Academic literature on the topic 'Ensemble learning methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ensemble learning methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ensemble learning methods"
Qutub, Aseel, Asmaa Al-Mehmadi, Munirah Al-Hssan, Ruyan Aljohani, and Hanan S. Alghamdi. "Prediction of Employee Attrition Using Machine Learning and Ensemble Methods." International Journal of Machine Learning and Computing 11, no. 2 (March 2021): 110–14. http://dx.doi.org/10.18178/ijmlc.2021.11.2.1022.
Full textAbdillah, Abid Famasya, Cornelius Bagus Purnama Putra, Apriantoni Apriantoni, Safitri Juanita, and Diana Purwitasari. "Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data." Journal of Information Systems Engineering and Business Intelligence 8, no. 1 (April 26, 2022): 42–50. http://dx.doi.org/10.20473/jisebi.8.1.42-50.
Full textZhang, Boyu, Ji Xiang, and Xin Wang. "Network representation learning with ensemble methods." Neurocomputing 380 (March 2020): 141–49. http://dx.doi.org/10.1016/j.neucom.2019.10.098.
Full textTolmidis, Avraam Th, and Loukas Petrou. "Ensemble Methods for Cooperative Robotic Learning." International Journal of Intelligent Systems 32, no. 5 (October 26, 2016): 502–25. http://dx.doi.org/10.1002/int.21858.
Full textEvangelista, Edmund De Leon, and Benedict Descargar Sy. "An approach for improved students’ performance prediction using homogeneous and heterogeneous ensemble methods." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 5 (October 1, 2022): 5226. http://dx.doi.org/10.11591/ijece.v12i5.pp5226-5235.
Full textTURAN, SELIN CEREN, and MEHMET ALI CENGIZ. "ENSEMBLE LEARNING ALGORITHMS." Journal of Science and Arts 22, no. 2 (June 30, 2022): 459–70. http://dx.doi.org/10.46939/j.sci.arts-22.2-a18.
Full textAlhazmi, Omar H., and Mohammed Zubair Khan. "Software Effort Prediction Using Ensemble Learning Methods." Journal of Software Engineering and Applications 13, no. 07 (2020): 143–60. http://dx.doi.org/10.4236/jsea.2020.137010.
Full textLiu, Fayao, Ruizhi Qiao, Chunhua Shen, and Lei Luo. "Designing ensemble learning algorithms using kernel methods." International Journal of Machine Intelligence and Sensory Signal Processing 2, no. 1 (2017): 1. http://dx.doi.org/10.1504/ijmissp.2017.088165.
Full textLuo, Lei, Fayao Liu, Ruizhi Qiao, and Chunhua Shen. "Designing ensemble learning algorithms using kernel methods." International Journal of Machine Intelligence and Sensory Signal Processing 2, no. 1 (2017): 1. http://dx.doi.org/10.1504/ijmissp.2017.10009116.
Full textHASEGAWA, Hironobu, Toshiyuki NAITO, Mikiharu ARIMURA, and Tohru TAMURA. "MODAL CHOICE ANALYSIS USING ENSEMBLE LEARNING METHODS." Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management) 68, no. 5 (2012): I_773—I_780. http://dx.doi.org/10.2208/jscejipm.68.i_773.
Full textDissertations / Theses on the topic "Ensemble learning methods"
Abbasian, Houman. "Inner Ensembles: Using Ensemble Methods in Learning Step." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31127.
Full textVelka, Elina. "Loss Given Default Estimation with Machine Learning Ensemble Methods." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279846.
Full textDenna uppsats undersöker och jämför tre maskininlärningsmetoder som estimerar förlust vid fallissemang (Loss Given Default, LGD). LGD kan ses som motsatsen till återhämtningsgrad, dvs. andelen av det utstående lånet som långivaren inte skulle återfå ifall kunden skulle fallera. Maskininlärningsmetoder som undersöks i detta arbete är decision trees, random forest och boosted metoder. Alla metoder fungerade väl vid estimering av lån som antingen inte återbetalas, dvs. LGD = 1 (100%), eller av lån som betalas i sin helhet, LGD = 0 (0%). En tydlig minskning i modellernas träffsäkerhet påvisades när modellerna kördes med ett dataset där observationer med LGD = 1 var borttagna. Random forest modeller byggda på ett obalanserat träningsdataset presterade bättre än de övriga modellerna på testset som inkluderade observationer där LGD = 1. Då observationer med LGD = 1 var borttagna visade det sig att random forest modeller byggda på ett balanserat träningsdataset presterade bättre än de övriga modellerna. Boosted modeller visade den svagaste träffsäkerheten av de tre metoderna som blev undersökta i denna studie. Totalt sett visade studien att random forest modeller byggda på ett obalanserat träningsdataset presterade en aning bättre än decision tree modeller, men beräkningstiden (kostnaden) var betydligt längre när random forest modeller kördes. Därför skulle decision tree modeller föredras vid estimering av förlust vid fallissemang.
Conesa, Gago Agustin. "Methods to combine predictions from ensemble learning in multivariate forecasting." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103600.
Full textKanneganti, Alekhya. "Using Ensemble Machine Learning Methods in Estimating Software Development Effort." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20691.
Full textBustos, Ricardo Gacitua. "OntoLancs : An evaluation framework for ontology learning by ensemble methods." Thesis, Lancaster University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533089.
Full textElahi, Haroon. "A Boosted-Window Ensemble." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5658.
Full textKing, Michael Allen. "Ensemble Learning Techniques for Structured and Unstructured Data." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51667.
Full textPh. D.
Nguyen, Thanh Tien. "Ensemble Learning Techniques and Applications in Pattern Classification." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366342.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
Shi, Zhe. "Semi-supervised Ensemble Learning Methods for Enhanced Prognostics and Health Management." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522420632837268.
Full textSlawek, Janusz. "Inferring Gene Regulatory Networks from Expression Data using Ensemble Methods." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3396.
Full textBooks on the topic "Ensemble learning methods"
Zhang, Cha. Ensemble Machine Learning: Methods and Applications. Boston, MA: Springer US, 2012.
Find full textEnsemble methods: Foundations and algorithms. Boca Raton, FL: Taylor & Francis, 2012.
Find full textBaruque, Bruno, and Emilio Corchado. Fusion Methods for Unsupervised Learning Ensembles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16205-3.
Full textBaruque, Bruno. Fusion methods for unsupervised learning ensembles. Berlin: Springer, 2010.
Find full textRokach, Lior. Ensemble Learning: Pattern Classification Using Ensemble Methods. World Scientific Publishing Co Pte Ltd, 2019.
Find full textZhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. Taylor & Francis Group, 2012.
Find full textZhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. Taylor & Francis Group, 2012.
Find full textZhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. Taylor & Francis Group, 2012.
Find full textBook chapters on the topic "Ensemble learning methods"
Bisong, Ekaba. "Ensemble Methods." In Building Machine Learning and Deep Learning Models on Google Cloud Platform, 269–86. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8_23.
Full textPajankar, Ashwin, and Aditya Joshi. "Ensemble Learning Methods." In Hands-on Machine Learning with Python, 167–84. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7921-2_10.
Full textFerreira, Artur J., and Mário A. T. Figueiredo. "Boosting Algorithms: A Review of Methods, Theory, and Applications." In Ensemble Machine Learning, 35–85. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-9326-7_2.
Full textGeetha, T. V., and S. Sendhilkumar. "Performance Evaluation and Ensemble Methods." In Machine Learning, 191–210. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003290100-8.
Full textBrazdil, Pavel, Jan N. van Rijn, Carlos Soares, and Joaquin Vanschoren. "Metalearning in Ensemble Methods." In Metalearning, 189–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67024-5_10.
Full textLiu, Xu-Ying, and Zhi-Hua Zhou. "Ensemble Methods for Class Imbalance Learning." In Imbalanced Learning, 61–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118646106.ch4.
Full textDietterich, Thomas G. "Ensemble Methods in Machine Learning." In Multiple Classifier Systems, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45014-9_1.
Full textDžeroski, Sašo, Panče Panov, and Bernard Ženko. "Machine Learning, Ensemble Methods in." In Computational Complexity, 1781–89. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1800-9_114.
Full textDžeroski, Sašo, Panče Panov, and Bernard Ženko. "Machine Learning, Ensemble Methods in." In Encyclopedia of Complexity and Systems Science, 5317–25. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_315.
Full textRokach, Lior. "Ensemble Methods in Supervised Learning." In Data Mining and Knowledge Discovery Handbook, 959–79. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09823-4_50.
Full textConference papers on the topic "Ensemble learning methods"
Cheung, Catherine, and Zouhair Hamaimou. "Ensemble Integration Methods for Load Estimation." In Vertical Flight Society 78th Annual Forum & Technology Display. The Vertical Flight Society, 2022. http://dx.doi.org/10.4050/f-0078-2022-17553.
Full textAmeksa, Mohammed, Hajar Mousannif, Hassan Al Moatassime, and Zouhair Elamrani Abou Elassad. "Crash Prediction using Ensemble Methods." In INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML'21). SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010731200003101.
Full textWan, Shaohua, and Hua Yang. "Comparison among Methods of Ensemble Learning." In 2013 International Symposium on Biometrics and Security Technologies (ISBAST). IEEE, 2013. http://dx.doi.org/10.1109/isbast.2013.50.
Full textLiu, Ling. "Ensemble Learning Methods for Dirty Data." In CIKM '22: The 31st ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3511808.3558584.
Full textElsabawy, Nourhan, Alaa Elnakeeb, Mohammed Baher, and Nora Elrashidy. "Ensemble Machine learning for Breast Cancer Detection." In 2023 Intelligent Methods, Systems, and Applications (IMSA). IEEE, 2023. http://dx.doi.org/10.1109/imsa58542.2023.10217633.
Full textFan, Yue, Mark A. Kon, and Charles DeLisi. "Ensemble Machine Methods for DNA Binding." In 2008 Seventh International Conference on Machine Learning and Applications. IEEE, 2008. http://dx.doi.org/10.1109/icmla.2008.114.
Full textShih, Po-Yuan, Chia-Ping Chen, and Chung-Hsien Wu. "Speech emotion recognition with ensemble learning methods." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952658.
Full textJose, Joyal P., T. Ananthan, and N. Krishna Prakash. "Ensemble Learning Methods for Machine Fault Diagnosis." In 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, 2022. http://dx.doi.org/10.1109/icicict54557.2022.9917966.
Full textAvelar, Gustavo de P., Guilherme O. Campos, and Wagner Meira Jr. "Characterizing and understanding ensemble-based anomaly-detection." In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/kdmile.2021.17473.
Full textTeti, Emily S., Rollin Lakis, and Vlad Henzl. "Unsupervised methods and ensemble learning to classify vibration sensor data." In Applications of Machine Learning 2023, edited by Barath Narayanan Narayanan, Michael E. Zelinski, Tarek M. Taha, and Jonathan Howe. SPIE, 2023. http://dx.doi.org/10.1117/12.2677375.
Full textReports on the topic "Ensemble learning methods"
Hart, Carl R., D. Keith Wilson, Chris L. Pettit, and Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, July 2021. http://dx.doi.org/10.21079/11681/41182.
Full textDouglas, Thomas, and Caiyun Zhang. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41222.
Full textAguilar, G., H. Waqa-Sakiti, and L. Winder. Using Predicted Locations and an Ensemble Approach to Address Sparse Data Sets for Species Distribution Modelling: Long-horned Beetles (Cerambycidae) of the Fiji Islands. Unitec ePress, December 2016. http://dx.doi.org/10.34074/book.008.
Full text