Academic literature on the topic 'Environmental Impacts of Transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Environmental Impacts of Transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Environmental Impacts of Transport"
Wangai, Agnes, Utku Kale, and Sergey Kinzhikeyev. "AN APPLICATION OF IMPACT CALCULATION METHOD IN TRANSPORTATION." Transport 35, no. 4 (November 23, 2020): 435–46. http://dx.doi.org/10.3846/transport.2020.13909.
Full textPeeters, Paul, Eckhard Szimba, and Marco Duijnisveld. "Major environmental impacts of European tourist transport." Journal of Transport Geography 15, no. 2 (March 2007): 83–93. http://dx.doi.org/10.1016/j.jtrangeo.2006.12.007.
Full textTörök, Ádám, and Norbert Stubán. "THEORETICAL INVESTIGATION INTO EXHAUST GAS ENERGETIC UTILISATION." TRANSPORT 25, no. 4 (December 31, 2010): 357–60. http://dx.doi.org/10.3846/transport.2010.44.
Full textZeng, Zhuxuan, Wendong Yang, Shengrun Zhang, and Frank Witlox. "ANALYSING AIRPORT EFFICIENCY IN EAST CHINA USING A THREE-STAGE DATA ENVELOPMENT ANALYSIS." Transport 35, no. 3 (June 25, 2020): 255–72. http://dx.doi.org/10.3846/transport.2020.12869.
Full textRohács, József, and Dániel Rohács. "TOTAL IMPACT EVALUATION OF TRANSPORTATION SYSTEMS." Transport 35, no. 2 (May 11, 2020): 193–202. http://dx.doi.org/10.3846/transport.2020.12640.
Full textChatti, Walid. "Information and communication technologies, road freight transport, and environmental sustainability." Environmental Economics 11, no. 1 (October 19, 2020): 124–32. http://dx.doi.org/10.21511/ee.11(1).2020.11.
Full textMichaelis, Laurie. "Global warming impacts of transport." Science of The Total Environment 134, no. 1-3 (June 1993): 117–24. http://dx.doi.org/10.1016/0048-9697(93)90344-6.
Full textFraselle, Justin, Sabine Louise Limbourg, and Laura Vidal. "Cost and Environmental Impacts of a Mixed Fleet of Vehicles." Sustainability 13, no. 16 (August 22, 2021): 9413. http://dx.doi.org/10.3390/su13169413.
Full textAgioutantis, Z., K. Komnitsas, and A. Athousaki. "Aggregate transport and utilization: ecological footprint and environmental impacts." Bulletin of the Geological Society of Greece 47, no. 4 (December 21, 2016): 1960. http://dx.doi.org/10.12681/bgsg.11005.
Full textLyng, Kari-Anne, and Andreas Brekke. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels." Energies 12, no. 3 (February 7, 2019): 532. http://dx.doi.org/10.3390/en12030532.
Full textDissertations / Theses on the topic "Environmental Impacts of Transport"
Armstrong, Amrith. "Road Freight Transport : Transport Purchasing and Environmental Impacts." Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17527.
Full textProgram: Industrial Engineering – Logistics Management
Yang, Qingjun (Judy Qingjun). "Impacts of vegetation-generated turbulence on sediment transport." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120638.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 179-188).
Aquatic vegetated habitats, including wetlands and mangroves, are disappearing at an annual rate of 1 to 7%. These ecosystems provide habitats important to fisheries, enhance water quality by filtering nutrients from run-off, and also protect coastal regions from storm surges and waves. To mitigate the loss of these habitats, restoration projects import sediment to eroded areas. The success of the restoration depends on its ability to retain sediment; therefore restoration design requires a good understanding of sediment transport within vegetated landscapes. However, there is currently no quantitative model for sediment transport in vegetated regions, and many restoration projects have failed due to unanticipated erosion from the restored regions. The goal of this thesis is to develop a predictive model for sediment transport in regions with vegetation. First, the affect of vegetation on the critical condition when sediment start to move was explored. To identify the critical condition, an imaging system was designed to track the trajectories of individual moving grain through running water. The critical flow velocity (U[subscript crit]) above which sediment starts to move was identified from the tracked sediment trajectories for both bare (non-vegetated) and vegetated regions. The experimental results showed that for the same type of sediment, U[subscript crit] decreased with increasing vegetation solid volume fraction. This was attributed to the vegetation-generated turbulence, which induced a local, vertical, adverse pressure, or a lift force on the sediment grain, facilitating sediment transport. In contrast, the turbulent kinetic energy (k[subscript t]) was found to be roughly a constant at the critical condition for different vegetation volume fractions, suggesting that k[subscript t] is a more universal metric than T for predicting the critical condition of the sediment transport. A k[subscript t]-based model was developed to predict U[subscript crit] for channels with different vegetation solid volume fractions. The turbulence-based model successfully predicted U[subscript crit] for both bare and vegetated channels, providing a useful tool for ecologists to predict whether a vegetated landscape will erode or not. Second, the impact of vegetation on the bed load transport rate was explored. A system that allows sediment to be bypassed, a cart to distribute sediment, a method that measures the dry weight of wet sand without drying the sediment, a topography system, and an sediment trajectory imaging system were designed. The bed load transport rate (Q[subscript s],) was measured for both bare channels and channels with different vegetation solid volume fractions ([phi]) under different flow rates. At the same [tau], the measured Q[subscript s], increased with increasing [phi], suggesting that vegetation-generated turbulence, which also increased with increasing ]phi], was augmenting the bed load transport. At the same near-bed turbulent kinetic energy, k[subscript t], the Q[subscript s], measured in both bare and vegetated channels agreed within uncertainty, suggesting that k[subscript t] may be a more universal predictor of Q[subscript s] than [tau]. The Einstein-Brown [tau]-based bed load transport model was reinterpreted as a k[subscript t]-based model. The new kt-based model predicted the Q[subscript s] measurements for both bare and vegetated channels. The dependence of Q[subscript s] on k[subscript t] was explained by the statistics of individual grain motion, which showed that Q[subscript s] was predominantly controlled by the number of grains in motion, which correlated with k[subscript t]. The proposed k[subscript t]-based sediment transport model can be used to simulate large-scale landscape evolution and to help ecologists design better coastal restoration strategies. Third, the impacts of vegetation on bed-form characteristics and migration rate were studied. After the measured bed load transport rate converged to an equilibrium value, the bed topography was scanned by a laser topography system. Bed-forms with height less than 2cm were observed and characterized as ripples. For low vegetation solid volume fraction ([phi] by Qingjun Judy Yang.
Ph. D.
Nelson, P. S. "Monetary valuation of the environmental impacts of road transport : a stated preference approach." Thesis, Cranfield University, 1998. http://dspace.lib.cranfield.ac.uk/handle/1826/11051.
Full textLien, Jung-Hsun, and N/A. "Integrating Strategic Environmental Assessment into Transport Planning." Griffith University. Griffith School of Environment, 2007. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20070813.155624.
Full textSong, Liying. "Transport and Environmental Impacts of Current Home Delivery Services and the Benefits of Alternative Measures." Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485517.
Full textLung, Hon-kei William. "Environmental impact assessments and transport development in Hong Kong." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk:8888/cgi-bin/hkuto%5Ftoc%5Fpdf?B23339251.
Full textEriksson, Anders. "Identification of environmental impacts for the Vectus PRT system using LCA." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183823.
Full textUtsläpp från persontransporter påverkar både miljön och människors hälsa. Med ökad efterfrågan av stadstrafik på grund av befolkningstillväxt och urbanisering krävs nya transportlösningar. Vectus Intelligent Transportation utvecklar en ny transportlösning med konceptet spårtaxi (PRT) som erbjuder individuell och automatiserad passagerartransport på begäran. Vectus uppför för närvarande sitt första kommersiella system vid Suncheons nationalpark i Sydkorea. Ett av syftena med spårtaxisystemet i Suncheon är att minska miljöpåverkan vid nationalparken. PRT-tekniken anses vara en hållbar transportlösning tack vare det faktum att driften sker med el. Någon detaljerad miljöanalys av ett komplett spårtaxisystem har dock inte tidigare utförts. I detta examensarbete utfördes en livscykelanalys (LCA) för Vectus PRT för att identifiera vilka delar av systemet som bidrog till störst miljöpåverkan och i vilken del av livscykeln dessa effekter inträffade samt effekter av olika ändringar i systemutformning. Spårtaxisystemet i Suncheon användes som grundscenario. Alla processer som krävdes för att bygga, driva och avveckla systemet ingick i analysen och användes till att bygga en material- och energiflödesmodell för hela livscykeln. För det totala systemet stod spåret för den största miljöpåverkan följt av fordonen. Dessa effekter uppstod under olika faser av livscykeln, spåret under konstruktion på grund av dess stora massa och fordonen under drift på grund av dess energiförbrukning. Ett spår bestående av stål hade en lägre miljöpåverkan jämfört med ett spår i betong tack vare dess lättare struktur. Genom att använda certifierad elmix kunde effekterna under driftsfasen minskas med över 95 % för flertalet av de studerade miljöeffekterna. Valet av elmix under drift var det enskilt mest effektiva sättet att påverka systemets totala miljöpåverkan. Användandet av strömavtagare i stället för batterier var att föredra som alternativ till fordonens energikälla. Detta på grund av kort livslängd för batterier och en ökning av totala antalet fordon i systemet för att upprätthålla passagerarkapacitet på grund av laddningstiden. Genom att kombinera dessa konfigurationer för Suncheons spårtaxisystem kunde den totala miljöpåverkan sänkas ca 50%. Enligt LCAn kommer en liten utsläppsminskning av växthusgaser men en ökning av utsläpp av försurande ämnen ske jämfört med konkurrerande vägtransporter, så som bilar och bussar, genom uppförandet av spårtaxisystemet vid Suncheon. Däremot kommer minimala utsläpp ske vid Suncheons nationalpark under drifttiden vilket uppfyller syftet med spårtaxisystemet. Det finns också en stor potential att avsevärt sänka effekterna genom att välja förnyelsebara energikällor, ett alternativ som inte skulle vara möjligt för bensindrivna motorfordon.
Ros, Chaos Sergi. "The transport and environmental impacts of cruise ships : application to the case of the Port of Barcelona." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670886.
Full textLa ràpida evolució de la indústria dels creuers en els darrers 50 anys és evident. Els creuers que al segle XIX eren simples modes de transport utilitzats pels immigrants en viatges transoceànics des d'Europa a Amèrica del Nord a la recerca d'un futur millor, s'han convertit en autèntiques ciutats flotants plenes de serveis i activitats a bord, en les quals l'objectiu principal ha passat a ser el lleure i el plaer. Els passatgers ja no fan un creuer pel simple fet de desplaçar-se d'un punt a un altre, sinó que busquen viure una experiència única dins del vaixell i no els importa tant el destí final del seu viatge. Per aquest motiu, molts experts consideren que el creuer ha esdevingut un destí de viatge en si mateix. Aquesta evolució del concepte del creuer iniciada en la dècada dels anys 70 no ha estat senzilla i ha comportat un conjunt de problemàtiques que han afectat de manera molt significativa als ports i les ciutats, els quals s'han hagut d'adaptar. El principal canvi té a veure amb l'augment de la mida dels vaixells per allotjar més passatgers i totes les activitats que es desenvolupen al seu interior. Per rebre aquest tipus de vaixells, els ports van haver d'adaptar la seva línia d'atracada, l'estació marítima, l'esplanada contigua i els accessos. Els creuers han anat augmentat de mida cada any fins a assolir a l'any 2009, els 360 m d'eslora i 222.900 GT d'arqueig brut. Davant d'aquest gigantisme dels vaixells, la present tesi pretén verificar i analitzar si aquest augment de la capacitat està justificat i es recolza en les economies d'escala. La gran capacitat en passatge d'aquests vaixells també comporta dificultats per gestionar la mobilitat dels creueristes, sobretot quan coincideixen més de dos creuers a la mateixa franja horària. Aleshores l'operació de desembarcament esdevé molt complexa, ja que tots els passatgers surten alhora i en un curt període de temps. En aquest sentit, la tesi analitza la mobilitat dels passatgers i estudia les principals variables que expliquen les operacions de desembarcament. Un altre aspecte important és l'impacte que tenen els creuers sobre el medi ambient. Per desplaçar els creuers a la velocitat de servei es requereix una gran quantitat de combustible. Això comporta l'emissió a l'atmosfera de gasos contaminants, principalment òxids de nitrogen, òxids de sofre, partícules en suspensió i gasos d'efecte hivernacle. Actualment, han sorgit moltes veus entre la població civil i les administracions públiques que rebutgen el turisme de creuers. Per aquest motiu, a l'any 2020, s'han creat noves normatives mediambientals més restrictives, limitant el contingut de sofre en els combustibles marins al 0,5%. Els armadors tenen diverses opcions per complir amb aquests requisits: utilitzar scrubbers juntament amb dispositius de reducció catalítica, utilitzar combustibles destil·lats i menys contaminants, la solució del cold ironing per connectar-se elèctricament als molls i obtenir energia o utilitzar el gas natural liquat (GNL) com a combustible alternatiu. La present tesi en aquest darrer bloc tracta d'esbrinar si el GNL pot ser l'opció més vàlida per a les companyies de creuers per mitigar les emissions al medi. El GNL elimina gairebé les emissions d'òxids i partícules de sofre. Pel que fa als òxids de nitrogen i el CO2, aquests es redueixen un 90% i un 20% respectivament. A més, el preu del GNL resulta gairebé la meitat que el fuel pesat, pel que el GNL també és atractiu econòmicament. La idea d'adoptar el GNL com a combustible per a creuers és força nova. Al món, existeixen molt pocs creuers adaptats a aquest sistema. Per tant, l'anàlisi i estudi de la seva viabilitat resulta molt aconsellable i pot servir a les companyies de creuers per decidir-se finalment en adoptar el GNL com a combustible majoritari per als seus creuers.
Bobrutzki, Kristina von [Verfasser], and Dieter [Akademischer Betreuer] Scherer. "Agricultural ammonia in the atmosphere: transport, monitoring and environmental impacts / Kristina von Bobrutzki. Betreuer: Dieter Scherer." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1014946336/34.
Full textChiquetto, Sergio Luiz. "Modelling the impacts of transport policies on the urban environment." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363975.
Full textBooks on the topic "Environmental Impacts of Transport"
Nicolopoulou-Stamati, P., L. Hens, and C. V. Howard, eds. Environmental Health Impacts of Transport and Mobility. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-4307-4.
Full textEstablishment, Building Research. Transport related environmental impacts of buildings project (TRIP) - case studies. Watford: Building Research Establishment., 1999.
Find full textRothengatter, Werner, Yoshitsugu Hayashi, and Wolfgang Schade. Transport moving to climate intelligence: New chances for controlling climate impacts of transport after the economic crisis. New York: Springer, 2011.
Find full textGhana Environmental Assessment Capacity Development Programme and Ghana Environmental Assessment Support Programme, eds. Environmental impact assessment guideline for the transport sector. Accra: Environmental Protection Agency, Ghana, 2011.
Find full textÉco-fiscalité et transport durable: Entre prime et taxe? Villeneuve d'Ascq, France: Presses universitaires du septentrion, 2011.
Find full textHaque, Mahfuzul. Final report on assessment of environmental impact of flood 1998 on Dhaka City: Transport impact study (1.8) (impacts on roads and transportation). Dhaka]: Bangladesh Unnayan Parishad, 1998.
Find full textSikonia, W. G. Impact on the Columbia River of an outburst of Spirit Lake. Tacoma, Wash: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textEngineering, National Academy of, National Academies Press (U.S.), and National Research Council (U.S.). Panel on Alternative Liquid Transportation Fuels, eds. Liquid transportation fuels from coal and biomass: Technological status, costs, and environmental impacts. Washington, D.C: National Academies Press, 2009.
Find full textFEDERAL AVIATION ADMINISTRATION. Final environmental impact statement: Baltimore/Washington International Airport, extension of Runway 15L/33R. [Baltimore]: Maryland State Aviation Administration, 1989.
Find full textGreat Britain. Parliament. House of Commons. Environment, Transport and Regional Affairs Committee. Environmental impact of supermarket competition: The Government's Response to the Environment, Transport and Regional Affairs Committee: Second Report. London: Stationery Office, 2000.
Find full textBook chapters on the topic "Environmental Impacts of Transport"
Friedrich, Rainer, and Peter Bickel. "Impacts on Building Materials." In Environmental External Costs of Transport, 59–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04329-5_6.
Full textFriedrich, Rainer, and Peter Bickel. "Impacts on Terrestrial Ecosystems." In Environmental External Costs of Transport, 73–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04329-5_7.
Full textBergh, J. C. J. M., K. J. Button, P. Nijkamp, and G. C. Pepping. "Impacts of Mobility and Transport Policy." In Meta-Analysis in Environmental Economics, 181–91. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8865-2_14.
Full textAshraf, Muhammad Aqeel, Maliha Sarfraz, Rizwana Naureen, and Mohamedreza Gharibreza. "Transport of Metals: Statistical Approach and Pollution Indices." In Environmental Impacts of Metallic Elements, 79–104. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-293-7_4.
Full textFerrary, Chris, and Polash Banerjee. "Transport." In Methods of Environmental and Social Impact Assessment, 365–98. 4th edition. | New York : Routledge, 2017. | Series: The natural and built environment series: Routledge, 2017. http://dx.doi.org/10.4324/9781315626932-10.
Full textDavenport, John, and T. A. Switalski. "Environmental impacts of transport, related to tourism and leisure activities." In The Ecology of Transportation: Managing Mobility for the Environment, 333–60. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4504-2_14.
Full textFriedrich, Rainer, and Peter Bickel. "The Impact Pathway Methodology." In Environmental External Costs of Transport, 5–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04329-5_2.
Full textBrotchie, J. F., M. Anderson, P. G. Gipps, and C. McNamara. "Urban Productivity and Sustainability — Impacts of Technological Change." In Transport, Land-Use and the Environment, 81–99. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2475-2_5.
Full textTaylor, A. W., and W. F. Spencer. "Volatilization and Vapor Transport Processes." In Pesticides in the Soil Environment: Processes, Impacts and Modeling, 213–69. Madison, WI, USA: Soil Science Society of America, 2018. http://dx.doi.org/10.2136/sssabookser2.c7.
Full textEnfield, C. G., and S. R. Yates. "Organic Chemical Transport to Groundwater." In Pesticides in the Soil Environment: Processes, Impacts and Modeling, 271–302. Madison, WI, USA: Soil Science Society of America, 2018. http://dx.doi.org/10.2136/sssabookser2.c8.
Full textConference papers on the topic "Environmental Impacts of Transport"
Kováčiková, Kristína, and Antonín Kazda. "Life cycle assessment of the environmental impacts of transport infrastructure and individual modes of transport." In Práce a štúdie. University of Zilina, 2021. http://dx.doi.org/10.26552/pas.z.2021.2.18.
Full textYang, Xueyao, and Dominic L. Boccelli. "The Impacts of Demand Variability on Distribution System Hydraulics and Transport." In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)19.
Full textGray, Derek R. "Environmental Impact of Aircraft Deicing." In 27th International Air Transport Conference. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40646(2003)25.
Full textKempa, Jan, Jacek Chmielewski, and Grzegorz Bebyn. "Benefits from Constructing a Dam Across the Vistula in Siarzewo in Terms of Transport and Environmental Protection." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.025.
Full textNemaniute-Guziene, Jolanta, and Justas Kazys. "Climate Change and Lithuanian Roads: Impacts, Vulnerability and Adaptation." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.138.
Full textAngelevska, Beti, and Vaska Atanasova. "An implementation framework for developing cities – the way to smart mobility." In Public Transport & Smart Mobility. Faculty of Transport and Traffic Sciences, University of Zagreb, 2021. http://dx.doi.org/10.7307/ptsm.2020.7.
Full textOriel, Kimberly A., Andrew J. Thuman, Christopher Magruder, and Sandra L. McLellan. "Evaluation of Bacteria Impacts on Beaches in Milwaukee: The Bacteria Source, Transport, and Fate Study." In World Environmental and Water Resources Congress 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40856(200)433.
Full textGlaser, D., D. Rucker, R. McGill, J. Fink, C. Baldyga, J. Hansen, and A. Magliocchino. "Residual Potential Mapping of Contaminant Transport Pathways in Karst Formations of Southern Texas." In 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40796(177)63.
Full textTacla, D., R. C. Botter, O. F. Lima, and S. Suyama. "Logistic net working to reduce cost and environmental impact for urban cargo deliveries." In URBAN TRANSPORT 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/ut070101.
Full textYuhara, Tatsunori, Kenichi Rinoie, and Y. Makino. "Conceptual Design Study on LH2 Fueled Supersonic Transport considering Performance and Environmental Impacts." In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0028.
Full textReports on the topic "Environmental Impacts of Transport"
Barrett, Stephen B., Schlezinger, David, Ph.D, Cowles, Geoff, Ph.D, Patricia Hughes, Samimy, I. Roland, and and Terray, E, Ph.D. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1059377.
Full textWhelan, G., J. W. Buck, and K. J. Castleton. Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/102530.
Full textLiddle, Brantley. Demographic dynamics and per capita environmental impact: using panel regressions and household decompositions to examine population and transport. Rostock: Max Planck Institute for Demographic Research, August 2003. http://dx.doi.org/10.4054/mpidr-wp-2003-029.
Full textDuchesne, M. J. Environmental impacts of permafrost degradation. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/326990.
Full textDuchesne, M. J. Environmental Impacts of permafrost degradation. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314915.
Full textDuchesne, M. J. Environmental impacts of permafrost degradation. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328466.
Full textGoldsmith, Gregg S. Environmental Impacts of Military Range Use. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada561209.
Full textPathan, Alina, Alain Schilli, Jens Johansson, Iivo Vehviläinen, Anna Larsson, and Jürg Hutter. Tracking environmental impacts in global product chains. Nordic Council of Ministers, March 2013. http://dx.doi.org/10.6027/tn2013-520.
Full textHuang, Ed. Impacts of environmental design on residential crowding. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.774.
Full textRollinson, Andrew N., and Jumoke Oladejo. Chemical recycling: Status, Sustainability, and Environmental Impacts. Global Alliance for Incinerator Alternatives, June 2020. http://dx.doi.org/10.46556/onls4535.
Full text