Journal articles on the topic 'Enzymes immobilization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Enzymes immobilization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mokhtar, Nur Fathiah, Raja Noor Zaliha Raja Abd. Rahman, Noor Dina Muhd Noor, Fairolniza Mohd Shariff, and Mohd Shukuri Mohamad Ali. "The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method." Catalysts 10, no. 7 (2020): 744. http://dx.doi.org/10.3390/catal10070744.
Full textStine, Keith J. "Enzyme Immobilization on Nanoporous Gold: A Review." Biochemistry Insights 10 (January 1, 2017): 117862641774860. http://dx.doi.org/10.1177/1178626417748607.
Full textAsnawati, Asnawati, Dwi Indarti, Tri Mulyono, and Gembong Kesuma B. "Amperometric biosensor for glucose detection based-on immobilisation of glucose oxidase in acetic cellulose membrane using ferrocene as mediator." Jurnal ILMU DASAR 14, no. 1 (2013): 45. http://dx.doi.org/10.19184/jid.v14i1.481.
Full textZhu, Chen-Yuan, Fei-Long Li, Ye-Wang Zhang, Rahul K. Gupta, Sanjay K. S. Patel, and Jung-Kul Lee. "Recent Strategies for the Immobilization of Therapeutic Enzymes." Polymers 14, no. 7 (2022): 1409. http://dx.doi.org/10.3390/polym14071409.
Full textSher, Hassan, Hazrat Ali, Muhammad H. Rashid, et al. "Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function." Protein & Peptide Letters 26, no. 9 (2019): 636–47. http://dx.doi.org/10.2174/0929866526666190430120046.
Full textBié, Joaquim, Bruno Sepodes, Pedro C. B. Fernandes, and Maria H. L. Ribeiro. "Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications." Processes 10, no. 3 (2022): 494. http://dx.doi.org/10.3390/pr10030494.
Full textLyu, Xingyi, Rebekah Gonzalez, Andalwisye Horton, and Tao Li. "Immobilization of Enzymes by Polymeric Materials." Catalysts 11, no. 10 (2021): 1211. http://dx.doi.org/10.3390/catal11101211.
Full textBhavaniramya, Sundaresan, Ramar Vanajothi, Selvaraju Vishnupriya, et al. "Enzyme Immobilization on Nanomaterials for Biosensor and Biocatalyst in Food and Biomedical Industry." Current Pharmaceutical Design 25, no. 24 (2019): 2661–76. http://dx.doi.org/10.2174/1381612825666190712181403.
Full textSingh, Kushagri, Abha Mishra, Deepankar Sharma, and Kavita Singh. "Nanotechnology in Enzyme Immobilization: An Overview on Enzyme Immobilization with Nanoparticle Matrix." Current Nanoscience 15, no. 3 (2019): 234–41. http://dx.doi.org/10.2174/1573413714666181008144144.
Full textFang, Yi, Aihua Zhang, Shaohua Li, Michael Sproviero, and Ming-Qun Xu. "Enzyme Immobilization for Solid-Phase Catalysis." Catalysts 9, no. 9 (2019): 732. http://dx.doi.org/10.3390/catal9090732.
Full textHARHEN, BRENDAN, and FRANK BARRY. "Immobilization of proteolytic enzymes." Biochemical Society Transactions 18, no. 2 (1990): 314–15. http://dx.doi.org/10.1042/bst0180314.
Full textWackett, Lawrence P. "Immobilization of microbial enzymes." Microbial Biotechnology 3, no. 6 (2010): 729–30. http://dx.doi.org/10.1111/j.1751-7915.2010.00227.x.
Full textYabutsuka, Takeshi, Masaya Yamamoto, Shigeomi Takai, and Takeshi Yao. "Enzyme Immobilization Behavior on the Surface of Hydroxyapatite Capsules under Alkaline Condition." Key Engineering Materials 782 (October 2018): 21–26. http://dx.doi.org/10.4028/www.scientific.net/kem.782.21.
Full textMateo, C., V. Grazú, B. C. C. Pessela, et al. "Advances in the design of new epoxy supports for enzyme immobilization–stabilization." Biochemical Society Transactions 35, no. 6 (2007): 1593–601. http://dx.doi.org/10.1042/bst0351593.
Full textZhao, Zongpei, Meng-Cheng Zhou, and Run-Lin Liu. "Recent Developments in Carriers and Non-Aqueous Solvents for Enzyme Immobilization." Catalysts 9, no. 8 (2019): 647. http://dx.doi.org/10.3390/catal9080647.
Full textSheldon, Roger. "CLEAs, Combi-CLEAs and ‘Smart’ Magnetic CLEAs: Biocatalysis in a Bio-Based Economy." Catalysts 9, no. 3 (2019): 261. http://dx.doi.org/10.3390/catal9030261.
Full textHickey, A. M., L. Marle, T. McCreedy, P. Watts, G. M. Greenway, and J. A. Littlechild. "Immobilization of thermophilic enzymes in miniaturized flow reactors." Biochemical Society Transactions 35, no. 6 (2007): 1621–23. http://dx.doi.org/10.1042/bst0351621.
Full textHanušová, Kristýna, Lukáš Vápenka, Jaroslav Dobiáš, and Linda Mišková. "Development of antimicrobial packaging materials with immobilized glucose oxidase and lysozyme." Open Chemistry 11, no. 7 (2013): 1066–78. http://dx.doi.org/10.2478/s11532-013-0241-4.
Full textH. Orrego, Alejandro, Maria Romero-Fernández, María Millán-Linares, María Yust, José Guisán, and Javier Rocha-Martin. "Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent." Catalysts 8, no. 8 (2018): 333. http://dx.doi.org/10.3390/catal8080333.
Full textAhmad, Raneem, Jordan Shanahan, Sydnie Rizaldo, Daniel S. Kissel, and Kari L. Stone. "Co-immobilization of an Enzyme System on a Metal-Organic Framework to Produce a More Effective Biocatalyst." Catalysts 10, no. 5 (2020): 499. http://dx.doi.org/10.3390/catal10050499.
Full textSilva, Douglas Fernandes, Henrique Rosa, Ana Flavia Azevedo Carvalho, and Pedro Oliva-Neto. "Immobilization of Papain on Chitin and Chitosan and Recycling of Soluble Enzyme for Deflocculation of Saccharomyces cerevisiae from Bioethanol Distilleries." Enzyme Research 2015 (January 1, 2015): 1–10. http://dx.doi.org/10.1155/2015/573721.
Full textPrlainovic, Nevena, Dejan Bezbradica, Zorica Knezevic-Jugovic, Aleksandar Marinkovic, and Dusan Mijin. "Immobilization of enzymes onto carbon nanotubes." Chemical Industry 65, no. 4 (2011): 423–30. http://dx.doi.org/10.2298/hemind110330028p.
Full textStorey, Kenneth B., and Doris Y. Schafhauser-Smith. "Immobilization of Polysaccharide-degrading Enzymes." Biotechnology and Genetic Engineering Reviews 12, no. 1 (1994): 409–66. http://dx.doi.org/10.1080/02648725.1994.10647918.
Full textWood, Louis L., Carrington S. Cobbs, Leon Lantz, Lin Peng, and Gary J. Calton. "Immobilization of enzymes with polyaziridines." Journal of Biotechnology 13, no. 4 (1990): 305–14. http://dx.doi.org/10.1016/0168-1656(90)90078-p.
Full textHu, Jinguang, Joshua Davies, Yiu Mok, Claudio Arato, and John Saddler. "The Potential of Using Immobilized Xylanases to Enhance the Hydrolysis of Soluble, Biomass Derived Xylooligomers." Materials 11, no. 10 (2018): 2005. http://dx.doi.org/10.3390/ma11102005.
Full textGhosh, Shubhrima, Razi Ahmad, and Sunil Kumar Khare. "Immobilization of Cholesterol Oxidase: An Overview." Open Biotechnology Journal 12, no. 1 (2018): 176–88. http://dx.doi.org/10.2174/1874070701812010176.
Full textCalifano, Valeria, and Aniello Costantini. "Immobilization of Cellulolytic Enzymes in Mesostructured Silica Materials." Catalysts 10, no. 6 (2020): 706. http://dx.doi.org/10.3390/catal10060706.
Full textMolina, M. Asunción, Victoria Gascón-Pérez, Manuel Sánchez-Sánchez, and Rosa M. Blanco. "Sustainable One-Pot Immobilization of Enzymes in/on Metal-Organic Framework Materials." Catalysts 11, no. 8 (2021): 1002. http://dx.doi.org/10.3390/catal11081002.
Full textHamsina, Hamsina, M. Tang, and Erni Indrawati Ruslan Hasani. "Activity Test, Selectivity, Stability of Chitinase on Amobil Chitosan Membranes." International Journal of Multicultural and Multireligious Understanding 8, no. 7 (2021): 453. http://dx.doi.org/10.18415/ijmmu.v8i7.2750.
Full textLee, Sun Hyung, Ji Sook Lim, and Han Seung Kim. "Decomposition of Chlorinated Hydrocarbons Using the Biocatalyst Immobilized by Clay Minerals." Advanced Materials Research 356-360 (October 2011): 1089–92. http://dx.doi.org/10.4028/www.scientific.net/amr.356-360.1089.
Full textJúnior, Aldo Araújo da Trindade, Yan Ferraz Ximenes Ladeira, Alexandre da Silva França, et al. "Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization." Catalysts 11, no. 8 (2021): 936. http://dx.doi.org/10.3390/catal11080936.
Full textde Jesús Rostro-Alanis, Magdalena, Elena Ivonne Mancera-Andrade, Mayra Beatriz Gómez Patiño, et al. "Nanobiocatalysis: Nanostructured materials – a minireview." Biocatalysis 2, no. 1 (2016): 1–24. http://dx.doi.org/10.1515/boca-2016-0001.
Full textFernández-Lafuente, Roberto, Verónica Rodrı́guez, Cesar Mateo, et al. "Stabilization of multimeric enzymes via immobilization and post-immobilization techniques." Journal of Molecular Catalysis B: Enzymatic 7, no. 1-4 (1999): 181–89. http://dx.doi.org/10.1016/s1381-1177(99)00028-4.
Full textWang, Fang, Rong Li, Hui Jian, et al. "Design and Construction of an Effective Expression System with Aldehyde Tag for Site-Specific Enzyme Immobilization." Catalysts 10, no. 4 (2020): 410. http://dx.doi.org/10.3390/catal10040410.
Full textOliveira-Ribeiro, Livia Maria, Lucas Meili, Georgia Nayane Silva-Belo-Gois, Renata Maria Rosas-Garcia-Almeida, and José Leandro da Silva-Duarte. "Immobilization of lipase in biochar obtained from Manihot esculenta Crantz." Revista ION 32, no. 2 (2019): 7–13. http://dx.doi.org/10.18273/revion.v32n2-2019001.
Full textWu, Zhuofu, Linjuan Shi, Xiaoxiao Yu, Sitong Zhang, and Guang Chen. "Co-Immobilization of Tri-Enzymes for the Conversion of Hydroxymethylfurfural to 2,5-Diformylfuran." Molecules 24, no. 20 (2019): 3648. http://dx.doi.org/10.3390/molecules24203648.
Full textKazenwadel, F., H. Wagner, B. E. Rapp, and M. Franzreb. "Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinking agent." Analytical Methods 7, no. 24 (2015): 10291–98. http://dx.doi.org/10.1039/c5ay02670a.
Full textZhao, Man, Xiangmin Zhang, and Chunhui Deng. "Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion." Chemical Communications 51, no. 38 (2015): 8116–19. http://dx.doi.org/10.1039/c5cc01908g.
Full textBonine, Bárbara M., Patricia Peres Polizelli, and Gustavo O. Bonilla-Rodriguez. "Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads." Enzyme Research 2014 (April 10, 2014): 1–7. http://dx.doi.org/10.1155/2014/738739.
Full textFedersel, Hans-Jürgen, Thomas S. Moody, and Steve J. C. Taylor. "Recent Trends in Enzyme Immobilization—Concepts for Expanding the Biocatalysis Toolbox." Molecules 26, no. 9 (2021): 2822. http://dx.doi.org/10.3390/molecules26092822.
Full textLv, Shanshan. "Silk Fibroin-Based Materials for Catalyst Immobilization." Molecules 25, no. 21 (2020): 4929. http://dx.doi.org/10.3390/molecules25214929.
Full textAlkan, S., H. Ceylan, and O. Arslan. "Bentonite-supported catalase." Journal of the Serbian Chemical Society 70, no. 5 (2005): 721–26. http://dx.doi.org/10.2298/jsc0505721a.
Full textGiannakopoulou, Archontoula, Michaela Patila, Konstantinos Spyrou, et al. "Development of a Four-Enzyme Magnetic Nanobiocatalyst for Multi-Step Cascade Reactions." Catalysts 9, no. 12 (2019): 995. http://dx.doi.org/10.3390/catal9120995.
Full textParvulescu, Viorica, Adriana Popa, Gabriela Paun, Ramona Ene, Corneliu-Mircea Davidescu, and Gheorghe Ilia. "Effect of polymer support functionalization on enzyme immobilization and catalytic activity." Pure and Applied Chemistry 86, no. 11 (2014): 1793–803. http://dx.doi.org/10.1515/pac-2014-0715.
Full textTaha, Abdul Sattar Jabbar. "Different methods and carriers for immobilization cellulase from Trichoderma viride and its remaining activity." Pharmaceutical and Biological Evaluations 4, no. 1 (2017): 9. http://dx.doi.org/10.26510/2394-0859.pbe.2017.02.
Full textColon, Hugh D., and David R. Walt. "Immobilization of enzymes in polymer supports." Journal of Chemical Education 63, no. 4 (1986): 368. http://dx.doi.org/10.1021/ed063p368.
Full textPalomo, Jose. "Modulation of Enzymes Selectivity Via Immobilization." Current Organic Synthesis 6, no. 1 (2009): 1–14. http://dx.doi.org/10.2174/157017909787314885.
Full textKeusgen, Michael, Janina Glodek, Peter Milka, and Ingo Krest. "Immobilization of enzymes on PTFE surfaces." Biotechnology and Bioengineering 72, no. 5 (2001): 530–40. http://dx.doi.org/10.1002/1097-0290(20010305)72:5<530::aid-bit1017>3.0.co;2-j.
Full textKalska-Szostko, B., M. Rogowska, A. Dubis, and K. Szymański. "Enzymes immobilization on Fe3O4–gold nanoparticles." Applied Surface Science 258, no. 7 (2012): 2783–87. http://dx.doi.org/10.1016/j.apsusc.2011.10.132.
Full textDaunert, Sylvia, Leonidas G. Bachas, Vesna Schauer-Vukasinovic, Kalvin J. Gregory, G. Schrift, and Sapna Deo. "Calmodulin-mediated reversible immobilization of enzymes." Colloids and Surfaces B: Biointerfaces 58, no. 1 (2007): 20–27. http://dx.doi.org/10.1016/j.colsurfb.2006.10.020.
Full text