Academic literature on the topic 'Enzymes - Catalysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enzymes - Catalysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Enzymes - Catalysis"

1

Carballares, Diego, Roberto Morellon-Sterling, and Roberto Fernandez-Lafuente. "Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems." International Journal of Molecular Sciences 23, no. 10 (May 10, 2022): 5304. http://dx.doi.org/10.3390/ijms23105304.

Full text
Abstract:
Harnessing enzymes which possess several catalytic activities is a topic where intense research has been carried out, mainly coupled with the development of cascade reactions. This review tries to cover the different possibilities to reach this goal: enzymes with promiscuous activities, fusion enzymes, enzymes + metal catalysts (including metal nanoparticles or site-directed attached organometallic catalyst), enzymes bearing non-canonical amino acids + metal catalysts, design of enzymes bearing a second biological but artificial active center (plurizymes) by coupling enzyme modelling and directed mutagenesis and plurizymes that have been site directed modified in both or in just one active center with an irreversible inhibitor attached to an organometallic catalyst. Some examples of cascade reactions catalyzed by the enzymes bearing several catalytic activities are also described. Finally, some foreseen problems of the use of these multi-activity enzymes are described (mainly related to the balance of the catalytic activities, necessary in many instances, or the different operational stabilities of the different catalytic activities). The design of new multi-activity enzymes (e.g., plurizymes or modified plurizymes) seems to be a topic with unarguable interest, as this may link biological and non-biological activities to establish new combo-catalysis routes.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Jianfeng, Xing Gong, Jianyu Li, Yingkun Li, Jiguo Ma, Chengkang Hou, Guoqing Zhao, Weicheng Yuan, and Baoguo Zhao. "Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction." Science 360, no. 6396 (June 28, 2018): 1438–42. http://dx.doi.org/10.1126/science.aat4210.

Full text
Abstract:
Chiral amines are widely used as catalysts in asymmetric synthesis to activate carbonyl groups for α-functionalization. Carbonyl catalysis reverses that strategy by using a carbonyl group to activate a primary amine. Inspired by biological carbonyl catalysis, which is exemplified by reactions of pyridoxal-dependent enzymes, we developed an N-quaternized pyridoxal catalyst for the asymmetric Mannich reaction of glycinate with aryl N-diphenylphosphinyl imines. The catalyst exhibits high activity and stereoselectivity, likely enabled by enzyme-like cooperative bifunctional activation of the substrates. Our work demonstrates the catalytic utility of the pyridoxal moiety in asymmetric catalysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Bearne, Stephen L. "Asymmetry in catalysis: ‘unidirectional’ amino acid racemases." Biochemist 43, no. 1 (January 22, 2021): 28–34. http://dx.doi.org/10.1042/bio_2020_101.

Full text
Abstract:
d-Amino acids play widespread structural, functional and regulatory roles in organisms. These d-amino acids often arise through the stereoinversion of the more plentiful l-amino acids catalysed by amino acid racemases and epimerases. Such enzymes are of interest since many are recognized targets for the development of drugs or may be employed industrially in biotransformation reactions. Despite their enzyme–substrate complexes being diastereomers, some racemases and epimerases exhibit a kinetic pseudo-symmetry, binding their enantiomeric or epimeric substrate pairs with roughly equal affinities and catalyzing their stereoinversion with similar turnover numbers. In other cases, this kinetic pseudo-symmetry is absent or may be ‘broken’ by substitution of a catalytic Cys by Ser at the active site of cofactor-independent racemases and epimerases, or by altering the Brønsted base of the catalytic dyad that facilitates deprotonation of the Cys residue. Moreover, a natural Thr-containing l-Asp/Glu racemase was discovered that catalyses ‘unidirectional’ substrate turnover, unlike the typical bidirectional racemases and epimerases. These observations suggest that bidirectional Cys–Cys racemases may be re-engineered into ‘unidirectional’ racemases through substitution of the thiol by a hydroxyl group. Catalysis by such ‘unidirectional’ racemase precursors could then be optimized further by site-directed mutagenesis and directed evolution to furnish useful enzymes for biotechnological applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Page, Michael I. "Past times: The efficiency of enzyme catalysis." Biochemist 25, no. 4 (August 1, 2003): 52–53. http://dx.doi.org/10.1042/bio02504052.

Full text
Abstract:
Understanding enzyme catalysis on a molecular and energetic basis has fascinated scientists for more than half a century. In addition to their obvious physiological involvement, the incredible efficiency of enzymes continues to intrigue us. In the absence of enzymes, many reactions of biological interest, e.g. the hydrolysis of proteins, carbohydrates and DNA, have half-lives of hundreds to millions of years. After a substrate is bound at an enzyme's active site, its halflife is usually milliseconds. The low concentration of enzymes in cells, which is often at or below the micromolar level, means that a rapid turnover is necessary to produce a significant rate of reaction and many reactions occur at near the diffusion controlled limit. The high catalytic efficiency of enzymes has not been emulated by artificial systems and therefore many have wondered if they could even be understood by ordinary chemistry.
APA, Harvard, Vancouver, ISO, and other styles
5

Bhide, Yogesh S., Jitendra Y. Nehete, and Rajendra S. Bhambar. "Extraction, Characterization and Therapeutic Evaluation of Seeds of Phaseolus vulgaris L. for Inhibition of Carbohydrate Uptake." INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY 13, no. 01 (March 25, 2023): 105–11. http://dx.doi.org/10.25258/ijddt.13.1.16.

Full text
Abstract:
Phaseolamin-rich beans, also known as -amylase inhibitor 1 (AI) bean. AI has shown promise in treating diabetes and obesity in human studies. Since enzymes speed up chemical reactions, thus they are needed for most biological processes. Humans have used catalysts for centuries. Chemical catalysis was a heavy, often-used method. The method lacks sensitivity, and catalysis requires high temperature and pressure. Enzymes may function under more benign settings than chemical catalysts. Enzymes speed up chemical processes more than chemical catalysts due to their specifi city. Enzymes are used in practically every industry today. Enzymes have always been crucial. Enzymes have also been used to treat digestive diseases, coagulate milk for cheese, and process starch for drinks. Amylase is becoming increasingly popular because it may break down starch in multiple ways. Amylase reactions then cover amylases and other enzymatic reactions covered in this article as a catalyst. Amylases, a kind of hydrolase enzyme, are widely used. These enzymes randomly disrupt the glycosidic connections within starch molecules, releasing dextrin and oligosaccharides. Amylase is the most versatile type of amylase. Enzymes are replacing traditional chemical catalysts as consumers become more ecologically conscious
APA, Harvard, Vancouver, ISO, and other styles
6

Ye, Rong, Tyler J. Hurlburt, Kairat Sabyrov, Selim Alayoglu, and Gabor A. Somorjai. "Molecular catalysis science: Perspective on unifying the fields of catalysis." Proceedings of the National Academy of Sciences 113, no. 19 (April 25, 2016): 5159–66. http://dx.doi.org/10.1073/pnas.1601766113.

Full text
Abstract:
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Ratautas, Dalius, and Marius Dagys. "Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications." Catalysts 10, no. 1 (December 19, 2019): 9. http://dx.doi.org/10.3390/catal10010009.

Full text
Abstract:
Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.
APA, Harvard, Vancouver, ISO, and other styles
8

Ball, Philip. "Catalysis: facing the future." National Science Review 2, no. 2 (April 24, 2015): 202–4. http://dx.doi.org/10.1093/nsr/nwv022.

Full text
Abstract:
Abstract Most of the chemical reactions used to produce the molecules and materials that our societies need—for example, in the petrochemical and pharmaceutical industries, the synthesis of plastics and other materials, and the production of foods and drinks—make use of catalysts. These speed up the rate at which atoms and molecules rearrange themselves into new forms, and provide a degree of control over the shape and form of those rearrangements. Catalysts let us drive a chemical reaction in a selected direction, in preference to others that could occur. In this way they turn chemistry from crude cookery into a rational and precise form of molecular engineering. And always we can draw inspiration, and sometimes borrow tricks, from the delicate and precise catalytic processes that occur in nature, where enzymes carry out processes in aqueous solution and at mild temperatures and pressures that often we struggle to achieve with far more extreme conditions—such as the fixation of atmospheric nitrogen into useful forms. It is often claimed that this particular catalytic process—the Haber–Bosch process for converting nitrogen into ammonia, discovered just over a century ago—has, by making possible the synthesis of artificial fertilizers, had a greater effect on humankind than any other single chemical innovation. It is what allows us to feed the world. Yet while nature performs this reaction using soluble molecules (enzymes) as catalysts, the Haber–Bosch process uses powdered iron (plus some additives). The reactions between nitrogen and hydrogen take place on the surface of iron particles: this is so-called heterogeneous catalysis, involving surface chemistry, rather than the homogeneous catalysis of enzyme reactions, in which the catalysts are soluble molecules. Both homogeneous and heterogeneous catalysis are essential to the chemical industries. National Science Review spoke with two of the foremost practitioners of the latter field—Nobel laureate Gerhard Ertl of the Fritz Haber Institute in Berlin, Germany, and Avelino Corma of the Institute of Chemical Technology (ITQ) at the Polytechnic University of Valencia, Spain—about the current status of research in catalysis and prospects for the future.
APA, Harvard, Vancouver, ISO, and other styles
9

S. Borkar, Sucharitha, Mithali Shetty, Aravind Pai, K. S. Chandrashekar, H. N. Aswatha Ram, Kiran Kumar Kolathur, Venkatesh Kamath B., and Kanav Khera. "TREASURE WRAPPED IN AN ENIGMA: CHEMISTRY AND INDUSTRIAL RELEVANCE OF ENZYMES FROM RARE ACTINOMYCETES." RASAYAN Journal of Chemistry 15, no. 04 (2022): 2493–501. http://dx.doi.org/10.31788/rjc.2022.1546997.

Full text
Abstract:
Microbial enzymes are known for their versatile catalytic property. With the advent of enzyme engineering, stringent environmental rules restraining the use of toxic chemicals, and need for the sustainable resource, there is a mounting demand for the utilization of these enzymes. Classified under Gram-positive filamentous bacteria, actinomycetes are ubiquitous and are one of the major sources of enzymes, antibiotics, and various such bioactive molecules. Rare actinomycetes are a less explored genera of actinomycetes. However, they are also a potential source of a diverse spectrum of enzymes that are principal of commercial importance. Enzymes produced by rare actinomycetes have a wide array of applications ranging from bioremediation techniques to the estimation of serum cholesterol levels. This untapped resource is industrially as well as biotechnologically valuable. Oxidative enzymes and esterases are two very important classes of enzymes produced by rare actinomycetes. The fundamental principles of catalysis applied by the organic catalysts are also relevant to the enzymes. This review highlights how this unexploited resource could be effectively exploited for various commercial applications and gives an overview of the industrial and biochemical applications of oxidative enzymes and esterases produced by rare actinomycetes. Protein engineering and modern biotechnology have been capable of manipulating the enzyme design making it a more stable and efficient asset to the industries
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, Nathan, and Mark A. Wilson. "Understanding Cysteine Chemistry Using Conventional and Serial X-ray Protein Crystallography." Crystals 12, no. 11 (November 19, 2022): 1671. http://dx.doi.org/10.3390/cryst12111671.

Full text
Abstract:
Proteins that use cysteine residues for catalysis or regulation are widely distributed and intensively studied, with many biomedically important examples. Enzymes where cysteine is a catalytic nucleophile typically generate covalent catalytic intermediates whose structures are important for understanding mechanism and for designing targeted inhibitors. The formation of catalytic intermediates can change enzyme conformational dynamics, sometimes activating protein motions that are important for catalytic turnover. However, these transiently populated intermediate species have been challenging to structurally characterize using traditional crystallographic approaches. This review describes the use and promise of new time-resolved serial crystallographic methods to study cysteine-dependent enzymes, with a focus on the main (Mpro) and papain-like (PLpro) cysteine proteases of SARS-CoV-2, as well as on other examples. We review features of cysteine chemistry that are relevant for the design and execution of time-resolved serial crystallography experiments. In addition, we discuss emerging X-ray techniques, such as time-resolved sulfur X-ray spectroscopy, that may be able to detect changes in sulfur charge states and covalency during catalysis or regulatory modification. In summary, cysteine-dependent enzymes have features that make them especially attractive targets for new time-resolved serial crystallography approaches, which can reveal both changes to enzyme structures and dynamics during catalysis in crystalline samples.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Enzymes - Catalysis"

1

Obrecht, Lorenz. "Artificial metalloenzymes in catalysis." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7248.

Full text
Abstract:
This thesis describes the synthesis, characterisation and application of artificial metalloenzymes as catalysts. The focus was on two mutants of SCP-2L (SCP-2L A100C and SCP-2L V83C) both of which possess a hydrophobic tunnel in which apolar substrates can accumulate. The crystal structure of SCP-2L A100C was determined and discussed with a special emphasis on its hydrophobic tunnel. The SCP-2L mutants were covalently modified at their unique cysteine with two different N-ligands (phenanthroline or dipicolylamine based) or three different phosphine ligands (all based on triphenylphosphine) in order to increase their binding capabilities towards metals. The metal binding capabilities of these artificial proteins towards different transition metals was determined. Phenanthroline modified SCP-2L was found to be a promising scaffold for Pd(II)-, Cu(II)-, Ni(II)- and Co(II)-enzymes while dipicolylamine-modified SCP-2L was found to be a promising scaffold for Pd(II)-enzymes. The rhodium binding capacity of two additional phosphine modified protein scaffolds was also investigated. Promising scaffolds for Rh(I)- and Ir(I)-enzymes were identified. Rh-enzymes of the phosphine modified proteins were tested in the aqueous-organic biphasic hydroformylation of linear long chain 1-alkenes and compared to the Rh/TPPTS reference system. Some Rh-enzymes were found to be several orders of magnitude more active than the model system while yielding comparable selectivities. The reason for this remarkable reactivity increase could not be fully elucidated but several potential modes of action could be excluded. Cu-, Co-, and Ni-enzymes of N-ligand modified SCP-2L A100C were tested in the asymmetric Diels-Alder reaction between cyclopentadiene and trans-azachalcone. A promising 29% ee for the exo-product was found for the phenanthroline modified protein in the presence of nickel. Further improvement of these catalyst systems by chemical means (e.g. optimisation of ligand structure) and bio-molecular tools (e.g. optimisation of protein environment) can lead to even more active and (enantio)selective catalysts in the future.
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, Harry Laurence. "Model enzymes based on porphyrins." Thesis, University of Cambridge, 1990. https://www.repository.cam.ac.uk/handle/1810/272953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Casey, John P. Jr. "Capsid catalysis : de novo enzymes on viral proteins." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99052.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 107-119).
Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, M13 bacteriophage libraries are engineered as a biochemical platform for de novo semisynthetic enzymes, functionally modular and widely stable. Carbonic anhydrase-inspired hydrolytic activity via Zn²+ coördination is first demonstrated. The phage clone identified hydrolyzes a range of carboxylic esters, is active from 25°C to 80°C, and displays greater catalytic efficacy in DMSO than in water. Reduction-oxidation activity is subsequently developed via heme and copper cofactors. Heme-phage complexes oxidize multiple peroxidase substrates in a pH-dependent manner. The same phage clone also binds copper(II) and oxidizes a catechol derivative, di-tert-butylcatechol, using atmospheric oxygen as a terminal oxidant. This clone could be purified from control phage via Cu-NTA columns, enabling future library selections for phage that coördinate Cu²+ ions. The M13 semisynthetic enzyme platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work could tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.
by John P. Casey, Jr.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Allen, Joanne Victoria. "Recent advances in asymmetric catalysis." Thesis, Loughborough University, 1995. https://dspace.lboro.ac.uk/2134/27574.

Full text
Abstract:
CHAPTER ONE reviews the literature, discussing aspects of transition metal mediated asymmetric catalysis in the presence of enantiomerically pure ligands. CHAPTER TWO discusses the asymmetric addition of dialkyl-zinc reagents to aromatic aldehydes. The work presented is particularly concerned with the design and construction of enantiomerically pure oxazoline ligands tethered to alcohols These ligands have proved effective in the acceleration of the alkylation reaction and are able to influence good levels of asymmetric induction in the resultant secondary alcohol products CHAPTER THREE examines the electronic (and steric) effects of enantiomerically pure oxazoline ligands for the palladium catalysed allylic substitution reaction. Using ligands possessing two electronically different donor atoms, it is possible to create electronic distortion upon the intermediate allyl complex. In doing so it is possible to direct nucleophilic addition to one carbon centre preferentially to the other, resulting in asymmetric induction. Manipulation of these ligands enables control in the extent of electron distortion inflicted upon the allyl complex and consequently influences the levels of enantioselectivity observed. CHAPTER FOUR investigates the ability of hydrolytic enzymes to kinetically resolve a series of allylic acetates, under varying conditions. Lipases appeared superior to esterases for the substrates employed. In particular cis-3-acetoxy-5-carbomethoxycyclohexene was smoothly resolved m high yield and enantioselectivity. CHAPTER FIVE reports on the potentiality of a dynamic resolution of allylic acetates, using hydrolytic enzymes in the presence of a palladium catalyst. A proposed mechanism is discussed. Initial results are promising, however, the sensitivity of the reaction is realised and optimisation of conditions still needs to be addressed.
APA, Harvard, Vancouver, ISO, and other styles
5

Brown, Christopher John. "Efficient intramolecular general acid catalysis." Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/272266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qi, Xiaolin. "Enzyme-substrate interactions in PC1 #beta#-lactamase catalysis." Thesis, University of Newcastle Upon Tyne, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ndi, Cornelius Ndi. "Synthesis of Chemical Models of Hydrolase Enzymes for Intramolecular Catalysis." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1356.

Full text
Abstract:
Most nuclease enzymes can hydrolyze phosphoester bonds (in DNA and RNA) by using metal ions cofactors that coordinate and activate water molecules in the enzymes' active sites. However, there are some hydrolase enzymes (including nucleases) that can function without the aid of metal ions. 2,6-Di(1H-imidazol-2-yl)phenol, a model compound for hydrolase enzyme, was synthesized by the reaction between ethylenediamine and dimethyl-3-carboxysalicylate, initially resulting in the formation of diimidazoline. The diimidazoline was subsequently aromatized to the diimidazole by dehydrogenation over palladium. The overall reaction yield was low; therefore, other dehydrogenation transformation reactions were tried but all failed to improve the yield. Converting this diimidazolphenol into diimidazolphenyl monophoshpate derivative was attempted but failed to give desired products. Synthesis of 2,2'-anthracene-1,8-diylbis-1H-imidazole, another model compound for hydrolase enzymes, was attempted using dimethyl-1,8-anthracenedicarboxylate, but synthesis was unsuccessful due to solubility problem.
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Graham Michael. "Enzyme immobilisation and catalysis in ordered mesoporous silica /." St Andrews, 2008. http://hdl.handle.net/10023/573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wright, Penelope A. "Mechanistic studies on the catalysis and inhibition of serine proteases." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lawrence, Christopher Ralph. "Studies towards the catalysis of cationic cyclisations using monoclonal antibodies." Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/272265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Enzymes - Catalysis"

1

Understanding enzymes. 4th ed. London: Prentice Hall, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Catalysis in chemistry and enzymology. New York: Dover, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuby, Stephen Allen. Enzyme catalysis, kinetics, and substrate binding. Boca Raton: CRC Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Punekar, N. S. ENZYMES: Catalysis, Kinetics and Mechanisms. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0785-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lister, Ted. Reaction rates, catalysis and enzymes. Cambridge: Pearson Publishing, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

F, Swiegers Gerhard, ed. Mechanical catalysis: Methods of heterogeneous, homogeneous, and enzymatic catalysis. Hoboken, N.J: John Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jungbae, Kim, Kim Seong H, Wang, Ping, 1964 Aug. 23-, and American Chemical Society Meeting, eds. Biomolecular catalysis: Nanoscale science and technology. Washington, DC: American Chemical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jungbae, Kim, Kim Seong H, Wang, Ping, 1964 Aug. 23-, and American Chemical Society Meeting, eds. Biomolecular catalysis: Nanoscale science and technology. Washington, DC: American Chemical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. National Aeronautics and Space Administration., ed. Catalysis and biocatalysis program: Final report. [Washington, DC: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. National Aeronautics and Space Administration., ed. Catalysis and biocatalysis program: Final report. [Washington, DC: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Enzymes - Catalysis"

1

Campbell, Ian M. "Catalytic action by enzymes." In Catalysis at Surfaces, 183–99. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1205-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Punekar, N. S. "Enzymes: Historical Aspects." In ENZYMES: Catalysis, Kinetics and Mechanisms, 5–13. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0785-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aehle, Wolfgang, and Juergen Eck. "Discovery of Enzymes." In Enzyme Catalysis in Organic Synthesis, 67–87. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lever, Greg. "Proteins, Enzymes and Biological Catalysis." In Large-Scale Quantum-Mechanical Enzymology, 9–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19351-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brooks, Stephen P. J. "Enzymes: The Basis of Catalysis." In Functional Metabolism, 25–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/047167558x.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Likhtenshtein, Gertz I. "Copper-Containing Enzymes." In Chemical Physics of Redox Metalloenzyme Catalysis, 187–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73100-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Punekar, N. S. "pH Studies with Enzymes." In ENZYMES: Catalysis, Kinetics and Mechanisms, 267–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0785-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pleiss, Jürgen. "Rational Design of Enzymes." In Enzyme Catalysis in Organic Synthesis, 89–117. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reetz, Manfred T. "Directed Evolution of Enzymes." In Enzyme Catalysis in Organic Synthesis, 119–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Waks, Marcel. "Enzymes in Non-Aqueous Systems." In The Enzyme Catalysis Process, 465–75. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-1607-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Enzymes - Catalysis"

1

Wüthrich, Kurt, R. H. Grubbs, T. Visart de Bocarmé, and Anne De Wit. "Catalysis by Protein Enzymes." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_others05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HERSCHLAG, DANIEL, and RAGHUVIR SENGUPTA. "LESSONS FROM CATALYSIS BY RNA ENZYMES." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carey, P. C. "Studies of enzymes by resonance Raman spectroscopy." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thg3.

Full text
Abstract:
By creating a resonance Raman probe in the active site of an enzyme, it is possible to obtain the vibrational spectrum associated with those bonds undergoing catalytic transformation. The approach involves reacting thionoesters RC(= S)OCH3 with a class of enzymes known as cysteine proteases which have an essential SH group in their active sights HS-enzyme. The reaction produces an intermediate RC(= S) S-enzyme which is a dithioester with a λmax near 315 nm. The 324-nm excited RR spectra of the dithioester provide a wealth of detail on the substrate during catalysis; the confirmation of the substrate in the active sight can be monitored and characterized, structure rate constant relationships developed, reaction pathways mapped, and evidence sought for geometric distortion. The novel findings stemming from the RR data are difficult to reconcile with the conventional view of enzyme mechanism.
APA, Harvard, Vancouver, ISO, and other styles
4

Topakas, Evangelos, Anastasia Zerva, and Nikolaos Tsafantakis. "Greek Basidiomycete Wild Strains for the Production of Bioactive Compounds and Enzymes with Applications in Cosmetic and Biocatalysis Industries." In 1st International Electronic Conference on Catalysis Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/eccs2020-07561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akers, Nick L., and Shelley D. Minteer. "A Novel Approach to Designing Highly Efficient and Commercially Viable Biofuel Cells." In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2512.

Full text
Abstract:
A biofuel cell is an electrochemical device in which the energy stored in a fuel, such as ethanol, is converted to electrical energy by the means of the catalytic activity of enzymes. Biofuel cells have traditionally suffered from low power densities and short lifetimes due to the fragility of the enzyme catalyst. Utilizing a novel quaternary ammonium salt treated Nafion membrane for enzyme immobilization in a biofuel cell results in increases in power densities and enzyme lifetimes to commercially viable levels. Additionally, this method provides sufficient protection to develop a membrane electrode assembly style (MEA) biofuel cell, an important step for commercialization. Previously, it has not been possible to create a MEA-style biofuel cell due to the denaturing of the enzyme that would occur at the high temperatures experienced during the heat pressing step of fabrication. Quaternary ammonium salt treated Nafion membranes provide sufficient protection for the enzyme to retain activity after exposure to temperatures of 140°C. Thus, a MEA-style biofuel cell can be created. Preliminary results yield biofuel cell MEAs with power densities ranging from 0.15 to 1.49 mW/cm2 and open circuit potentials of 0.360 to 0.599 V.
APA, Harvard, Vancouver, ISO, and other styles
6

Chandra, Bhupesh, Joshua T. Kace, Yuhao Sun, S. C. Barton, and James Hone. "Growth of Carbon Nanotubes on Carbon Toray Paper for Bio-Fuel Cell Applications." In ASME 2007 2nd Energy Nanotechnology International Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/enic2007-45038.

Full text
Abstract:
In recent years carbon nanotubes have emerged as excellent materials for applications in which high surface area is required e.g. gas sensing, hydrogen storage, solar cells etc. Ultra-high surface to volume ratio is also a desirable property in the applications requiring enhanced catalytic activity where these high surface area materials can act as catalyst supports. One of the fastest developing areas needing such materials is fuel-cell. Here we investigate the process through which carbon nanotubes can be manufactured specifically to be used to increase the surface area of a carbon paper (Toray™). This carbon support is used in bio-catalytic fuel cell as an electrode to support enzyme which catalyzes the redox reaction. Deposition of nanotubes on these carbon fibers can result in great enhancement in the overall surface area to support the enzyme, which increases the reaction rate inside the fuel cell. The present paper describes a method to achieve ultra-thick growth of multiwall carbon nanotubes (MWNT) on a carbon Toray™ paper using a joule heating process and gas-phase catalyst. Using this method, we are able to achieve rapid, high-density, and uniform MWNT growth. This method is also potentially scalable toward larger-scale production.
APA, Harvard, Vancouver, ISO, and other styles
7

Grebennikova, Olga, Aloeksandrina Sulman, and Valentina Matveeva. "SYNTHESIS OF MAGNETICALLY SEPARATED BIOCATALYTIC SYSTEMS." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/6.1/s25.16.

Full text
Abstract:
The use of magnetic nanoparticles in biocatalysis, due to their unique properties, such as controlled particle size, large surface area, and ease of separating them and the reaction mixture by applying an external magnetic field, makes it possible to reuse enzymes immobilized on magnetic nanoparticles for catalytic processes. In this work, horseradish root peroxidase was immobilized on Fe3O4 magnetic nanoparticles. The carrier surface was modified and activated before enzyme immobilization using 3- aminopropyltriethoxysilane and glutaraldehyde. Testing of biocatalytic systems was carried out in the oxidation reaction of 2,2'-azino-bis-(3-ethylbenzthiozolin-6-sulfonic acid) diammonium salt with hydrogen peroxide. The immobilized enzyme showed high efficiency and stability compared to the native enzyme. Also, in the work, the joint immobilization of peroxidase and glucose oxidase on magnetically attached carriers was studied. Enzymes were immobilized on Fe3O4 magnetic nanoparticles and SiO2. Optimal conditions (temperature, pH) were selected for all biocatalytic systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Wyatt, Karla E. K., Jonathan W. Bourne, and Peter A. Torzilli. "Deformation-Dependent Enzyme Cleavage of Collagen." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176502.

Full text
Abstract:
Collagen degradation is a mechanism for normal musculoskeletal development and extracellular matrix (ECM) maintenance, and in response to trauma, disease and inflammation. Matrix metalloproteinases (MMP-1, 8, and 13, the collagenases) are the primary enzymes that act to degrade collagen. These MMPs gain access to the collagen triple helix by binding to the enzyme’s attachment domain along the α-chains, followed by separation (unwinding) of the α-chains to expose the 3/4–1/4 cleavage site, and then cleavage of the α-chain by the enzyme’s catalytic domain [3, 5].
APA, Harvard, Vancouver, ISO, and other styles
9

BOXER, STEVEN G., STEPHEN D. FRIED, SAMUEL H. SCHNEIDER, and YUFAN WU. "ELECTRIC FIELDS AND ENZYME CATALYSIS." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KLINMAN, JUDITH P., SHENSHEN HU, and ADAM OFFENBACHER. "HOW CLOSE ARE WE TO EXPLAINING ENZYME CATALYSIS?" In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0044.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Enzymes - Catalysis"

1

Kern, Dorothee. Catalysis, dynamics and stability of enzymes under extreme conditions. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1409299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schuster, Gadi, and David Stern. Integrated Studies of Chloroplast Ribonucleases. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7697125.bard.

Full text
Abstract:
Gene regulation at the RNA level encompasses multiple mechanisms in prokaryotes and eukaryotes, including splicing, editing, endo- and exonucleolytic cleavage, and various phenomena related to small or interfering RNAs. Ribonucleases are key players in nearly all of these post-transcriptional mechanisms, as the catalytic agents. This proposal continued BARD-funded research into ribonuclease activities in the chloroplast, where RNase mutation or deficiency can cause metabolic defects and is often associated with plant chlorosis, embryo or seedling lethality, and/or failure to tolerate nutrient stress. The first objective of this proposal was to examined a series of point mutations in the PNPase enzyme of Arabidopsis both in vivo and in vitro. This goal is related to structure-function analysis of an enzyme whose importance in many cellular processes in prokaryotes and eukaryotes has only begun to be uncovered. PNPase substrates are mostly generated by endonucleolytic cleavages for which the catalytic enzymes remain poorly described. The second objective of the proposal was to examine two candidate enzymes, RNase E and RNase J. RNase E is well-described in bacteria but its function in plants was still unknown. We hypothesized it catalyzes endonucleolytic cleavages in both RNA maturation and decay. RNase J was recently discovered in bacteria but like RNase E, its function in plants had yet to be explored. The results of this work are described in the scientific manuscripts attached to this report. We have completed the first objective of characterizing in detail TILLING mutants of PNPase Arabidopsis plants and in parallel introducing the same amino acids changes in the protein and characterize the properties of the modified proteins in vitro. This study defined the roles for both RNase PH core domains in polyadenylation, RNA 3’-end maturation and intron degradation. The results are described in the collaborative scientific manuscript (Germain et al 2011). The second part of the project aimed at the characterization of the two endoribonucleases, RNase E and RNase J, also in this case, in vivo and in vitro. Our results described the limited role of RNase E as compared to the pronounced one of RNase J in the elimination of antisense transcripts in the chloroplast (Schein et al 2008; Sharwood et al 2011). In addition, we characterized polyadenylation in the chloroplast of the green alga Chlamydomonas reinhardtii, and in Arabidopsis (Zimmer et al 2009). Our long term collaboration enabling in vivo and in vitro analysis, capturing the expertise of the two collaborating laboratories, has resulted in a biologically significant correlation of biochemical and in planta results for conserved and indispensable ribonucleases. These new insights into chloroplast gene regulation will ultimately support plant improvement for agriculture.
APA, Harvard, Vancouver, ISO, and other styles
3

Sears, Pamela, and Chi-Huey Wong. Exploiting Molecular Diversity of Enzymes Based on Phage Display: Development of Novel Enzymatic Catalysts. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada362539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danson, Michael J., and David W. Hough. Multi-Enzyme Complexes in the Thermophilic Archaea: The Effects of Temperature on Stability, Catalysis and Enzyme Interactions in a Multi-Component System. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada567244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dudareva, Natalia, Alexander Vainstein, Eran Pichersky, and David Weiss. Integrating biochemical and genomic approaches to elucidate C6-C2 volatile production: improvement of floral scent and fruit aroma. United States Department of Agriculture, September 2007. http://dx.doi.org/10.32747/2007.7696514.bard.

Full text
Abstract:
The specific objectives of approved proposal include to: 1. Elucidate the C6-C2 biochemical pathways leading to the biosynthesis of phenylacetaldehyde, phenylethyl alcohol and phenylethyl acetate in floral tissues of ornamentally important plants, pefunia and roses. 2. Isolate and characterrze genes responsible for the production of these C6-C2 compounds and those involved in the regulation of the pathway using genomic and transcriptomic tools. 3. Determine whether altering the expression of key genes of this pathway can result in changing the aroma characteristics of flowers. Aldehydes are intermediates in a variety of biochemical pathways including those involved in the metabolism of carbohydrates, vitamins, steroids, amino acids, benzylisoquinoline alkaloids, hormones, and lipids. In plants they are also synthesized in response to environmental stresses such as salinity, cold, and heat shock or as flavors and aromas in fruits and flowers. Phenylacetaldehyde along with 2-phenylethanol and its acetate ester, are important scent compounds in numerous flowers, including petunias and roses. However, little is known about the biosynthesis of these volatile compounds in plants. We have shown that the formation PHA and 2-phenylethanol from Phe does not occur via trans-cinnamic acid and instead competes with the key enzyme of phenypropanoid metabolism Pheammonia-lyase (PAL) for Phe utilization. Using functional genomic approach and comparative gene expression profiling, we have isolated and characterized a novel enzyme from petunia and rose flowers that catalyzes the formation of the Ca-Czcompound phenylacetaldehyde (PHA) from L-phenylalanine (Phe) by the removal of both the carboxyl and amino groups. This enzyme, designated as phenylacetaldehyde synthases (PAAS), is a bifunctional enzyme that catalyzes the unprecedented efficient coupling of phenylalanine decarboxylation to oxidation, generating phenylacetaldehyde, CO2, ammonia, and hydrogen peroxide in stoichiometric amounts. Down-regulation of PAAS expression via RNA interference-based (RNAi) technology in petunia resulted in no PHA emission when compared with controls. These plants also produced no 2-phenylethanol, supporting our conclusion that PHA is a precursor of 2-phenylethanol. To understand the regulation of scent formation in plants we have also generated transgenic petunia and tobacco plants expressing the rose alcohol acetyltransferase (RhAAT) gene under the control of a CaMV-35S promoter. Although the preferred substrate of RhAAT in vitro is geraniol, in transgenic petunia flowers, it used phenylethyl alcohol and benzyl alcohol to produce the corresponding acetate esters, not generated by control flowers. These results strongly point to the dependence of volatile production on substrate availability. Analysis of the diurnal regulation of scent production in rose flowers revealed that although the daily emission of most scent compounds is synchronized, various independently evolved mechanisms control the production, accumulation and release of different volatiles. This research resulted in a fundamental discovery of biochemical pathway, enzymes and genes involved in biosynthesis of C6-C2s compounds, and provided the knowledge for future engineering plants for improved scent quality.
APA, Harvard, Vancouver, ISO, and other styles
6

Cople, Shelley D. Pentachlorophenol Hydroxylase: Analysis of Catalytic Abilities and Evolution of a Better Enzyme. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada422642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Borole, A. P. Developing Enzyme and Biomimetic Catalysts for Upgrading Heavy Crudes via Biological Hydrogenation and Hydrodesulfurization. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/939629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arnold, F. H. Enzyme catalysts for a biotechnology-based chemical industry. Final report, September 29, 1993--September 28, 1998. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/345021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arnold, F. H. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--June 28, 1996. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/383575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arnold, F. H. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, January 1--April 1, 1998. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/656465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography