Dissertations / Theses on the topic 'Ensembles somme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Ensembles somme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
He, Weikun. "Sommes, produits et projections des ensembles discrétisés." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS335/document.
Full textIn the discretized setting, the size of a set is measured by its covering number by δ-balls (a.k.a. metric entropy), where δ is the scale. In this document, we investigate combinatorial properties of discretized sets under addition, multiplication and orthogonal projection. There are three parts. First, we prove sum-product estimates in matrix algebras, generalizing Bourgain's sum-product theorem in the ring of real numbers and improving higher dimensional sum-product estimates previously obtained by Bourgain-Gamburd. Then, we study orthogonal projections of subsets in the Euclidean space, generalizing Bourgain's discretized projection theorem to higher rank situations. Finally, in a joint work with Nicolas de Saxcé, we prove a product theorem for perfect Lie groups, generalizing previous results of Bourgain-Gamburd and Saxcé
Henriot, Kevin. "Structures linéaires dans les ensembles à faible densité." Thèse, Paris 7, 2014. http://hdl.handle.net/1866/11116.
Full textNous présentons trois résultats en combinatoire additive, un domaine récent à la croisée de la combinatoire, l'analyse harmonique et la théorie analytique des nombres. Le thème unificateur de notre thèse est la détection de structures additives dans les ensembles arithmétiques à faible densité, avec un intérêt particulier pour les aspects quantitatifs. Notre première contribution est une estimation de densité améliorée pour le problème, initié entre autres par Bourgain, de trouver une longue progression arithmétique dans un ensemble somme triple. Notre deuxième résultat consiste en une généralisation des bornes de Sanders pour le théorème de Roth, du cas d'un ensemble dense dans les entiers à celui d'un ensemble à faible croissance additive dans un groupe abélien arbitraire. Finalement, nous étendons les meilleures bornes quantitatives connues pour le théorème de Roth dans les premiers, à tous les systèmes d'équations linéaires invariants par translation et de complexité un.
We present three results in additive combinatorics, a recent field at the interface of combinatorics, harmonic analysis and analytic number theory. The unifying theme in our thesis is the detection of additive structure in arithmetic sets of low density, with an emphasis on quantitative aspects. Our first contribution is an improved density estimate for the problem, initiated by Bourgain and others, of finding a long arithmetic progression in a triple sumset. Our second result is a generalization of Sanders' bounds for Roth's theorem from the dense setting, to the setting of small doubling in an arbitrary abelian group. Finally, we extend the best known quantitative results for Roth's theorem in the primes, to all translation-invariant systems of equations of complexity one.
Anglès, d'Auriac Jean-Alexandre. "Jeux de défense et ensembles tropicaux." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112235/document.
Full textThe first pane of this thesis is on the study of vertex-colored graphs. We look at the tractability of asserting the existence of particular sets of vertices on a graph with the added constraint that the sets must be tropical, i.e. they must contain at least one vertex of each of the colors in the graph.This additional constraint tends to make the problems way less tractable. For instance, finding a minimum tropical dominating set, or a minimum tropical vertex cover, are APX-complete problems even when restricted to paths. Finding the smallest tropical connected subgraph is also NP-complete even when restricted to trees. However, restricting the number of colors will usually make problems more tractable. For instance, finding a connected tropical subgraph (on any graph) can be done in polynomial time as long as the number of colors is logarithmic in the size of the graph. Moreover, we show some structural results that links the size of a minimum connected subgraph to parameters such as the number of colors, the number of edges, the minimum degree…The second pane is on the study of some games on graphs, called defense games, in which multiple attackers target vertices and multiple defenders protect subgraphs.We focus on the existence of a Nash equilibrium when defenders protect paths of size at most p.When each defender protects exactly one edge, we show among other results that the game on a graph G with n defenders and k attackers admits a Nash equilibrium if and only if there exists a dominating set of size at most k in G, which is NP-complete in the general case.Similarly, when each defender protects a path of size at most p, the existence of a Nash equilibrium is linked to the notion of p-independent, i.e. a set of vertices such that every pair of elements of the set is at distance greater than p.Determining the existence of a maximal p-independent of size at most k is NP-complete, but our Min2stablemax algorithm can compute the minimum size of a maximal 2-independent set in a tree
Silipo, James. "Systèmes de sommes d'exponentielles à spectres réels et structure de leurs amibes." Bordeaux 1, 2005. http://www.theses.fr/2005BOR13006.
Full textThe aim of this work is to study the notion of amoeba (in the sense of Favorov) for a system F of exponential sums of n complex variables and real generic frequencies. Thanks to a perturbation by characters of the group of frequencies of F, we obtain a expression of the amoeba of F which is useful in the study of its topology. In particular, we show that, if F has (k+1) elements, the complementary set to the amoeba of F is a k-convex subset of R^n in Henriques' sense. This result generalize the algebraic analog shown by Henriques. Moreover, in the case of one exponential sum f, we investigate the relations between the amoeba of f and its Ronkin function
Plagne, Alain. "Points entiers sur les courbes strictement convexes, sommes de sous-ensembles et codes de recouvrement." Bordeaux 1, 1998. http://www.theses.fr/1998BOR10633.
Full textWang, Simeng. "Some problems in harmonic analysis on quantum groups." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2062/document.
Full textThis thesis studies some problems in the theory of harmonic analysis on compact quantum groups. It consists of three parts. The first part presents some elementary Lp theory of Fourier transforms, convolutions and multipliers on compact quantum groups, including the Hausdorff-Young theory and Young’s inequalities. In the second part, we characterize positive convolution operators on a finite quantum group G which are Lp-improving, and also give some constructions on infinite compact quantum groups. The methods for ondegeneratestates yield a general formula for computing idempotent states associated to Hopf images, which generalizes earlier work of Banica, Franz and Skalski. The third part is devoted to the study of Sidon sets, _(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, _(p)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michali˘cek. We also prove the existence of _(p)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included. The thesis is principally based on two works by the author, entitled “Lp-improvingconvolution operators on finite quantum groups” and “Lacunary Fourier series for compact quantum groups”, which have been accepted for publication in Indiana University Mathematics Journal and Communications in Mathematical Physics respectively
Nungesser, Ernesto [Verfasser]. "The future of some Bianchi A spacetimes with an ensemble of free falling particles / Ernesto Nungesser." Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1027308546/34.
Full textLavie, Marc. "Contribution à l'étude de la convergence de sommes d'ensembles aléatoires indépendants et de martingales multivoques." Montpellier 2, 1990. http://www.theses.fr/1990MON20030.
Full textLatreche, Wissam. "Some aspects on sweeping processes." Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0011/document.
Full textIn this thesis, we were interested in the study of the existence of solutions for sweeping processes. This problem takes the form of a constrained differential inclusion involving normal cones which appears naturally in many applications such as crowd motion, elastoplasticity, mechanics, electrical circuit, etc.The aim of this work is to bring together two classes of differential inclusions. On one hand, we establish some existence results of solutions-tube for sweeping processes with uniformly prox-regular sets. On the other hand, we present existence results of monotone solutions with respect to a preorder for a mixed system of projected differential inclusions. In addition, we show that our system has a saddle-point and we provide two examples of applications
Hanine, Abdelouahab. "Cyclic vectors in some spaces of analytic functions." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4725.
Full textIn this thesis, we study the cyclicity problem in some spaces of analytic functions on the open unit disc. We focus our attention on Korenblum type spaces and on weighted Bergman type spaces. First, we use the technique of premeasures, introduced and developed by Korenblum in the 1970-s and the 1980-s, to give a characterization of cyclic functions in the Korenblum type spaces. In particular, we give a positive answer to a conjecture by Deninger. Second, we use the so called resolvent transform method to study the cyclicity of the one point mass singular inner function in weighted Bergman type spaces, especially with weights depending on the distance to a subset of the unit circle
Berrebi, Johanna. "Contribution à l'intégration d'une liaison avionique sans fil. L'ingénierie système appliquée à une problématique industrielle." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00800141.
Full textMEDEIROS, Rex Antonio da Costa. "Zero-Error capacity of quantum channels." Universidade Federal de Campina Grande, 2008. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1320.
Full textMade available in DSpace on 2018-08-01T21:11:37Z (GMT). No. of bitstreams: 1 REX ANTONIO DA COSTA MEDEIROS - TESE PPGEE 2008..pdf: 1089371 bytes, checksum: ea0c95501b938e0d466779a06faaa4f6 (MD5) Previous issue date: 2008-05-09
Nesta tese, a capacidade erro-zero de canais discretos sem memória é generalizada para canais quânticos. Uma nova capacidade para a transmissão de informação clássica através de canais quânticos é proposta. A capacidade erro-zero de canais quânticos (CEZQ) é definida como sendo a máxima quantidade de informação por uso do canal que pode ser enviada através de um canal quântico ruidoso, considerando uma probabilidade de erro igual a zero. O protocolo de comunicação restringe palavras-código a produtos tensoriais de estados quânticos de entrada, enquanto que medições coletivas entre várias saídas do canal são permitidas. Portanto, o protocolo empregado é similar ao protocolo de Holevo-Schumacher-Westmoreland. O problema de encontrar a CEZQ é reformulado usando elementos da teoria de grafos. Esta definição equivalente é usada para demonstrar propriedades de famílias de estados quânticos e medições que atingem a CEZQ. É mostrado que a capacidade de um canal quântico num espaço de Hilbert de dimensão d pode sempre ser alcançada usando famílias compostas de, no máximo,d estados puros. Com relação às medições, demonstra-se que medições coletivas de von Neumann são necessárias e suficientes para alcançar a capacidade. É discutido se a CEZQ é uma generalização não trivial da capacidade erro-zero clássica. O termo não trivial refere-se a existência de canais quânticos para os quais a CEZQ só pode ser alcançada através de famílias de estados quânticos não-ortogonais e usando códigos de comprimento maior ou igual a dois. É investigada a CEZQ de alguns canais quânticos. É mostrado que o problema de calcular a CEZQ de canais clássicos-quânticos é puramente clássico. Em particular, é exibido um canal quântico para o qual conjectura-se que a CEZQ só pode ser alcançada usando uma família de estados quânticos não-ortogonais. Se a conjectura é verdadeira, é possível calcular o valor exato da capacidade e construir um código de bloco quântico que alcança a capacidade. Finalmente, é demonstrado que a CEZQ é limitada superiormente pela capacidade de Holevo-Schumacher-Westmoreland.
Sommerauer, Jens C. [Verfasser]. "Beyond classical random matrix ensembles: some results on deviation principles / Jens C. Sommerauer." 2008. http://d-nb.info/987610082/34.
Full textTouchette, Dave. "Interactive quantum information theory." Thèse, 2015. http://hdl.handle.net/1866/12341.
Full textQuantum information theory has developed tremendously over the past two decades, with analogues and extensions of the source coding and channel coding theorems for unidirectional communication. Meanwhile, for interactive communication, a quantum analogue of communication complexity has been developed, for which quantum protocols can provide exponential savings over the best possible classical protocols for some classical tasks. However, quantum information is much more sensitive to noise than classical information. It is therefore essential to make the best use possible of quantum resources. In this thesis, we take an information-theoretic point of view on interactive quantum protocols and study the interactive analogues of source compression and noisy channel coding. The setting we consider is that of quantum communication complexity: Alice and Bob want to perform some joint quantum computation while minimizing the required amount of communication. Local computation is deemed free. Our results are split into three distinct chapters, and these are organized in such a way that each can be read independently. Given its central role in the context of interactive compression, we devote a chapter to the task of quantum state redistribution. In particular, we prove lower bounds on its communication cost that are robust in the context of interactive communication. We also prove one-shot, one-message achievability bounds. In a subsequent chapter, we define a new, fully quantum notion of information cost for interactive protocols and a corresponding notion of information complexity for bipartite tasks. It characterizes how much quantum information, rather than quantum communication, Alice and Bob must exchange in order to implement a given bipartite task. We prove many structural properties for these quantities, and provide an operational interpretation for quantum information complexity as the amortized quantum communication complexity. In the special case of classical inputs, we provide an alternate characterization of information cost that provides an answer to the following question about quantum protocols: what is the cost of forgetting classical information? Two applications are presented: the first general multi-round direct-sum theorem for quantum protocols, and a tight lower bound, up to polylogarithmic terms, for the bounded-round quantum communication complexity of the disjointness function. In a final chapter, we initiate the study of the interactive quantum capacity of noisy channels. Since techniques to distribute entanglement are well-studied, we focus on a model with perfect pre-shared entanglement and noisy classical communication. We show that even in the harder setting of adversarial errors, we can tolerate a provably maximal error rate of one half minus epsilon, for an arbitrarily small epsilon greater than zero, at positive communication rates. It then follows that random noise channels with positive capacity for unidirectional transmission also have positive interactive quantum capacity. We conclude with a discussion of our results and further research directions in interactive quantum information theory.
Anton, François. "Voronoi diagrams of semi-algebraic sets." Phd thesis, 2003. http://tel.archives-ouvertes.fr/tel-00005932.
Full textLe diagramme de Voronoï d'un ensemble d'objets est une décomposition de l'espace en zones de proximité. La zone de proximité d'un objet est l'ensemble des points plus proches de cet objet que de tout autre objet. Les diagrammes de Voronoï permettent de répondre aux requètes de proximité après avoir identifié la zone de proximité à laquelle le point objet de la requète appartient. Le graphe dual du diagramme de Voronoï est appelé le graphe de Delaunay. Seules les approximations par des coniques peuvent garantir un ordre de continuité approprié au niveau des points de contact, ce qui est nécessaire pour garantir l'exactitude du graphe de Delaunay.
L'objectif théorique de cette thèse est la mise en évidence des propriétés algébriques et géométriques élémentaires de la courbe déplacée d'une courbe algébrique et de réduire le calcul semi-algébrique du graphe de Delaunay à des calculs de valeurs propres. L'objectif pratique de cette thèse est le calcul certifié du graphe de Delaunay pour des ensembles semi-algébriques de faible degré dans le plan euclidien.
La méthodologie associe l'analyse par intervalles et la géométrie algébrique algorithmique. L'idée centrale de cette thèse est qu'un pré-traitement symbolique unique peut accélérer l'évaluation numérique certifiée du détecteur de conflits dans le graphe de Delaunay. Le pré-traitement symbolique est le calcul de l'équation implicite de la courbe déplacée généralisée d'une conique. La réduction du problème semi-algébrique de la détection de conflits dans le graphe de Delaunay à un problème d'algèbre linéaire a été possible grâce à la considération du sommet de Voronoï généralisé (un concept introduit dans cette thèse).
Le calcul numérique certifié du graphe de Delaunay a été éffectué avec une librairie de résolution de systèmes zéro-dimensionnels d'équations et d'inéquations algébriques basée sur l'analyse d'intervalles (ALIAS). Le calcul certifié du graphe de Delaunay repose sur des théorèmes sur l'unicité de racines dans des intervalles donnés (Kantorovitch et Moore-Krawczyk). Pour les coniques, les calculs sont accélérés lorsque l'on ne considère que les équations implicites des courbes déplacées.