh Moghaddam, S. H., M. Mokhtarzade, and S. A. Alizadeh Moghaddam. "A NEW MULTIPLE CLASSIFIER SYSTEM BASED ON A PSO ALGORITHM FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W18 (October 18, 2019): 71–75. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-71-2019.
Full textHu, Ruihan, Songbin Zhou, Yisen Liu, and Zhiri Tang. "Margin-Based Pareto Ensemble Pruning: An Ensemble Pruning Algorithm That Learns to Search Optimized Ensembles." Computational Intelligence and Neuroscience 2019 (June 3, 2019): 1–12. http://dx.doi.org/10.1155/2019/7560872.
Full textOnan, Aytug. "Hybrid supervised clustering based ensemble scheme for text classification." Kybernetes 46, no. 2 (February 6, 2017): 330–48. http://dx.doi.org/10.1108/k-10-2016-0300.
Full textKu Abd. Rahim, Ku, I. Elamvazuthi, Lila Izhar, and Genci Capi. "Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors." Sensors 18, no. 12 (November 26, 2018): 4132. http://dx.doi.org/10.3390/s18124132.
Full textDissertations / Theses on the topic "Ensemble Based Classification"
WANDEKOKEN, E. D. "Support Vector Machine Ensemble Based on Feature and Hyperparameter Variation." Universidade Federal do Espírito Santo, 2011. http://repositorio.ufes.br/handle/10/4234.
Full textClassificadores do tipo máquina de vetores de suporte (SVM) são atualmente considerados uma das técnicas mais poderosas para se resolver problemas de classificação com duas classes. Para aumentar o desempenho alcançado por classificadores SVM individuais, uma abordagem bem estabelecida é usar uma combinação de SVMs, a qual corresponde a um conjunto de classificadores SVMs que são, simultaneamente, individualmente precisos e coletivamente divergentes em suas decisões. Este trabalho propõe uma abordagem para se criar combinações de SVMs, baseada em um processo de três estágios. Inicialmente, são usadas execuções complementares de uma busca baseada em algoritmos genéticos (GEFS), com o objetivo de investigar globalmente o espaço de características para definir um conjunto de subconjuntos de características. Em seguida, para cada um desses subconjuntos de características definidos, uma SVM que usa parâmetros otimizados é construída. Por fim, é empregada uma busca local com o objetivo de selecionar um subconjunto otimizado dessas SVMs, e assim formar a combinação de SVMs que é finalmente produzida. Os experimentos foram realizados num contexto de detecção de defeitos em máquinas industriais. Foram usados 2000 exemplos de sinais de vibração de moto bombas instaladas em plataformas de petróleo. Os experimentos realizados mostram que o método proposto para se criar combinação de SVMs apresentou um desempenho superior em comparação a outras abordagens de classificação bem estabelecidas.
Al-Enezi, Jamal. "Artificial immune systems based committee machine for classification application." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6826.
Full textBörthas, Lovisa, and Sjölander Jessica Krange. "Machine Learning Based Prediction and Classification for Uplift Modeling." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266379.
Full textBehovet av att kunna modellera den verkliga vinsten av riktad marknadsföring har lett till den idag vanligt förekommande metoden inkrementell responsanalys. För att kunna utföra denna typ av metod krävs förekomsten av en existerande testgrupp samt kontrollgrupp och målet är således att beräkna differensen mellan de positiva utfallen i de två grupperna. Sannolikheten för de positiva utfallen för de två grupperna kan effektivt estimeras med statistiska maskininlärningsmetoder. De inkrementella responsanalysmetoderna som undersöks i detta projekt är subtraktion av två modeller, att modellera den inkrementella responsen direkt samt en klassvariabeltransformation. De statistiska maskininlärningsmetoderna som tillämpas är random forests och neurala nätverk samt standardmetoden logistisk regression. Datan är samlad från ett väletablerat detaljhandelsföretag och målet är därmed att undersöka vilken inkrementell responsanalysmetod och maskininlärningsmetod som presterar bäst givet datan i detta projekt. De mest avgörande aspekterna för att få ett bra resultat visade sig vara variabelselektionen och mängden kontrolldata i varje dataset. För att få ett lyckat resultat bör valet av maskininlärningsmetod vara random forests vilken används för att modellera den inkrementella responsen direkt, eller logistisk regression tillsammans med en klassvariabeltransformation. Neurala nätverksmetoder är känsliga för ojämna klassfördelningar och klarar därmed inte av att erhålla stabila modeller med den givna datan. Vidare presterade subtraktion av två modeller dåligt på grund av att var modell tenderade att fokusera för mycket på att modellera klassen i båda dataseten separat, istället för att modellera differensen mellan dem. Slutsatsen är således att en metod som modellerar den inkrementella responsen direkt samt en relativt stor kontrollgrupp är att föredra för att få ett stabilt resultat.
Feng, Wei. "Investigation of training data issues in ensemble classification based on margin concept : application to land cover mapping." Thesis, Bordeaux 3, 2017. http://www.theses.fr/2017BOR30016/document.
Full textClassification has been widely studied in machine learning. Ensemble methods, which build a classification model by integrating multiple component learners, achieve higher performances than a single classifier. The classification accuracy of an ensemble is directly influenced by the quality of the training data used. However, real-world data often suffers from class noise and class imbalance problems. Ensemble margin is a key concept in ensemble learning. It has been applied to both the theoretical analysis and the design of machine learning algorithms. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. This work focuses on exploiting the margin concept to improve the quality of the training set and therefore to increase the classification accuracy of noise sensitive classifiers, and to design effective ensemble classifiers that can handle imbalanced datasets. A novel ensemble margin definition is proposed. It is an unsupervised version of a popular ensemble margin. Indeed, it does not involve the class labels. Mislabeled training data is a challenge to face in order to build a robust classifier whether it is an ensemble or not. To handle the mislabeling problem, we propose an ensemble margin-based class noise identification and elimination method based on an existing margin-based class noise ordering. This method can achieve a high mislabeled instance detection rate while keeping the false detection rate as low as possible. It relies on the margin values of misclassified data, considering four different ensemble margins, including the novel proposed margin. This method is extended to tackle the class noise correction which is a more challenging issue. The instances with low margins are more important than safe samples, which have high margins, for building a reliable classifier. A novel bagging algorithm based on a data importance evaluation function relying again on the ensemble margin is proposed to deal with the class imbalance problem. In our algorithm, the emphasis is placed on the lowest margin samples. This method is evaluated using again four different ensemble margins in addressing the imbalance problem especially on multi-class imbalanced data. In remote sensing, where training data are typically ground-based, mislabeled training data is inevitable. Imbalanced training data is another problem frequently encountered in remote sensing. Both proposed ensemble methods involving the best margin definition for handling these two major training data issues are applied to the mapping of land covers
Alshahrani, Saeed Sultan. "Detection, classification and control of power quality disturbances based on complementary ensemble empirical mode decomposition and artificial neural networks." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15872.
Full textWang, Xin. "Gaze based weakly supervised localization for image classification : application to visual recognition in a food dataset." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066577/document.
Full textIn this dissertation, we discuss how to use the human gaze data to improve the performance of the weak supervised learning model in image classification. The background of this topic is in the era of rapidly growing information technology. As a consequence, the data to analyze is also growing dramatically. Since the amount of data that can be annotated by the human cannot keep up with the amount of data itself, current well-developed supervised learning approaches may confront bottlenecks in the future. In this context, the use of weak annotations for high-performance learning methods is worthy of study. Specifically, we try to solve the problem from two aspects: One is to propose a more time-saving annotation, human eye-tracking gaze, as an alternative annotation with respect to the traditional time-consuming annotation, e.g. bounding box. The other is to integrate gaze annotation into a weakly supervised learning scheme for image classification. This scheme benefits from the gaze annotation for inferring the regions containing the target object. A useful property of our model is that it only exploits gaze for training, while the test phase is gaze free. This property further reduces the demand of annotations. The two isolated aspects are connected together in our models, which further achieve competitive experimental results
Xia, Junshi. "Multiple classifier systems for the classification of hyperspectral data." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT047/document.
Full textIn this thesis, we propose several new techniques for the classification of hyperspectral remote sensing images based on multiple classifier system (MCS). Our proposed framework introduces significant innovations with regards to previous approaches in the same field, many of which are mainly based on an individual algorithm. First, we propose to use Rotation Forests with several linear feature extraction and compared them with the traditional ensemble approaches, such as Bagging, Boosting, Random subspace and Random Forest. Second, the integration of the support vector machines (SVM) with Rotation subspace framework for context classification is investigated. SVM and Rotation subspace are two powerful tools for high-dimensional data classification. Therefore, combining them can further improve the classification performance. Third, we extend the work of Rotation Forests by incorporating local feature extraction technique and spatial contextual information with Markov random Field (MRF) to design robust spatial-spectral methods. Finally, we presented a new general framework, Random subspace ensemble, to train series of effective classifiers, including decision trees and extreme learning machine (ELM), with extended multi-attribute profiles (EMAPs) for classifying hyperspectral data. Six RS ensemble methods, including Random subspace with DT (RSDT), Random Forest (RF), Rotation Forest (RoF), Rotation Random Forest (RoRF), RS with ELM (RSELM) and Rotation subspace with ELM (RoELM), are constructed by the multiple base learners. The effectiveness of the proposed techniques is illustrated by comparing with state-of-the-art methods by using real hyperspectral data sets with different contexts
Al-Mter, Yusur. "Automatic Prediction of Human Age based on Heart Rate Variability Analysis using Feature-Based Methods." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166139.
Full textThames, John Lane. "Advancing cyber security with a semantic path merger packet classification algorithm." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45872.
Full textEkelund, Måns. "Uncertainty Estimation for Deep Learning-based LPI Radar Classification : A Comparative Study of Bayesian Neural Networks and Deep Ensembles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301653.
Full textTidigare studier har visat att djupa neurala nätverk (DNN) kan klassificera signalmönster för en speciell typ av radar (LPI) som är skapad för att vara svår att identifiera och avlyssna. Traditionella neurala nätverk saknar dock ett naturligt sätt att skatta osäkerhet, vilket skadar deras pålitlighet och förhindrar att de används i säkerhetskritiska miljöer. Osäkerhetsskattning för djupinlärning har därför vuxit och på senare tid blivit ett stort område med två tydliga kategorier, Bayesiansk approximering och ensemblemetoder. LPI radarklassificering är av stort intresse för försvarsindustrin, och tekniken kommer med största sannolikhet att appliceras i säkerhetskritiska miljöer. I denna studie jämför vi Bayesianska neurala nätverk och djupa ensembler för LPI radarklassificering. Resultaten från studien pekar på att en djup ensemble uppnår högre träffsäkerhet än ett Bayesianskt neuralt nätverk och att båda metoderna uppvisar återhållsamhet i sina förutsägelser jämfört med ett traditionellt djupt neuralt nätverk. Vi skattar osäkerhet som entropi och visar att osäkerheten i metodernas slutledningar ökar både på höga brusnivåer och på data som är något förskjuten från den kända datadistributionen. Resultaten visar dock att metodernas osäkerhet inte ökar jämfört med ett vanligt nätverk när de får se tidigare osedda signal mönster. Vi visar också att val av metod kan influeras av tillgängliga resurser, eftersom djupa ensembler kräver mycket minne jämfört med ett traditionellt eller Bayesianskt neuralt nätverk.
Books on the topic "Ensemble Based Classification"
Zirnbauer, Martin R. Symmetry classes. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.3.
Full textBook chapters on the topic "Ensemble Based Classification"
Herrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Ensemble-Based Classifiers." In Multilabel Classification, 101–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_6.
Full textRaimundo, Marcos M., and Fernando J. Von Zuben. "Many-Objective Ensemble-Based Multilabel Classification." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 365–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75193-1_44.
Full textBock, K. W. De, K. Coussement, and D. Cielen. "An Overview of Multiple Classifier Systems Based on Generalized Additive Models." In Ensemble Classification Methods with Applicationsin R, 175–86. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119421566.ch11.
Full textSchaefer, Gerald, Bartosz Krawczyk, M. Emre Celebi, Hitoshi Iyatomi, and Aboul Ella Hassanien. "Melanoma Classification Based on Ensemble Classification of Dermoscopy Image Features." In Communications in Computer and Information Science, 291–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13461-1_28.
Full textDeuse, Jochen, Mario Wiegand, and Kirsten Weisner. "Continuous Process Monitoring Through Ensemble-Based Anomaly Detection." In Studies in Classification, Data Analysis, and Knowledge Organization, 289–301. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25147-5_18.
Full textSultana, Naznin, and Mohammad Mohaiminul Islam. "Meta Classifier-Based Ensemble Learning For Sentiment Classification." In Proceedings of International Joint Conference on Computational Intelligence, 73–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7564-4_7.
Full textGuo, Hui, Shu-guang Huang, Min Zhang, Zu-lie Pan, Fan Shi, Cheng Huang, and Beibei Li. "Classification of Malware Variant Based on Ensemble Learning." In Machine Learning for Cyber Security, 125–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62223-7_11.
Full textPetković, Matej, Sašo Džeroski, and Dragi Kocev. "Ensemble-Based Feature Ranking for Semi-supervised Classification." In Discovery Science, 290–305. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33778-0_23.
Full textAnisetty, Manikanta Durga Srinivas, Gagan K Shetty, Srinidhi Hiriyannaiah, Siddesh Gaddadevara Matt, K. G. Srinivasa, and Anita Kanavalli. "Content-Based Music Classification Using Ensemble of Classifiers." In Intelligent Human Computer Interaction, 285–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04021-5_26.
Full textLi, Yiyang, Lei Su, Jun Chen, and Liwei Yuan. "Semi-supervised Question Classification Based on Ensemble Learning." In Advances in Swarm and Computational Intelligence, 341–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20472-7_37.
Full textConference papers on the topic "Ensemble Based Classification"
Zhiwen Yu, Xing Wang, and Hau-San Wong. "Ensemble based 3D human motion classification." In 2008 IEEE International Joint Conference on Neural Networks (IJCNN 2008 - Hong Kong). IEEE, 2008. http://dx.doi.org/10.1109/ijcnn.2008.4633839.
Full textHuang, Jonathan, Hong Lu, Paulo Lopez Meyer, Hector Cordourier, and Juan Del Hoyo Ontiveros. "Acoustic Scene Classification Using Deep Learning-based Ensemble Averaging." In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/8rd2-g787.
Full textKrishna Veni, C. V., and T. Sobha Rani. "Ensemble based classification using small training sets : A novel approach." In 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL). IEEE, 2014. http://dx.doi.org/10.1109/ciel.2014.7015738.
Full textXiao, Qi, and Zhengdao Wang. "Ensemble classification based on Random linear base classifiers." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952648.
Full textOdinokikh, Nikita, and Vladimir Berikov. "Cluster Ensemble Kernel for Kernel-based Classification." In 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2019. http://dx.doi.org/10.1109/sibircon48586.2019.8958184.
Full textJia, Keliang, Kang Chen, Xiaozhong Fan, and Yu Zhang. "Chinese Question Classification Based on Ensemble Learning." In Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007). IEEE, 2007. http://dx.doi.org/10.1109/snpd.2007.183.
Full textJin, Yuxin, Ze Yang, Ying He, Xianyu Bao, and Gongqing Wu. "Ensemble Classification Method Based on Truth Discovery." In 2019 IEEE International Conference on Big Knowledge (ICBK). IEEE, 2019. http://dx.doi.org/10.1109/icbk.2019.00024.
Full textSilva, Vitor F., Roberto M. Barbosa, Pedro M. Vieira, and Carlos S. Lima. "Ensemble learning based classification for BCI applications." In 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG). IEEE, 2017. http://dx.doi.org/10.1109/enbeng.2017.7889483.
Full textBen Ayed, Abdelkarim, Marwa Benhammouda, Mohamed Ben Halima, and Adel M. Alimi. "Random forest ensemble classification based fuzzy logic." In Ninth International Conference on Machine Vision, edited by Antanas Verikas, Petia Radeva, Dmitry P. Nikolaev, Wei Zhang, and Jianhong Zhou. SPIE, 2017. http://dx.doi.org/10.1117/12.2268564.
Full textDeeksha, Deeksha, Rajesh Bhatia, Shikhar Bhardwaj, Manish Kumar, Kashish Bhatia, and Shabeg Singh Gill. "Stacking Ensemble-based Automatic Web Page Classification." In 2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT). IEEE, 2021. http://dx.doi.org/10.1109/ccict53244.2021.00042.
Full text