Academic literature on the topic 'Environmental aspects of Oil well drilling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Environmental aspects of Oil well drilling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Environmental aspects of Oil well drilling"

1

Glibovytska, Nataliia, and Lesya Plaksiy. "The drilling solution components’ impact on the environment and directions of its reduction." Biolohichni systemy 12, no. 1 (2020): 52–57. http://dx.doi.org/10.31861/biosystems2020.01.052.

Full text
Abstract:
The problem of the oil wells operation influence on the environmental ecological state is considered. The technical and biological aspects of the impact of drilling solution components used in the process of oil production on the biotic and abiotic environment are analyzed. The methods of preserving the cleanliness of reservoirs and soil during the wells operations and preventing pollutants from entering the environment are described. Possible effects of the toxic compounds of the drilling fluid on living organisms, in particular plants, have been identified. The components of drilling fluids of different types are characterized by different levels of environmental hazard. The lowest level of threat to environmental safety is inherent in the clay type of solution, and the polymer-potassium solution is characterized by the highest potentially dangerous impact on the biota. Despite belonging to the third class of moderately hazardous substances, sodium salts, calcium and chlorides, as components of drilling fluids, have the highest destructive effects on the environment. Soil salinization has the most detrimental effect on plants, as it breaks the osmotic equilibrium in the soil-plant system, disrupts the transport of organogenic elements throughout the plant, and reduces the availability of moisture and minerals. Increasing soil pH due to the ingress of calcium and sodium hydroxides as components of drilling fluids adversely affects plant growth and development. Stability of some groups of plants to the influence of components of drilling fluids and ability of phytoobjects to resist stress influence are noted. Halophytes are well adapted to the growth in conditions of excessive soil salinization due to the specific metabolic and structural features of the organization. Low oil content in drilling fluids can be released into the environment and, when accumulated in the aquatic and soil environments, lead to a number of destructive processes in living systems. Plants sensitive to oil pollution respond by reducing growth processes, increasing catabolic processes, and reducing assimilation function. In order to minimize the negative impact of chemicals on the environment of oil production territories, it is necessary to apply a comprehensive approach that combines the technical aspects of pollution control with effective biological methods. The urgent task of modern environmental science is to search for oil-resistant plant species that are effectively capable of converting toxic petroleum products to biota-safe compounds. Technological recommendations for the prevention of environmental pollution by drilling fluids are proposed, as well as phytorecultivation methods for controlling already polluted ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Fei, and Yan Ling Wang. "Synthesis and Performance Study of the Nanomaterial Used to Stabilize the Reversible Invert Emulsion Drilling Fluid." Key Engineering Materials 744 (July 2017): 498–505. http://dx.doi.org/10.4028/www.scientific.net/kem.744.498.

Full text
Abstract:
The reversible invert emulsion drilling fluids can achieve performance of oil based drilling fluid and solve the disadvantages associated by the oil based drilling fluid. This reversible invert emulsion drilling fluid can also focus the advantages of both oil based and water based drilling fluids. The surfactant emulsifier is the currently reported emulsifier used in the reversible invert emulsion. The stability of the reversible invert emulsion drilling fluid is very poor that can be known from the low emulsion breaking voltage. The dosage of the surfactant emulsifier is so much that it can increase the drilling cost and environmental pollution. In this paper, organic amine surfactant-modified nanoparticles are prepared and the modified nanoparticle which can be used to stabilize the reversible invert emulsion drilling fluid is chosen. The stability of the reversible invert emulsion drilling fluid stabilized by modified nanoparticles (emulsion breaking voltage>1100V) is better than the reversible invert emulsion drilling fluid stabilized by surfactant (450V<emulsion breaking voltage<600V). The dosage of the organic amine surfactant-modified nanoparticle emulsifier (2.4 wt.%) is less than the dosage of the surfactant emulsifier (4 wt.%), hence, reducing the drilling cost and environmental threat. The reversible invert emulsion drilling fluid stabilized by modified nanoparticles perform similar to the reversible invert emulsion drilling fluid stabilized by surfactant in the aspect of oiliness cuttings treatment. The reversible invert emulsion drilling fluid stabilized by modified nanoparticles also perform well in the aspect of oiliness cuttings treatment.
APA, Harvard, Vancouver, ISO, and other styles
3

Rossi, Arley Silva, Marina Seixas Pereira, Jéssika Marina dos Santos, Irineu Petri Jr., and Carlos Henrique Ataíde. "Fundamentals of Microwave Heating and Drying of Drilled Cuttings." Materials Science Forum 899 (July 2017): 528–33. http://dx.doi.org/10.4028/www.scientific.net/msf.899.528.

Full text
Abstract:
Drilled cuttings contaminated by non aqueous drilling fluids are the major waste from oil well drilling activities. More restrictive environmental legislation has led to the search for alternative technologies to promote cuttings decontamination according to the law. The mixture of cuttings and fluid returning from the well goes through a set of separation equipments, called solids control systems, in order to recover the drilling fluid for reuse. The cuttings from the solids control system must be decontaminated before they can be discharged into the sea. Microwave heating has been studied over the past few years as an alternative to promote the decontamination of this waste and has been shown to be a promising technology. This work aimed to investigate fundamental aspects of microwave heating and drying of drilled cuttings. The heating curve of two different drilling fluids commonly employed in well-drilling operations was obtained. The kinetics of drying of cuttings contaminated with these drilling fluids was also investigated. It was evaluated the behavior of organic phase and water removal in the microwave drying process.
APA, Harvard, Vancouver, ISO, and other styles
4

STAN, Marius, Valentin Paul TUDORACHE, Lazăr AVRAM, Mohamed Iyad AL NABOULSI, Claudiu TĂNASĂ, and Georgeta ALECU. "Elements constituent for the design of a riser system in areas deep water and extreme deep water applied for offshore drilling." EMERG - Energy. Environment. Efficiency. Resources. Globalization 6, no. 3 (2020): 127–44. http://dx.doi.org/10.37410/emerg.2020.3.10.

Full text
Abstract:
Riser systems are integral components of the offshore developments used to recover oil and gas stored in the reservoirs below the earth’s oceans and seas. These riser systems are used in all facets of the development offshore process including exploration and exploitation wells completion/intervention, and production of the hydrocarbons. Their primary function is to facilitate the safe transportation of material, oil and gases between the seafloor oceans and seas and the marine platform. As the water depth increases, the working conditions of this system becomes challenging due to the complex forces and extreme environmental conditions which are impacting the operational mode as well as the stability. In this paper several aspects concerning riser mechanics and the behaviour of the riser column will be evaluated against different operational situations.
APA, Harvard, Vancouver, ISO, and other styles
5

Gaurina-Međimurec, Nediljka, Borivoje Pašić, Petar Mijić, and Igor Medved. "Deep Underground Injection of Waste from Drilling Activities—An Overview." Minerals 10, no. 4 (2020): 303. http://dx.doi.org/10.3390/min10040303.

Full text
Abstract:
Oil and gas exploration and production activities generate large amounts of waste material, especially during well drilling and completion activities. Waste material from drilling activities to the greatest extent consists of drilled cuttings and used drilling mud with a smaller portion of other materials (wastewater, produced hydrocarbons during well testing, spent stimulation fluid, etc.). Nowadays, growing concerns for environmental protections and new strict regulations encourage companies to improve methods for the reduction of waste material, as well as improve existing and develop new waste disposal methods that are more environmentally friendly and safer from the aspect of human health. The main advantages of the waste injection method into suitable deep geological formations over other waste disposal methods (biodegradation, thermal treatment, etc.) are minimizing potentially harmful impacts on groundwater, reducing the required surface area for waste disposal, reducing the negative impact on the air and long-term risks for the entire environment. This paper gives a comprehensive overview of the underground waste injection technology, criteria for the selection of the injection zone and methods required for process monitoring, as well as a comprehensive literature overview of significant past or ongoing projects from all over the world.
APA, Harvard, Vancouver, ISO, and other styles
6

Duarte, Victor Magalhães, Luciano Matos Queiroz, Ednildo Andrade Torres, and Asher Kiperstok. "Energetic aspects and opportunities for reusing water on offshore platforms in Campos Basin, Brazil." Ambiente e Agua - An Interdisciplinary Journal of Applied Science 12, no. 5 (2017): 786. http://dx.doi.org/10.4136/ambi-agua.2121.

Full text
Abstract:
In the drilling and production of oil at sea, a large quantity of potable water used is most commonly transported to oil platforms using offshore supply vessels (OSVs). Sea water desalination is used as well, but only in a few oil platforms. To minimize energy consumption, water supply options were studied. The desalination of seawater and the reusing of streams of grey water and black water were evaluated and compared with the characteristics of the current supply via OSVs. In both desalination and OSV water supply options an electrolytic wastewater treatment plant is used. The objective of this study was to analyze the current situation regarding water supply on offshore platforms located in the Campos Basin, Rio de Janeiro, Brazil, and to propose measures to take advantage of opportunities to reuse water and reduce energy expenditure. Two alternative scenarios were developed that involved the reuse of water that comes from the effluent of a biological wastewater treatment plant (WWTP). Information on the logistics of supplying water to platforms was obtained through direct consultation with companies and sources in the literature. The results show that annual energy consumption (uptake, treatment, transportation, use and waste water treatment) of water on offshore platforms is currently 1.89 GWh, and that a reduction of 1.8 GWh of the energy consumed can be achieved using advanced reuse treatments. Energy consumption in the water reuse treatment is more competitive than those of transport by OSVs or seawater desalination.
APA, Harvard, Vancouver, ISO, and other styles
7

Di Martino, Gianluca, Roumen Sankoff, Craig Marshall, and Bobby Chopra. "The Coniston development: another offshore challenge in Western Australia." APPEA Journal 54, no. 2 (2014): 475. http://dx.doi.org/10.1071/aj13048.

Full text
Abstract:
This extended abstract discusses the key challenges associated with the Coniston development; particular emphasis is on engineering, operations, and project management aspects. The Coniston development will produce oil and gas from the Coniston and Novara hydrocarbon accumulations, located in permit WA-35-L, about 100 km north of Exmouth, in water depths of about 400 m. The Coniston development will consist of a sub-sea tieback to the existing Van Gogh sub-sea infrastructure and the Ningaloo Vision FPSO, currently producing from the Van Gogh Field. The project was sanctioned by Apache in 2011 and will be on production in 2Q 2014. To maximise reservoir exposure, multilateral wells will be drilled, and completed, employing inflow control devices of latest generation and monitoring production with the installation of tracers. To take advantage of project synergies, gas lift will be provided by Van Gogh wells through a dedicated gas production manifold. The Coniston development represents a remarkable multidisciplinary effort to develop a relatively small-size oil reservoir offshore WA. Some of the challenges achieved are the high oil viscosity, the complexity of the engineering to install new sub-sea infrastructure while minimising the impact on Van Gogh production and maximising the synergies of the tie back, the constant increase in drilling and facilities costs while maintaining attractive project economics, and the more stringent regulations environmental permits and the ability to optimise drilling and operation to achieve production as quickly as possible.
APA, Harvard, Vancouver, ISO, and other styles
8

Miller, Jessica, and Nick Quinn. "EXERCISE WESTWIND – A COLLABORATIVE OIL SPILL RESPONSE BY OIL & GAS OPERATORS AND AGENCIES." International Oil Spill Conference Proceedings 2017, no. 1 (2017): 2851–62. http://dx.doi.org/10.7901/2169-3358-2017.1.2851.

Full text
Abstract:
Abstract On June 9th, 2015, ACME Oil Company’s rig suffered a dynamic positioned ‘run-off’. The mobile drilling unit lost its station above the wellhead and a loss of well control was experienced. “A massive environmental emergency unfolded…affecting pristine coastline and masses of wildlife”. Incident Management and Field Response Teams were activated in a multi-agency operation, bringing together 200 personnel from 16 oil and gas companies and 18 government agencies and third party providers. Source control, aerial, offshore, nearshore, shoreline and oiled wildlife response capabilities were deployed and national/international support was utilised. Jointly managed by the Australian Marine Oil Spill Centre (AMOSC), the Australian Maritime Safety Authority (AMSA), the Federal Department of Industry and Science, and the Western Australian Department of Transport -Exercise Westwind was a successful multi-faceted marine spill response, demonstrating Australia’s collective Industry/Government capacity to respond to a large, offshore loss of well control incident in a remote and isolated location. ACME Oil Company was a fictitious company formed to enable the amalgamation of Australian petroleum companies to exercise industry arrangements under one ‘banner’ during the exercise period. ACME Oil Company had its own set of credentials, company website and Oil Pollution Emergency Plan. The company also held real time memberships with a number of service providers including AMOSC, Oil Spill Response Ltd, Trendsetter Engineering International, Oceaneering Australia and addenergy. Representing an innovative approach to spill response exercising, ACME Oil Company was a valuable and critical aspect to industry and governments participation under a non-attributable banner. Additionally, it enabled safe, widespread lessons to be observed, allowed for real-time testing of arrangements and provided a safe environment for regulators, stakeholder and industry interplay. The exercise was an efficient and practical solution for Industry titleholders and their third party supporting organisations, to test shared response resources and to ensure Industry arrangements for responding to oil pollution are in accordance with the Offshore Petroleum and Greenhouse Gas Storage (Environment) Regulations 2009. This paper will discuss the development program behind the exercise and the experience of managing an exercise of this nature. It will highlight the successes including the creation and implementation of a fictitious company and the extensive collaboration between the industry and government personnel involved. It will also look forward – where are we 11-months later? Can the history of exercising and/or response help us improve for the future-implementation of change and continued testing is critical in furthering our oil spill response capability and capacity.Exercise Westwind – Operational Phase TwoExercise Westwind – Operational Phase Two
APA, Harvard, Vancouver, ISO, and other styles
9

Wiesłw, Wiesław, and Marcin Rzepka. "Zjawiska chemiczno-technologiczne podczas zabiegu cementowania otworu w aspekcie projektowania rur okładzinowych." Nafta-Gaz 77, no. 2 (2021): 92–105. http://dx.doi.org/10.18668/ng.2021.02.04.

Full text
Abstract:
Borehole design is a complex and multidimensional question in terms of the number of issues to be resolved in terms of mechanical, environmental and public safety engineering requirements. In this article contains a review and evaluation of chemical phenomena and processes (not always correctly evaluated) that occur during the preparation of cement slurry and after its displacement during the formation of the gel structure of cement and cement sheath. As a result of the chemically complicated process of slurry gelation, a new structure is formed, i.e. steel pipe – sheath (cement stone) – a rock which in a specific way produces a specific type of load and stress in the annular space, and thus influences changes in hydrostatic pressure distribution. Such phenomena described in this article allow to understand the methodical approach to the process of designing pipes, especially in the aspect of collapse and burst of pipes with big diameter >13⅜″ and thin wall (in the 4th load regime). This does not mean that the tensile strength of pipes is not an important issue in pipe design, but it mainly concerns very deep boreholes, while collapse and burst of pipes occurs in special (often unforeseen) cases of full or partial evacuation for shallow pipe foundation in the hole. The article is based on extensive professional literature, as well as on numerous tests carried out at Oil and Gas Institute – National Research Institute on different types of cement slurries and drilling muds, and, moreover, on the relevant experience of the authors of the article, both in the field of slurry design and supervision of cement operations, as well as in the design and supervision of works related to drilling of various types of boreholes, including cement job and running casing.
APA, Harvard, Vancouver, ISO, and other styles
10

Herber, R., and J. de Jager. "Geoperspective Oil and Gas in the Netherlands – Is there a future?" Netherlands Journal of Geosciences - Geologie en Mijnbouw 89, no. 2 (2010): 91–107. http://dx.doi.org/10.1017/s001677460000072x.

Full text
Abstract:
AbstractThe impact of oil and, in particular, gas fields discovered in the Dutch subsurface has been very significant. However, 50 years after the discovery of the giant Groningen gas field the Netherlands has become very mature for exploration of oil and gas, and the gas volume left to be discovered in conventional traps is insignificant compared to what has been found already. The total portfolio of conventional prospects held by the industry contains several 100s of billions of cubic metres (bcm), as reported by the Ministry of Economic Affairs, but many of these prospects are unattractive to drill because of their small size or other geologically unfavourable aspects. Hence, for planning purposes of future national gas production the risk should be taken into account that the size of the conventional portfolio is overestimated. The major E&P companies have reduced their exploration efforts and the number of wells drilled as well as the size and total volume of discovered gas reserves has seen a steady decline over the last 10 years. Some surprises may still be in store and can occasionally add a welcome addition of gas. But the follow-up potential of new play and trapping concepts has been disappointing for many years now, and it is concluded that this is unlikely to be different in the future. Remaining conventional discoveries will mainly be in small near-field targets that as a result of technological advances made in the last few decades can be drilled with high confidence, despite their small volumes.This leaves the so-called unconventional gas (UG) resources for a real and significant increase in the exploration potential of the Netherlands. UG resources occur outside conventional structural or stratigraphic traps in tight (low permeability) rocks and are of regional or sub-regional extent, without well-defined hydrocarbon-water contacts. The potential for Basin Centred Gas, Shale Gas and Coal Bed Methane is reviewed. As, according to present-day technology, development of UG requires very dense drilling at low costs with well spacing of a few 100s of metres, only the onshore potential can be commercial, even in the longer term.Recent geological uplift is a characteristic for all North American commercial UG developments. Uplift helps bringing the resources close to the surface and facilitates development of fractures, which are essential for achieving commercial flow rates. This significantly reduces the area where commercial UG resources may occur in the Netherlands. In addition, sweet spots, where commercial flow rates and ultimate recovery per well can be achieved, represent only a fraction of the total ‘play area’. The UG plays in the Dutch subsurface remain to be proven, and there is still a significant technical risk associated with these plays, on top of the commercial risk. Therefore, despite potentially enormous in-place gas volumes in these unconventional plays, recoverable volumes are much less. If UG resources can be proven and are commercially developable, their cumulative volume potential is estimated by us in the order of a few tens to one or two hundreds bcm of recoverable gas at best. Finally, as UG resources produce at very low rates and require large numbers of wells to develop, the environmental impact in a densely populated country like the Netherlands is enormous, and needs to be seriously considered, already in the exploration phase.In a mature area like the Netherlands, industry focus should be on technology development to reduce risk, increase recovery, reduce cost and minimize surface impact. Cooperation between Operators to build multi-well campaigns is therefore strongly recommended to reduce mobilisation cost. In addition, government incentives should be targeted at the development phase, in order to increase economic attractiveness for difficult reservoirs, both conventional and unconventional. In this way State and industry will both be able to maximize their returns on the remaining potential for gas and oil in the next two to three decades.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography