Academic literature on the topic 'Entrada Sandstone'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entrada Sandstone.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Entrada Sandstone"

1

Cruikshank, Kenneth M., Guozhu Zhao, and Arvid M. Johnson. "Duplex structures connecting fault segments in Entrada Sandstone." Journal of Structural Geology 13, no. 10 (1991): 1185–96. http://dx.doi.org/10.1016/0191-8141(91)90077-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crabaugh, Mary, and Gary Kocurek. "Entrada Sandstone: an example of a wet aeolian system." Geological Society, London, Special Publications 72, no. 1 (1993): 103–26. http://dx.doi.org/10.1144/gsl.sp.1993.072.01.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lockley, Martin, R. Fleming, and Kelly Conrad. "Distribution and Significance of Mesozoic Vertebrate Trace Fossils in Dinosaur National Monument." UW National Parks Service Research Station Annual Reports 14 (January 1, 1990): 39–41. http://dx.doi.org/10.13001/uwnpsrc.1990.2867.

Full text
Abstract:
Dinosaur National Monument (DINO) encompasses an area that has rocks with a high potential for preservation of vertebrate trace fossils, especially dinosaur tracks. The purpose of this research is to document the presence, type, and distribution of vertebrate trace fossils in Mesozoic rocks exposed in DINO. These rocks include the Moenkopi Formation, Chinle/Popo Agie Formation, Glen Canyon Sandstone, Carmel Formation, Entrada Sandstone, Morrison Formation, Cedar Mountain Formation, Dakota Formation, and Frontier Formation. This study will increase our knowledge of the stratigraphic and geographic distribution of vertebrate tracks as well as provide taxonomic, behavioral, and paleoenvironmental data. During the 1990 field season, reconnaissance of the western part of DINO revealed the presence of vertebrate trace fossils in the Chinle/Popo Agie Formation. In addition, our examination of the Moenkopi Formation suggests that vertebrate tracks are probably present in this unit. Locality information was also obtained for probable track-sites in the Carmel Formation, Entrada Sandstone, and Morrison Formation.
APA, Harvard, Vancouver, ISO, and other styles
4

Cruikshank, Kenneth M., and Atilla Aydin. "Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A." Journal of Structural Geology 17, no. 3 (1995): 409–21. http://dx.doi.org/10.1016/0191-8141(94)00061-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kampman, N., A. Maskell, M. J. Bickle, et al. "Scientific drilling and downhole fluid sampling of a natural CO<sub>2</sub> reservoir, Green River, Utah." Scientific Drilling 16 (November 5, 2013): 33–43. http://dx.doi.org/10.5194/sd-16-33-2013.

Full text
Abstract:
Abstract. A scientific borehole, CO2W55, was drilled into an onshore anticline, near the town of Green River, Utah for the purposes of studying a series of natural CO2 reservoirs. The objective of this research project is to recover core and fluids from natural CO2 accumulations in order to study and understand the long-term consequences of exposure of supercritical CO2, CO2-gas and CO2-charged fluids on geological materials. This will improve our ability to predict the security of future geological CO2 storage sites and the behaviour of CO2 during migration through the overburden. The Green River anticline is thought to contain supercritical reservoirs of CO2 in Permian sandstone and Mississippian-Pennsylvanian carbonate and evaporite formations at depths &gt; 800 m. Migration of CO2 and CO2-charged brine from these deep formations, through the damage zone of two major normal faults in the overburden, feeds a stacked series of shallow reservoirs in Jurassic sandstones from 500 m depth to near surface. The drill-hole was spudded into the footwall of the Little Grand Wash normal fault at the apex of the Green River anticline, near the site of Crystal Geyser, a CO2-driven cold water geyser. The hole was drilled using a CS4002 Truck Mounted Core Drill to a total depth of 322 m and DOSECC’s hybrid coring system was used to continuously recover core. CO2-charged fluids were first encountered at ~ 35 m depth, in the basal sandstones of the Entrada Sandstone, which is open to surface, the fluids being effectively sealed by thin siltstone layers within the sandstone unit. The well penetrated a ~ 17 m thick fault zone within the Carmel Formation, the footwall damage zone of which hosted CO2-charged fluids in open fractures. CO2-rich fluids were encountered throughout the thickness of the Navajo Sandstone. The originally red sandstone and siltstone units, where they are in contact with the CO2-charged fluids, have been bleached by dissolution of hematite grain coatings. Fluid samples were collected from the Navajo Sandstone at formation pressures using a positive displacement wireline sampler, and fluid CO2 content and pH were measured at surface using high pressure apparatus. The results from the fluid sampling show that the Navajo Sandstone is being fed by active inflow of CO2-saturated brines through the fault damage zone; that these brines mix with meteoric fluid flowing laterally into the fault zone; and that the downhole fluid sampling whilst drilling successfully captures this dynamic process.
APA, Harvard, Vancouver, ISO, and other styles
6

Rushton, Jeremy C., Doris Wagner, Jonathan M. Pearce, Christopher A. Rochelle, and Gemma Purser. "Red-bed bleaching in a CO2 storage analogue: Insights from Entrada Sandstone fracture-hosted mineralization." Journal of Sedimentary Research 90, no. 1 (2020): 48–66. http://dx.doi.org/10.2110/jsr.2020.4.

Full text
Abstract:
ABSTRACT Improving our ability to predict the interactions between CO2 and reservoir rocks at geological time scales is of key importance if carbon capture and storage (CCS) is to have a role in climate-change mitigation, particularly in the light of likely regulatory requirements. Understanding and identifying the relevant geological processes over long time scales can be obtained only at natural-analogue sites. At one such site, in the Salt Wash Graben area of Utah, USA, widespread bleaching affects the Middle Jurassic red-bed “wet dune” Entrada Sandstone. Previous work has proposed a genetic link between the bleaching and spatially concomitant recent and modern CO2-rich fluids. The results presented here challenge some of the previous models and come from a detailed petrographic examination of mineralized fractures in the Entrada Sandstone that are centered in vertical extensions to the bleaching. These fractures typically contain complex mineralization assemblages. Pyrite was a paragenetically early phase, identifiable from common pseudomorphs of mixed iron oxides and oxyhydroxides that rarely contain relict pyrite. The pyrite contains up to 3 wt% arsenic. The volume of fracture-adjacent bleached sandstone is sufficient to have been the source of iron for the pyrite originally present in the fracture. The pyrite pseudomorphs occur at the center of fracture- and pore-filling cements that comprise intergrowths of hematite–goethite–jarosite–gypsum, an assemblage that suggests that their formation resulted from the oxidative alteration of pyrite, a genetic link supported by the arsenic present in the iron-bearing minerals. The presence of jarosite and proximal removal of earlier, sandstone-hosted carbonates are consistent with, and indicative of, the low-pH conditions associated with pyrite oxidation reactions. Calcite- and gypsum-cemented fractures crosscut, and contain fragments of, the pyrite-pseudomorphic and -oxidation assemblages, proving that they postdate pyrite formation and its subsequent oxidation, and that pyrite oxidation was not a result of modern weathering reactions. In outcrop, some calcite- and gypsum-cemented fractures link with travertine deposits associated with the modern and recent CO2-rich fluids. The mineral assemblages observed here, and the paragenetic sequence that we have inferred, suggest that the fracture-associated bleaching patterns result from the fracture-fed movement of sulfur-bearing reducing fluids, with hydrogen sulfide the most likely bleaching agent. We conclude that bleaching adjacent to fractures is not genetically related to modern CO2-bearing fluids despite the spatial relationship. The bleaching was already present when the modern fluids utilized the same fracture-based fluid pathways. We suggest that the more widespread regional bleaching formed contemporaneously with the fracture bleaching and followed similar mechanisms. This study highlights the complexity of interpreting analogue sites and the importance of using field and petrographic observations to unravel textures and events that are juxtaposed spatially but not temporally.
APA, Harvard, Vancouver, ISO, and other styles
7

Orhan, Hükmü. "Importance of dust storms in the diagenesis of sandstones: a case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA." Sedimentary Geology 77, no. 1-2 (1992): 111–22. http://dx.doi.org/10.1016/0037-0738(92)90106-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, Penelope I. R., Ken J. W. McCaffrey, and Robert E. Holdsworth. "Magma-driven accommodation structures formed during sill emplacement at shallow crustal depths: The Maiden Creek sill, Henry Mountains, Utah." Geosphere 15, no. 4 (2019): 1368–92. http://dx.doi.org/10.1130/ges02067.1.

Full text
Abstract:
Abstract In areas of exceptional exposure, upper-crustal intrusions and their immediate wall rocks commonly preserve direct evidence of the emplacement, magma flow pathways, and strains associated with the intrusion process. Such excellent exposure is displayed by the Paleogene Maiden Creek intrusion—a small satellite body related to the Mount Hillers intrusive complex, Henry Mountains, Utah. An intermediate plagioclase-hornblende porphyritic magma was intruded into the Entrada Sandstone Formation at an estimated depth of ∼3 km. The southern part of the intrusion is overlain by the newly identified Maiden Creek shear zone (MCSZ): a subhorizontal, top-to-the-WNW detachment formed at the contact with the overlying sandstone country rocks. From observations of both syn-emplacement deformation and the exposed intrusion geometries, it is proposed that the southern Maiden Creek intrusion comprises westerly derived, inclined sill sheets. Host-rock sandstones were sandwiched (∼E–W constriction) between these intrusive bodies beneath the MCSZ. It is proposed that the MCSZ is a syn-emplacement magma-driven accommodation structure, with a shear sense antithetic to the magma flow direction, which played a critical role in accommodating the westerly derived sill intrusion. Our results show that inelastic syn-emplacement deformation structures, such as the MCSZ, are very important in the accommodation of magma in the subsurface. Such small structures are unlikely to be imaged by seismic-reflection surveys, highlighting the importance of detailed field studies in our understanding of intrusion geometry and emplacement mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
9

Loope, D. B. "Life Beneath the Surfaces of Active Jurassic Dunes: Burrows from the Entrada Sandstone of South-Central Utah." PALAIOS 23, no. 6 (2008): 411–19. http://dx.doi.org/10.2110/palo.2006.p06-133r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garden, I. R., S. C. Guscott, S. D. Burley, K. A. Foxford, J. J. Walsh, and J. Marshall. "An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of SE Utah, USA." Geofluids 1, no. 3 (2001): 195–213. http://dx.doi.org/10.1046/j.1468-8123.2001.00018.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Entrada Sandstone"

1

Monn, Will D. "A multidisciplinary approach to reservoir characterization of the coastal Entrada erg-margin gas play, Utah." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1211.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dossett, Toby S. "The First 40Ar/39Ar Ages and Tephrochronologic Framework for the Jurassic Entrada Sandstone in central Utah." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5315.

Full text
Abstract:
The first 40Ar/39Ar ages of the Middle Jurassic Entrada Sandstone were derived from tephra beds found in central Utah. Eight air fall ash beds in the Entrada Sandstone, with 40Ar/39Ar biotite ages ranging from 168.1 ± 0.2 to 160.8 ± 0.2 Ma, help to establish the age of Entrada deposition. They were also used to create the first chronostratigraphic divisions within the mudstone-dominated Entrada Sandstone. Statistical cluster analysis of chemical data from electron microprobe analyses of phenocrysts were used as a second line of evidence to test absolute age and stratigraphic correlations. The first direct correlations of two distinct air fall ash beds within Jurassic rocks were correlated using three criteria: (1) stratigraphic position, (2) absolute ages, and (3) mineral chemistry. These tephra beds were identified and correlated across significant lateral distances (~40 km) of the San Rafael Swell in central Utah, and one can be correlated farther southwest to Cannonville, Utah (~160 km) using absolute age relationships. This latter tephra bed allows for stratigraphic correlation across significant facies and thickness changes thereby establishing a regional framework that future studies can use to make more accurate and precise litho- and sequence stratigraphic correlations. Absolute ages from a tephra bed ~20 m below the J-3 unconformity provide a lower age boundary for formation of the J-3 surface. Mega- and microfossil assemblages in the overlying Curtis Formation together with the radiometric ages reported in this study indicate that the age of the Callovian-Oxfordian boundary in the 2004 geologic time scale (161.2 ± 4.0 Ma) is more correct than the current boundary age (163.5 ± 1.1 Ma) in the 2012 geologic time scale.
APA, Harvard, Vancouver, ISO, and other styles
3

Jennings, George R. III. "Facies Analysis, Sequence Stratigraphy and Paleogeography of the Middle Jurassic (Callovian) Entrada Sandstone: Traps, Tectonics, and Analog." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4083.

Full text
Abstract:
The late Middle Jurassic (Callovian) Entrada Sandstone has been divided into two general facies associations consisting primarily of eolian sandstones in eastern Utah and "muddy" redbeds in central Utah. Sedimentary structures within the redbed portion are explained by the interfingering of inland sabkha, alluvial, and eolian depositional systems. A complete succession from the most basinward facies to the most terrestrial facies in the Entrada Sandstone consists of inland sabkha facies overlain by either alluvial or eolian facies. Where both alluvial and eolian facies interfinger, alluvial facies overlain by eolian facies is considered a normal succession. Sequence boundaries, often identified by more basinward facies overlying more landward facies, are observed in the Entrada Sandstone and are extrapolated for the first time across much of Utah, including both the eolian-dominated and redbed-dominated areas. Using these sequence boundaries as well as recent tephrochronologic studies, three time correlative surfaces have been identified in the Entrada. Based on the facies interpretations at each surface, five paleogeographic reconstructions and five isopach maps have been created, illustrating two major intervals of erg expansion and the location of the Jurassic retroarc foreland basin's potential forebulge. Eolian (erg-margin) sandstones pinch-out into muddy redbeds creating combination traps, as evidenced by dead oil (tar) and bleached eolian sandstone bodies within the Entrada. The Entrada Sandstone is a world-class analog for similar systems, such as the Gulf of Mexico's Norphlet Sandstone, where eolian facies grade into muddy redbed facies.
APA, Harvard, Vancouver, ISO, and other styles
4

Clayton, Leslie Noël. "Analysis of Small Faults in a Sandstone Reservoir Analog, San Rafael Desert: Implications for Fluid Flow at the Reservoir-Scale." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7438.

Full text
Abstract:
We examined small-displacement faults in the Jurassic Entrada Sandstone adjacent to the Iron Wash Fault, central Utah east of the San Rafael Swell, in order to describe the nature and timing of past fluid movement and deformation in the Entrada Sandstone. Using field studies, microscopy, and X-ray diffraction analysis, we identified mineralized fractures and cementation features in association with deformation bands and fractures at the interface of the Earthy and Slick Rock Members of the Entrada Sandstone. Where the faults cross the Earthy-Slick Rock Member interface, deformation band faults in the Slick Rock Member become opening-mode fractures in the Earthy Member. These fractures are frequently mineralized with calcite, and goethite pseudomorphs after pyrite, providing evidence of at least two phases of fluid flow from the Entrada reservoir into the caprock in connection with deformation bands. We also observe mineralized fractures, poikilotopic cementation, and spherical to elongate concretions on and within deformation band fins in the Slick Rock Member. These features indicate the presence and movement of fluids parallel to and between deformation band fins. At some sites, deformation band faults and fractures cross and offset the interface; at others, they are present in both units, but deformation band faults do not cross the interface and fractures are not directly connected to any bands. Mineralized fractures are only found at breached-interface sites; evidence for fluid flow in the Slick Rock Member is only found in deformation band fins. Interface crossing and fracture formation is not related to proximity to the Iron Wash Fault. We propose that mesoscale faults can act as seal bypass systems and allow fluid leakage from reservoir rock into overlying less permeable rocks. Deformation bands act as both conduits for and barriers to flow, seen most clearly in deformation band fins where iron staining and mineralization is constrained between sets of bands within the fin. In CO2 or wastewater injection scenarios, interface deformation may prevent successful fluid trapping and cause re-emission of injected fluids.
APA, Harvard, Vancouver, ISO, and other styles
5

O'Neal, Ryan J. "Seismic and well log attribute analysis of the Jurassic Entrada/Curtis interval within the North Hill Creek 3D seismic survey, Uinta Basin, Utah : case history /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2017.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hicks, Tanner Charles. "Facies Analysis and Reservoir Characterization of Subtidal, Intertidal, and Supratidal Zones of the Mudstone-rich Entrada Sandstone, South-Central Utah." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2472.

Full text
Abstract:
Understanding thickness variation and facies transitions in the mudstone-rich part of the Upper Middle Jurassic (Callovian) Entrada Sandstone depositional system is critical for constraining the paleogeography and evaluating the economic potential of Utah's Entrada Sandstone. Facies of the Entrada Sandstone in south-central Utah are dominated by mudstone-rich intertidal facies that were widespread within the Jurassic seaway. Intertidal deposits interfinger basinward with subtidal ooid-bearing shoals and bars, and landward supratidal sabkha, and erg-margin eolian deposits. Three sections were measured to improve understanding of the lateral and vertical facies transitions. Variations in thickness indicate the rate of developing accommodation space was high along the southwestern shoreline and relatively low along the northeastern shoreline during Callovian time. Although accommodation space was highest in the west, sediment supply from the west kept pace with, and eventually outpaced subsidence. In the east, sediment supply was significant but at one time was outpaced by subsidence, creating a complete range of facies, from subtidal to supratidal deposits. Along this eastern shoreline, erg-margin coastal dunes associated with the larger erg to the east eventually prograded westward. The variation in subsidence, sediment supply, and sediment source makes sequence stratigraphic correlation difficult. Reservoir-quality sandstones are associated with muddy sections of the Entrada Sandstone within the San Rafael Swell. Porosity and permeability of the facies in this area indicate excellent reservoir potential in three of eight facies that were studied. Porosities of these potential reservoirs ranged from 11-22%, with permeabilities ranging from 44-430md. These high quality reservoir facies are surrounded by muddy, low reservoir-quality rocks, creating conditions amenable to the development of stratigraphic hydrocarbon traps. Based on further study and a modern analog at the north of the Gulf of California, Hicks and others' (2010) depositional model for the Entrada Sandstone of south-central Utah has been modified to include newly interpreted facies. This improved depositional model may have predictive power in exploring for stratigraphic and combination traps within the Entrada system of Utah and analogous depositional systems throughout the world.
APA, Harvard, Vancouver, ISO, and other styles
7

Valenza, Jeffery Michael. "Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6112.

Full text
Abstract:
First distinguished from other sedimentary successions in 1928, the Entrada Sandstone has been the subject of numerous studies. The western extent of the formation was initially described as laterally continuous "earthy" red beds, and categorized as sub- to supratidal marine-influenced sediments. Recent workers have reexamined the sedimentary facies hosted by the Entrada Sandstone, and findings suggest purely terrestrial depositional environments. Several outcrops of the upper Entrada hosted peculiar sedimentary features, including undulatory and convex-upward, parallel-laminated bedforms, reminiscent of hummocky cross-stratification- unexpected features in a terrestrial environment. The purpose of this study was to collect detailed outcrop measurements of these and other facies present in the upper Entrada Sandstone and to place them in context within a regional sedimentary system. Measured section data was analyzed and divided into sixteen primary facies based on textures, features, bedforms, grain size, and other characteristics. Surfaces were also noted and described. Each facies and surface was recognized to have developed under specific depositional or flow conditions, including eolian, paleosol, and fluvial subcritical, critical, supercritical, and waning flow. Primary facies were grouped into observed and interpreted facies associations. A depositional environment was then assigned to each facies association. These environments included sabkha, overbank splay/paleosol, distal terminal splay, and hyper-distal terminal splay. Ancient analogs were found in the Blomidon, Skagerrak, and Ormskirk Formations, which have been described as dryland fluvial systems that terminated onto saline mudflats (sabkhas). Modern analogs were found in the central Australian continent, in the form of fluvial terminal splays in ephemeral Lakes Eyre and Frome. The sedimentary system of the upper Entrada Sandstone of the San Rafael Swell is interpreted as an interfingering fluvial terminal splay and inland sabkha system. These are marked by a wide array of sedimentary structures representing stark extremes, from hyperarid to flash flooding conditions. During arid conditions, the only source of water was evaporative pumping of a high water table. During the rare occasions when surface water flowed through the system, flash flooding events produced the highest stage of supercritical flow described in geological literature. The succession of these facies reveals allogenic and autogenic processes active at the time of deposition, including episodes of tectonic uplift and fluvial avulsions.
APA, Harvard, Vancouver, ISO, and other styles
8

Cook, Preston Scott. "Sedimentology and Stratigraphy of the Middle Jurassic Preuss Sandstonein Northern Utah and Eastern Idaho." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6206.

Full text
Abstract:
The purpose of this study is to analyze the sedimentology and stratigraphy of the Middle Jurassic Preuss Sandstone and re-evaluate past sedimentological interpretations. The Preuss is located in northern Utah, western Wyoming and eastern Idaho and is stratigraphically equivalent to the Entrada Sandstone, which is Callovian in age (Dossett et al., 2014). This study is the first attempt at 1) a sequence stratigraphic framework, 2) a petroleum system analysis and 3) an extraterrestrial analog study for the Preuss. This study frames the Preuss within three broad facies groups: marine, coastal and terrestrial. The marine group includes the open marine and restricted marine facies with associated subfacies, the coastal group includes coastal sabkha and associated subfacies, and the terrestrial group includes alluvial, inland sabkha and eolian facies with associated subfacies. Three sections in northern Utah and one section in eastern Idaho compromise the focus of this study. The three Utah sections were measured and described, and samples were collected from two Utah sections and the Idaho section. The Preuss Sandstone was deposited in an asymmetrical retroarc basin, consequently the Preuss thickens from the east towards west-central Utah and the Jurassic Elko highlands. The deposits are mostly terrestrial, which is in accord with recent sedimentological interpretations, but at odds with the old paradigm, which postulates that the Entrada and Preuss were largely tidal in origin. There are marine transgressions within the trough of the retroarc basin, and the transgressions affect terrestrial sedimentary patterns. During marine incurstions, alluvium shed off the highlands is confined west of the seaway, and does not prograde east of the trough until all the available accommodation is filled. The Preuss was deposited during a complete third-order sequence-stratigraphic cycle that lies within the Lower Zuni II second-order lowstand. The Preuss Sandstone can be used as an outcrop analog for ancient and modern environments both here on Earth and on other planetary bodies. The petroliferous Norphlet Formation along the U.S. Gulf Coast was deposited in an environment very similar to the Preuss, but the Waltherian succession of facies might be slightly different. Likewise, the facies present in the Preuss are analogous to modern arid environments, such as the Persian Gulf. Furthermore, the alluvial, sabkha, eolian and shallow marine facies of the Preuss are highly similar to facies observed in ancient Martian environments and modern environments on Saturn's moon, Titan.
APA, Harvard, Vancouver, ISO, and other styles
9

Makechnie, Glenn Kenneth. "Sequence stratigraphic analysis of marginal marine sabkha facies : Entrada Sandstone, Four Corners region." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-08-1678.

Full text
Abstract:
The Middle Jurassic Entrada Sandstone of the Four Corners region, USA, is composed predominantly of very fine-grained, red, silty sandstone with poorly defined sedimentary structures. The origin of this facies is enigmatic, even though it is common both on the Colorado Plateau and globally, and is spatially situated between deposits recording unambiguous marine and aeolian environments. Eleven sections were measured along an 85 km transect from the Blanding Basin in southeastern Utah to the San Juan Basin in northwestern New Mexico. Outcrop and laboratory analyses distinguish eight facies: (1) silty shale, (2) shallow subaqueous reworked, fine- to medium-grained sandstone, (3) brecciated, very fine-grained sandstone, (4) crinkly laminated, very fine-grained sandstone with preserved wind ripples and abundant silty laminae, (5) weakly laminated, fine-grained sandstone with occasional silty laminae, (6) planar-laminated, fine-grained, wind-rippled sandstone, (7) cross-stratified, fine- to medium-grained aeolian cross-stratified sandstone, and (8) micritic limestone. Lateral and vertical relationships of these facies show a proximal to distal transition from cross-bedded wind-lain facies to loess-dominated sabkha facies with increasing abundance of water-lain facies basinward. The well known Todilto Limestone (facies 8) is situated stratigraphically below loess-dominated sabkha facies (facies 4 and 5) within the Entrada Sandstone, reinforcing previous interpretations that the unit represents a catastrophic flooding event and not a local groundwater flux.<br>text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Entrada Sandstone"

1

A, Barnes F. Entrada Sandstone: Canyon Country Dead Zone (Canyon Country Series, 56). Canyon County Pubns, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Shroba R., and Geological Survey (U.S.), eds. Morphology and possible origin of giant weathering pits in the Entrada Sandstone, southeastern Utah: Preliminary findings. U.S. Dept. of the Interior, U.S. Geological Survey, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

William, Keach R., and Utah Geological Survey, eds. Interpretation of the Jurassic Entrada Sandstone play using 3D seismic attribute analysis, Uinta Basin, Utah. Utah Geological Survey, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Interpretation of the Jurassic Entrada sandstone play using 3D seismic attribute analysis, Uinta Basin, Utah. Utah Geological Survey, 2006. http://dx.doi.org/10.34191/ofr-493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Preliminary report on and measured sections of the Middle Jurassic Entrada sandstone and Wanakah Formation near Placerville, southwestern Colorado. U.S. Dept. of the Interior, Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Entrada Sandstone"

1

EKDALE, A. A., and M. DANE PICARD. "TRACE FOSSILS IN A JURASSIC EOLIANITE, ENTRADA SANDSTONE, UTAH, U.S.A." In Biogenic Structures. SEPM (Society for Sedimentary Geology), 1985. http://dx.doi.org/10.2110/pec.85.35.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Entrada Sandstone"

1

Valenza, Jeffery Michael, and Thomas H. Morris. "REDBEDS OF THE UPPER ENTRADA SANDSTONE, CENTRAL UTAH: FACIES ANALYSIS AND REGIONAL IMPLICATIONS OF INTERFINGERED SABKHA AND FLUVIAL TERMINAL SPLAY SEDIMENTS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-285469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography