Academic literature on the topic 'Entropy algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entropy algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Entropy algorithms"
Li, Yancang, and Wanqing Li. "Adaptive Ant Colony Optimization Algorithm Based on Information Entropy: Foundation and Application." Fundamenta Informaticae 77, no. 3 (January 2007): 229–42. https://doi.org/10.3233/fun-2007-77303.
Full textTurlykozhayeva, D. A. "ROUTING METRIC AND PROTOCOL FOR WIRELESS MESH NETWORK BASED ON INFORMATION ENTROPY THEORY." Eurasian Physical Technical Journal 20, no. 4 (46) (December 19, 2023): 90–98. http://dx.doi.org/10.31489/2023no4/90-98.
Full textZhang, Chuang, Yue-Han Pei, Xiao-Xue Wang, Hong-Yu Hou, and Li-Hua Fu. "Symmetric cross-entropy multi-threshold color image segmentation based on improved pelican optimization algorithm." PLOS ONE 18, no. 6 (June 29, 2023): e0287573. http://dx.doi.org/10.1371/journal.pone.0287573.
Full textManis, George, Md Aktaruzzaman, and Roberto Sassi. "Low Computational Cost for Sample Entropy." Entropy 20, no. 1 (January 13, 2018): 61. http://dx.doi.org/10.3390/e20010061.
Full textLiu, Jing, Huibin Lu, Xiuru Zhang, Xiaoli Li, Lei Wang, Shimin Yin, and Dong Cui. "Which Multivariate Multi-Scale Entropy Algorithm Is More Suitable for Analyzing the EEG Characteristics of Mild Cognitive Impairment?" Entropy 25, no. 3 (February 21, 2023): 396. http://dx.doi.org/10.3390/e25030396.
Full textJi, Binghui, Xiaona Sun, Peimiao Chen, Siyu Wang, Shangfa Song, and Bo He. "An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter." Electronics 13, no. 23 (November 29, 2024): 4727. http://dx.doi.org/10.3390/electronics13234727.
Full textDu, Xinzhi. "A Robust and High-Dimensional Clustering Algorithm Based on Feature Weight and Entropy." Entropy 25, no. 3 (March 16, 2023): 510. http://dx.doi.org/10.3390/e25030510.
Full textMorozov, Denys. "Polynomial Representation of Binary Trees of Entropy Binary Codes." Mohyla Mathematical Journal 4 (May 19, 2022): 20–23. http://dx.doi.org/10.18523/2617-70804202120-23.
Full textCrysdian, Cahyo. "The Evaluation of Entropy-based Algorithm towards the Production of Closed-Loop Edge." JOIV : International Journal on Informatics Visualization 7, no. 4 (December 31, 2023): 2481. http://dx.doi.org/10.62527/joiv.7.4.1727.
Full textCrysdian, Cahyo. "The Evaluation of Entropy-based Algorithm towards the Production of Closed-Loop Edge." JOIV : International Journal on Informatics Visualization 7, no. 4 (December 31, 2023): 2481. http://dx.doi.org/10.30630/joiv.7.4.01727.
Full textDissertations / Theses on the topic "Entropy algorithms"
Höns, Robin. "Estimation of distribution algorithms and minimum relative entropy." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980407877.
Full textLuo, Shen. "Interior-Point Algorithms Based on Primal-Dual Entropy." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/1181.
Full textFellman, Laura Suzanne. "The Genetic Algorithm and Maximum Entropy Dice." PDXScholar, 1996. https://pdxscholar.library.pdx.edu/open_access_etds/5247.
Full textMeehan, Timothy J. "Joint demodulation of low-entropy narrow band cochannel signals." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FMeehan%5FPhD.pdf.
Full textDissertation supervisor(s): Frank E. Kragh. "December 2006." Includes bibliographical references (p. 167-177). Also available in print.
Reimann, Axel. "Evolutionary algorithms and optimization." Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969093497.
Full textJIMMY, TJEN. "Entropy-Based Sensor Selection Algorithms for Damage Detection in SHM Systems." Doctoral thesis, Università degli Studi dell'Aquila, 2021. http://hdl.handle.net/11697/173561.
Full textKirsch, Matthew Robert. "Signal Processing Algorithms for Analysis of Categorical and Numerical Time Series: Application to Sleep Study Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1278606480.
Full textMolari, Marco. "Implementation of network entropy algorithms on hpc machines, with application to high-dimensional experimental data." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6160/.
Full textKotha, Aravind Eswar Ravi Raja, and Lakshmi Ratna Hima Rajitha Majety. "Performance Comparison of Image Enhancement Algorithms Evaluated on Poor Quality Images." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13880.
Full textSaraiva, Gustavo Francisco Rosalin. "Análise temporal da sinalização elétrica em plantas de soja submetidas a diferentes perturbações externas." Universidade do Oeste Paulista, 2017. http://bdtd.unoeste.br:8080/jspui/handle/jspui/1087.
Full textMade available in DSpace on 2018-07-27T17:57:40Z (GMT). No. of bitstreams: 1 Gustavo Francisco Rosalin Saraiva.pdf: 5041218 bytes, checksum: 30127a7816b12d3bd7e57182e6229bc2 (MD5) Previous issue date: 2017-03-31
Plants are complex organisms with dynamic processes that, due to their sessile way of life, are influenced by environmental conditions at all times. Plants can accurately perceive and respond to different environmental stimuli intelligently, but this requires a complex and efficient signaling system. Electrical signaling in plants has been known for a long time, but has recently gained prominence with the understanding of the physiological processes of plants. The objective of this thesis was to test the following hypotheses: temporal series of data obtained from electrical signaling of plants have non-random information, with dynamic and oscillatory pattern, such dynamics being affected by environmental stimuli and that there are specific patterns in responses to stimuli. In a controlled environment, stressful environmental stimuli were applied in soybean plants, and the electrical signaling data were collected before and after the application of the stimulus. The time series obtained were analyzed using statistical and computational tools to determine Frequency Spectrum (FFT), Autocorrelation of Values and Approximate Entropy (ApEn). In order to verify the existence of patterns in the series, classification algorithms from the area of machine learning were used. The analysis of the time series showed that the electrical signals collected from plants presented oscillatory dynamics with frequency distribution pattern in power law. The results allow to differentiate with great efficiency series collected before and after the application of the stimuli. The PSD and autocorrelation analyzes showed a great difference in the dynamics of the electric signals before and after the application of the stimuli. The ApEn analysis showed that there was a decrease in the signal complexity after the application of the stimuli. The classification algorithms reached significant values in the accuracy of pattern detection and classification of the time series, showing that there are mathematical patterns in the different electrical responses of the plants. It is concluded that the time series of bioelectrical signals of plants contain discriminant information. The signals have oscillatory dynamics, having their properties altered by environmental stimuli. There are still mathematical patterns built into plant responses to specific stimuli.
As plantas são organismos complexos com processos dinâmicos que, devido ao seu modo séssil de vida, sofrem influência das condições ambientais todo o tempo. Plantas podem percebem e responder com precisão a diferentes estímulos ambientais de forma inteligente, mas para isso se faz necessário um complexo e eficiente sistema de sinalização. A sinalização elétrica em plantas já é conhecida há muito tempo, mas vem ganhando destaque recentemente com seu entendimento em relação aos processos fisiológicos das plantas. O objetivo desta tese foi testar as seguintes hipóteses: séries temporais de dados obtidos da sinalização elétrica de plantas possuem informação não aleatória, com padrão dinâmico e oscilatório, sendo tal dinâmica afetada por estímulos ambientais e que há padrões específicos nas respostas a estímulos. Em ambiente controlado, foram aplicados estímulos ambientais estressantes em plantas de soja, e captados os dados de sinalização elétrica antes e após a aplicação dos mesmos. As séries temporais obtidas foram analisadas utilizando ferramentas estatísticas e computacionais para se determinar o Espectro de Frequências (FFT), Autocorrelação dos valores e Entropia Aproximada (ApEn). Para se verificar a existência de padrões nas séries, foram utilizados algoritmos de classificação da área de aprendizado de máquina. A análise das séries temporais mostrou que os sinais elétricos coletados de plantas apresentaram dinâmica oscilatória com padrão de distribuição de frequências em lei de potência. Os resultados permitem diferenciar com grande eficácia séries coletadas antes e após a aplicação dos estímulos. As análises de PSD e autocorrelação mostraram grande diferença na dinâmica dos sinais elétricos antes e após a aplicação dos estímulos. A análise de ApEn mostrou haver diminuição da complexidade do sinal após a aplicação dos estímulos. Os algoritmos de classificação alcançaram valores significativos na acurácia de detecção de padrões e classificação das séries temporais, mostrando haver padrões matemáticos nas diferentes respostas elétricas das plantas. Conclui-se que as séries temporais de sinais bioelétricos de plantas possuem informação discriminante. Os sinais possuem dinâmica oscilatória, tendo suas propriedades alteradas por estímulos ambientais. Há ainda padrões matemáticos embutidos nas respostas da planta a estímulos específicos.
Books on the topic "Entropy algorithms"
National Institute of Standards and Technology (U.S.), ed. Parallel algorithms for entropy-coding techniques. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.
Find full textSantos, Cícero Nogueira dos. Entropy guided transformation learning: Algorithms and applications. London: Springer, 2012.
Find full textdos Santos, Cícero Nogueira, and Ruy Luiz Milidiú. Entropy Guided Transformation Learning: Algorithms and Applications. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2978-3.
Full textLuiz, Milidiu Ruy, and SpringerLink (Online service), eds. Entropy Guided Transformation Learning: Algorithms and Applications. London: Springer London, 2012.
Find full textPríncipe, J. C. Information theoretic learning: Renyi's entropy and kernel perspectives. New York: Springer, 2010.
Find full textM, Le Thinh, Lian Yong, and SpringerLink (Online service), eds. Entropy Coders of the H.264/AVC Standard: Algorithms and VLSI Architectures. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full text1954-, Mayer-Kress G., and International Workshop on "Dimensions and Entropies in Chaotic Systems" (1985 : Pecos River Ranch), eds. Dimensions and entropies in chaotic systems: Quantification of complex behavior : proceedings of an international workshop at the Pecos River Ranch, New Mexico, September 11-16, 1985. Berlin: Springer-Verlag, 1986.
Find full textSbert, Mateu. Information theory tools for computer graphics. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2009.
Find full textUnited States. National Aeronautics and Space Administration., ed. An adaptive numeric predictor-corrector guidance algorithm for atmospheric entry vehicles. Cambridge, Mass: The Charles Stark Draper Laboratories, Inc., 1987.
Find full textUnited States. National Aeronautics and Space Administration., ed. Entry vehicle performance analysis and atmospheric guidance algorithm for precision landing on Mars. Cambridge, Mass: The Charles Stark Draper Laboratory, Inc., 1990.
Find full textBook chapters on the topic "Entropy algorithms"
Pham, Tuan D. "Entropy Algorithms." In Fuzzy Recurrence Plots and Networks with Applications in Biomedicine, 81–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37530-0_6.
Full textCardinal, Jean, Samuel Fiorini, and Gwenaël Joret. "Minimum Entropy Coloring." In Algorithms and Computation, 819–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11602613_82.
Full textMasters, Timothy. "Information and Entropy." In Data Mining Algorithms in C++, 1–73. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3315-3_1.
Full textLi, C. H., C. K. Lee, and P. K. S. Tam. "Entropic Thresholding Algorithms and their Optimizations." In Entropy Measures, Maximum Entropy Principle and Emerging Applications, 199–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8_10.
Full textCordova, Joshimar, and Gonzalo Navarro. "Practical Dynamic Entropy-Compressed Bitvectors with Applications." In Experimental Algorithms, 105–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38851-9_8.
Full textFarzan, Arash, Travis Gagie, and Gonzalo Navarro. "Entropy-Bounded Representation of Point Grids." In Algorithms and Computation, 327–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17514-5_28.
Full textFerragina, Paolo. "Data Structures: Time, I/Os, Entropy, Joules!" In Algorithms – ESA 2010, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15781-3_1.
Full textdos Santos, Cícero Nogueira, and Ruy Luiz Milidiú. "Entropy Guided Transformation Learning." In Entropy Guided Transformation Learning: Algorithms and Applications, 9–21. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2978-3_2.
Full textCooke, D. E., V. Kreinovich, and L. Longpré. "Which Algorithms are Feasible? Maxent Approach." In Maximum Entropy and Bayesian Methods, 25–33. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5028-6_3.
Full textShapiro, Jonathan L., Magnus Rattray, and Adam PrüGel-Bennett. "Maximum Entropy Analysis of Genetic Algorithms." In Maximum Entropy and Bayesian Methods, 303–10. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5430-7_36.
Full textConference papers on the topic "Entropy algorithms"
Feng, Xilong, Guosheng Hao, Yi Zhu, and Shijin Ren. "An Entropy Feedback Based Evolutionary Algorithms and its Application." In 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), 685–95. IEEE, 2024. http://dx.doi.org/10.1109/docs63458.2024.10704514.
Full textKurt, İlke, Sezer Ulukaya, Oğuzhan Erdem, Sibel Güler, and Cem Uzun. "Shannon Wavelet Entropy-based Machine Learning Applications in Parkinson’s Disease Diagnosis with Videonystagmography." In 2024 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 127–31. IEEE, 2024. http://dx.doi.org/10.23919/spa61993.2024.10715608.
Full textAntoneac, Andrada-Livia, Gheorghiţă Mutu, and Dragoş-Teodor Gavriluţ. "Entropy-Driven Visualization in GView: Unveiling the Unknown in Binary File Formats." In 2024 26th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 74–81. IEEE, 2024. https://doi.org/10.1109/synasc65383.2024.00025.
Full textLan, Rui, Liang Gao, and Chao Liu. "Research on the evaluation model of human job matching based on improved entropy method." In Fourth International Conference on Advanced Algorithms and Neural Networks (AANN 2024), edited by Qinghua Lu and Weishan Zhang, 3. SPIE, 2024. http://dx.doi.org/10.1117/12.3049482.
Full textHarvey, Nicholas J. A., Jelani Nelson, and Krzysztof Onak. "Streaming algorithms for estimating entropy." In 2008 IEEE Information Theory Workshop (ITW). IEEE, 2008. http://dx.doi.org/10.1109/itw.2008.4578656.
Full textSuciu, Alin, Kinga Marton, and Zoltan Antal. "Data Flow Entropy Collector." In 2008 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2008. http://dx.doi.org/10.1109/synasc.2008.25.
Full textNadar, Mariappan S., Philip J. Sementilli, and Bobby R. Hunt. "A Projection-Onto-Convex-Sets Interpretation of Cross-Entropy Based Image Super-Resolution Algorithms." In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/srs.1995.rwc3.
Full textRothvoß, Thomas. "The Entropy Rounding Method in Approximation Algorithms." In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012. http://dx.doi.org/10.1137/1.9781611973099.32.
Full textChang-Yong Lee. "Genetic algorithms with entropy-Boltzmann samplings." In Proceedings of the 2001 Congress on Evolutionary Computation. IEEE, 2001. http://dx.doi.org/10.1109/cec.2001.934432.
Full textWentao Ma, Hua Qu, Jihong Zhao, Badong Chen, and Jose C. Principe. "Sparsity aware minimum error entropy algorithms." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178357.
Full textReports on the topic "Entropy algorithms"
Youssef, Abdou. Parallel algorithms for entropy-coding techniques. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6113.
Full textDolotii, Marharyta H., and Pavlo V. Merzlykin. Using the random number generator with a hardware entropy source for symmetric cryptography problems. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2883.
Full textAlwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, December 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Full textAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Full textLiu, Ju, Hector Gomez, John A. Evans, Thomas J. Hughes, and Chad M. Landis. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada572015.
Full textFellman, Laura. The Genetic Algorithm and Maximum Entropy Dice. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7120.
Full textSoloviev, Vladimir, Andrii Bielinskyi, and Viktoria Solovieva. Entropy Analysis of Crisis Phenomena for DJIA Index. [б. в.], June 2019. http://dx.doi.org/10.31812/123456789/3179.
Full textBerney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman, and John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.
Full text