Academic literature on the topic 'Environmental aspects of Microbial biotechnology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Environmental aspects of Microbial biotechnology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Environmental aspects of Microbial biotechnology"
Leonhäuser, J., M. Röhricht, I. Wagner-Döbler, and W. D. Deckwer. "Reaction Engineering Aspects of Microbial Mercury Removal." Engineering in Life Sciences 6, no. 2 (April 2006): 139–48. http://dx.doi.org/10.1002/elsc.200620904.
Full textErmakov, V. V., T. V. Guseva, Yu V. Kovalsky, and V. I. Panfilov. "Applied aspects of the geochemical ecology of microorganisms used for solving ecobiotechnological tasks." Biotekhnologiya 36, no. 6 (2020): 107–14. http://dx.doi.org/10.21519/0234-2758-2020-36-6-107-114.
Full textMutere, Dr Olga. "Editorial: Managing the Microbial Activity in Food and Environmental Biotechnologies." Open Biotechnology Journal 9, no. 1 (June 26, 2015): 30. http://dx.doi.org/10.2174/1874070701509010030.
Full textMorasch, Barbara, Hans H. Richnow, Bernhard Schink, and Rainer U. Meckenstock. "Stable Hydrogen and Carbon Isotope Fractionation during Microbial Toluene Degradation: Mechanistic and Environmental Aspects." Applied and Environmental Microbiology 67, no. 10 (October 1, 2001): 4842–49. http://dx.doi.org/10.1128/aem.67.10.4842-4849.2001.
Full textCui, Yang, Bin Lai, and Xinhua Tang. "Microbial Fuel Cell-Based Biosensors." Biosensors 9, no. 3 (July 23, 2019): 92. http://dx.doi.org/10.3390/bios9030092.
Full textRao, Mala B., Aparna M. Tanksale, Mohini S. Ghatge, and Vasanti V. Deshpande. "Molecular and Biotechnological Aspects of Microbial Proteases." Microbiology and Molecular Biology Reviews 62, no. 3 (September 1, 1998): 597–635. http://dx.doi.org/10.1128/mmbr.62.3.597-635.1998.
Full textParedes, D., P. Kuschk, T. S. A. Mbwette, F. Stange, R. A. Müller, and H. Köser. "New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review." Engineering in Life Sciences 7, no. 1 (February 2007): 13–25. http://dx.doi.org/10.1002/elsc.200620170.
Full textAdriaenssens, Evelien M., and Don A. Cowan. "Using Signature Genes as Tools To Assess Environmental Viral Ecology and Diversity." Applied and Environmental Microbiology 80, no. 15 (May 16, 2014): 4470–80. http://dx.doi.org/10.1128/aem.00878-14.
Full textKieliszek, Marek, Kamil Piwowarek, Anna M. Kot, and Katarzyna Pobiega. "The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry." Open Life Sciences 15, no. 1 (October 22, 2020): 787–96. http://dx.doi.org/10.1515/biol-2020-0099.
Full textKumar, Shashank, and Abhay K. Pandey. "Chemistry and Biological Activities of Flavonoids: An Overview." Scientific World Journal 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/162750.
Full textDissertations / Theses on the topic "Environmental aspects of Microbial biotechnology"
Yeh, Daniel H. "Influence of nonionic surfactants on the bioavailability and microbial reductive dechlorination of hexachlorobenzene." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/20200.
Full textBooker, Randall Sulter Jr. "Microbial reductive dechlorination of hexachloro-1,3-butadiene." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20921.
Full textJackson, Vanessa A. (Vanessa Angela). "Microbial response to oxidising biocides." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53499.
Full textENGLISH ABSTRACT: Biofouling of water systems is a problem extensively experienced in industry. Although this subject is the focus of many studies, the ability of microorganisms to survive exposure to biocides is still poorly understood. This study aimed to assess the biocidal effect of ozone on planktonic cells and biofilm communities, to evaluate different ozone generation techniques, and to follow population shifts within the biofilm community. Specific objectives included determining the effect of different ozone concentrations, the effect of different exposure times, and an assessment of microbial responses after exposure to sub-lethal ozone concentrations. Typically, 300 ml of an ovemight bacterial culture was exposed to ozone that was generated by anodic oxidation (0.3% wt or 18- 20% wt, respectively) or silent electric discharge (3.5% wt 03). The ozone was purged into the culture for 5-, 7-, 10- and 15 min., respectively. Enumeration of cells following ~10 min. exposure to 18-20% wt ozone showed a significant reduction in viable cell numbers. In contrast, when exposed to the two lower 03 concentrations, there was little change in the viable cell numbers even after prolonged exposure (30- and 60 min.). To evaluate biofilms, ozone was bubbled into the irrigation that was pumped through replicate flow cell channels. Response to ozone exposure was evaluated after staining the biofilms with the Baclight Viability probe, observation with fluorescence microscopy, and image analysis. The higher ozone concentration (18-20% wt 03) more effectively disrupted the biofilm structure of denser biofilms than the lower concentration, especially after 90 min. exposure. When compared to the controls, the 90 min. exposure resulted in a notable reduction in viable cells from 69% to 38% and a corresponding increase in nonviable cells from 29% to 62%. The lower concentration ozone (3.5% wt 03) was effective against the less dense, thinner biofilms evaluated, but not effective against the thicker biofilm. An analysis of the differences between continuous culture biofilms and batch culture biofilms showed that the biofilms in the batch system were less rigid. To evaluate microbial response to biocides, techniques such as Biolog whole-community metabolic profiles and terminal restriction fragment length polymorphisms (T-RFLP) were used. Biolog analysis of planktonic cells revealed changes following exposure to sub-lethal biocide concentrations, however carbon utilisation profiles resembled that of the controls after 24-48 hours. For biofilm communities, no carbon utilization differences could be detected under these conditions. There was, however differences in T-RFLP patterns between treated and untreated biofilm communities.
AFRIKAANSE OPSOMMING: Biobevuiling van watersisteme is 'n probleem wat algemeen in industriëe ervaar word. Alhoewel hierdie onderwerp die fokus van vele studies is, word die vermoëns van mikroorganismes om blootstelling aan biosiede te weerstaan steeds swak verstaan. Die doel van hierdie studie was om die biosidiese effek van osoon op planktoniese selle en biofilm gemeenskappe waar te neem, om die verskillende osoon generasie tegnieke te evalueer, asook om verskuiwings in die samestelling van die biofilm gemeenskap waar te neem. Spesifieke doelwitte sluit in die bepaling van die effek van verskillende osoon konsentrasies, die blootstellingtye, en 'n waarneming van mikrobiese reaksies na blootstelling aan sub-dodings osoon konsentrasies. Drie honderd ml van 'n oornag bakteriese kultuur was aan osoon, wat deur anodiese oksidasie (0.3% wt of 18% - 20% wt) of geluidlose elektriese ontlading (3.5% wt), gegenereer is, blootgestel. Tye van blootstelling was 5-, 7-, 10-, of 15 min., onderskeidelik. Bepaling van selgetalle na :2:10 min. blootstelling aan 18 - 20% wt osoon, het 'n betekenisvolle verlaging in die getal lewensvatbare mikrobeselle getoon. In teenstelling hiermee, het blootstelling aan twee laer osoon konsentrasies min verskil in die lewensvatbare selgetalle, selfs na verlengde blootstellingstye (30- en 60 min.), getoon. Om biofilms te evalueer is osoon in die medium geborrel wat deur replikaat vloeisel kanale gepomp is. Na osoon blootstelling, was die vloeisel onderwerp aan beeld analise deur gebruik te maak van die Baclight lewensvatbare peiler en fluoressensie mikroskopie. Die hoër osoon konsentrasie (18 - 20% wt 03) het die struktuur van dikker biofilms meer effektiefuiteengeskeur as die laer konsentrasie, veral na 90 min. blootstelling. In vergelyking met die onderskeie kontroles, het die getalle van lewensvatbare selle na 90 min. blootstelling drasties verlaag vanaf 69% tot 38% en 'n ooreenstemmende toename in die nie-lewensvatbare selgetalle vanaf 29% tot 62%. Die laer osoon konsentrasie (3.5% wt 03) was meer effektief teenoor die minder digte en dunner biofilms wat ge-evalueer was, maar nie so effektief teenoor die dikker biofilms nie. 'n Analise van die verskille tussen kontinue-kultuur biofilms en lotkultuur biofilms het getoon dat die lot-kultuur biofilms minder rigied is. Vir die evaluering van mikrobiese reaksies na biosied blootstelling, is tegnieke soos Biolog gemeenskap metaboliese profiele en eind-restriksie-fragment-lengte polimorfisme (TRFLP) gebruik. Biolog analise van planktoniese selle het verskille getoon na blootstelling aan sub-dodelike biosied konsentrasies. Koolstof benutting het wel na 24 - 48 ure met dit van die kontrole ooreengestem. Vir biofilm gemeenskappe was daar geen noemenswaardige verskille in koolstof benutting nie. Daar was wel verskille in T-RFLP patrone tussen die onbehandelde en biosied-behandelde biofilm gemeenskappe.
Prytula, Mark Taras. "Bioavailability and microbial dehalogenation of chlorinated benzenes sorbed to estuarine sediments." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/32835.
Full textScanferlato, Vjera Sostarec. "Environment risk assessment for toxic chemicals and genetically-engineered microorganisms : a microcosm approach /." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07282008-135357/.
Full textKrige, Adolf. "Microbial Fuel cells, applications and biofilm characterization." Licentiate thesis, Luleå tekniska universitet, Kemiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73938.
Full textPenfield, Tyler. "Microbial communities in an anaerobic membrane bioreactor (AnMBR) treating domestic wastewater at ambient temperatures in a temperate climate." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/38197.
Full textDepartment of Civil Engineering
Prathap Parameswaran
The ever-increasing demand for water, food, and energy and the simultaneous diminishment of our planets’ ecosystems wrought by humans have prompted a more sustainable approach to engineering the built environment. Wastewater treatment systems stand at the interface that connects the built and natural environment where potential solutions for resource and environmental issues exist. Wastewater treatment technologies can address issues involving water, food, energy, and environmental regulation when resources are properly captured from the wastewater while it’s being treated. This way of thought allows wastewater to be perceived as a source of valuable products rather than an obligate waste stream. For this reason, anaerobic wastewater treatment is progressively being considered because of its ability to improve energy and resource recovery, while reducing costs and environmental impacts associated with conventional domestic wastewater treatment. More specifically, anaerobic membrane bioreactors (AnMBRs) hold promise to effectively treat wastewater at low temperatures with low energy and nutrient requirements, low sludge production, while having the benefit of generating methane-rich biogas suitable as an energy source and the potential to capture nutrients used to fertilize cropland. But, at low temperatures the microbial communities that control anaerobic digestion (AD) face biochemical obstacles. Elucidating the microbial community dynamics within AnMBRs with respect to seasonal temperatures will give insight on how to efficiently operate AnMBRs with the goal of energy-neutral wastewater treatment. DNA based tools such as advanced high-throughput sequencing was coupled with AnMBR process data to explicate the mechanism of methane production in the suspended biomass of an AnMBR from a mesophilic startup leading into psychrophilic conditions, and then returning to mesophilic temperatures.
Godow, Bratt Tora, Mathilda Stigenberg, Andreas Elenborg, Sarah Ågren, and Andreas Medhage. "To monitor the microbial biodiversity in soil within Uppsala." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444210.
Full textMutambanengwe, Cecil Clifford Zvandada. "The biotechnology of hard coal utilization as a bioprocess substrate." Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1003993.
Full textCluff, Maryam Ansari. "Microbial Aspects of Shale Flowback Fluids and Response to Hydraulic Fracturing Fluids." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366292190.
Full textBooks on the topic "Environmental aspects of Microbial biotechnology"
Biodiversity and environmental biotechnology. Jodhpur: Scientific Publishers (India), 2007.
Find full textReducing Risks from Environmental Chemicals through Biotechnology (Conference) (1987 Seattle). Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology. New York: Plenum, 1988.
Find full textJ, Gauthier Michel, ed. Gene transfers and environment: Proceedings of the Third European Meeting on Bacterial Genetics and Ecology (BAGECO-3), 20-22 November 1991, Villefranche-sur-Mer, France. Berlin: Springer-Verlag, 1992.
Find full textAnton, Blažej, and Prívarová V, eds. Environmental biotechnology: Proceedings of the International Symposium on Biotechnology, Bratislava, Czecho-Slovakia, June 27-29, 1990. Amsterdam: Elsevier, 1991.
Find full textInternational Symposium on Biotechnology. (1991 Oostende, Belgium). Environmental biotechnology: International symposium, 22-25 April 1991, Oostende, Belgium. Oostende, Belgium: Royal Flemish Society of Engineers, 1991.
Find full textPelmont, Jean. Biodégradations et métabolismes: Les bactéries pour les technologies de l'environment. Les Ulis: EDP Science, 2005.
Find full textSukla, Lala Behari, Nilotpala Pradhan, Sandeep Panda, and Barada Kanta Mishra, eds. Environmental Microbial Biotechnology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19018-1.
Full textSytze, Keuning, and Janssen Dick B, eds. Handbook on biodegradation and biological treatment of hazardous organic compounds. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textMicrobial biotechnology: Energy and environment. Wallingford, Oxfordshire: CAB International, 2012.
Find full textFulekar, M. H. Environmental biotechnology. Enfield, N.H: Science Publishers, 2010.
Find full textBook chapters on the topic "Environmental aspects of Microbial biotechnology"
Putatunda, Chayanika, Abhishek Walia, Rashmi Sharma, and Preeti Solanki. "Current Trends and Aspects of Microbiological Biogas Production." In Environmental and Microbial Biotechnology, 265–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2817-0_12.
Full textWattiau, Pierre. "Microbial Aspects in Bioremediation of Soils Polluted by Polyaromatic Hydrocarbons." In Biotechnology for the Environment: Strategy and Fundamentals, 69–89. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0357-5_5.
Full textOren, Aharon. "Microbial Systematics." In Environmental Biotechnology, 81–120. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-140-0_3.
Full textPanikov, Nicolai S. "Microbial Ecology." In Environmental Biotechnology, 121–91. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-140-0_4.
Full textJørgensen, Claus, Jens Aamand, Bjørn K. Jensen, Steffen D. Nielsen, and Carsten Suhr Jacobsen. "Microbial Properties Governing the Microbial Degradation of Polycyclic Aromatic Hydrocarbons." In Environmental Biotechnology, 178–92. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1435-8_17.
Full textSaunders, Venetia A., and Jon R. Saunders. "Environmental Biotechnology." In Microbial Genetics Applied to Biotechnology, 384–406. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-9796-4_9.
Full textKorzhenevich, V. I., E. V. Volchenko, I. N. Singircev, A. Yu Feodorov, and G. M. Shoob. "Microbial Treatment of Phenolic Wastes." In Environmental Biotechnology, 498–503. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1435-8_43.
Full textKynadi, Anna S., and T. V. Suchithra. "Bacterial Degradation of Phenol to Control Environmental Pollution." In Microbial Biotechnology, 245–63. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6847-8_11.
Full textSahoo, Sabuj, Sarmistha Sarangi, and Rout George Kerry. "Bioprospecting of Endophytes for Agricultural and Environmental Sustainability." In Microbial Biotechnology, 429–58. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6847-8_19.
Full textKarlson, U., and W. T. Frankenberger. "Microbial Volatilization of Selenium from Soils." In Environmental Biotechnology, 449. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0824-7_42.
Full textConference papers on the topic "Environmental aspects of Microbial biotechnology"
Sengupta, Debanjan. "Application of Biotechnology in Petroleum Industry - Microbial Enhanced Oil Recovery." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0088.
Full text"Analysis of Biofilter and Microbial community change under the treatment of Ammonia and Toluene." In International Conference on Biotechnology, Nanotechnology and Environmental Engineering. International Academy of Arts, Science & Technology, 2015. http://dx.doi.org/10.15242/iaast.a0415055.
Full textWellman, Dawn M., Shas V. Mattigod, Susan Hubbard, Ann Miracle, Lirong Zhong, Martin Foote, Yuxin Wu, and Danielle Jansik. "Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40235.
Full textReports on the topic "Environmental aspects of Microbial biotechnology"
Zylstra, Gerben, and Jan Roelof van der Meer. Environmental Shortcourse Final report [Joint US-EC Short Course on Environmental Biotechnology: Microbial Catalysts for the Environment]. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1067374.
Full text