Academic literature on the topic 'Epanechnikov kernel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epanechnikov kernel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Epanechnikov kernel"
Mesquita, D. P. P., J. P. P. Gomes, and A. H. Souza Junior. "Epanechnikov kernel for incomplete data." Electronics Letters 53, no. 21 (October 2017): 1408–10. http://dx.doi.org/10.1049/el.2017.0507.
Full textChu, Chi-Yang, Daniel J. Henderson, and Christopher F. Parmeter. "On discrete Epanechnikov kernel functions." Computational Statistics & Data Analysis 116 (December 2017): 79–105. http://dx.doi.org/10.1016/j.csda.2017.07.003.
Full textDu, Xiang Ran, Hai Tao Liu, and Min Zhang. "Comparative Analysis on Kernel Based Probability Density Estimation." Applied Mechanics and Materials 543-547 (March 2014): 1655–58. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.1655.
Full textKarczewski, Maciej, and Andrzej Michalski. "The study and comparison of one-dimensional kernel estimators – a new approach. Part 2. A hydrology case study." ITM Web of Conferences 23 (2018): 00018. http://dx.doi.org/10.1051/itmconf/20182300018.
Full textIVAN, KOMANG CANDRA, I. WAYAN SUMARJAYA, and MADE SUSILAWATI. "ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA." E-Jurnal Matematika 5, no. 2 (May 31, 2016): 52. http://dx.doi.org/10.24843/mtk.2016.v05.i02.p121.
Full textYu, Liang-ju, Gen-ke Yang, and Yue Chen. "Improved Independent Component Analysis Based on Epanechnikov Kernel Function." International Journal of Control and Automation 9, no. 7 (July 31, 2016): 147–58. http://dx.doi.org/10.14257/ijca.2016.9.7.14.
Full textKalita, Jumi, and Pranita Sarmah. "Application of Epanechnikov kernel smoothing technique in disability data." International Journal of Intelligent Systems Design and Computing 1, no. 1/2 (2017): 198. http://dx.doi.org/10.1504/ijisdc.2017.082874.
Full textKalita, Jumi, and Pranita Sarmah. "Application of Epanechnikov kernel smoothing technique in disability data." International Journal of Intelligent Systems Design and Computing 1, no. 1/2 (2017): 198. http://dx.doi.org/10.1504/ijisdc.2017.10003810.
Full textCzesak, Barbara, Renata Różycka-Czas, Tomasz Salata, Robert Dixon-Gough, and Józef Hernik. "Determining the Intangible: Detecting Land Abandonment at Local Scale." Remote Sensing 13, no. 6 (March 18, 2021): 1166. http://dx.doi.org/10.3390/rs13061166.
Full textKarczewski, Maciej, and Andrzej Michalski. "The study and comparison of one-dimensional kernel estimators – a new approach. Part 1. Theory and methods." ITM Web of Conferences 23 (2018): 00017. http://dx.doi.org/10.1051/itmconf/20182300017.
Full textDissertations / Theses on the topic "Epanechnikov kernel"
Mesquita, Diego Parente Paiva. "Machine Learning for incomplete data." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25193.
Full textSubmitted by Jonatas Martins (jonatasmartins@lia.ufc.br) on 2017-08-29T14:42:43Z No. of bitstreams: 1 2017_dis_dppmesquita.pdf: 673221 bytes, checksum: eec550f75e2965d1120185327465a595 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-08-29T16:04:36Z (GMT) No. of bitstreams: 1 2017_dis_dppmesquita.pdf: 673221 bytes, checksum: eec550f75e2965d1120185327465a595 (MD5)
Made available in DSpace on 2017-08-29T16:04:36Z (GMT). No. of bitstreams: 1 2017_dis_dppmesquita.pdf: 673221 bytes, checksum: eec550f75e2965d1120185327465a595 (MD5) Previous issue date: 2017
Methods based on basis functions (such as the sigmoid and q-Gaussian functions) and similarity measures (such as distances or kernel functions) are widely used in machine learning and related fields. These methods often take for granted that data is fully observed and are not equipped to handle incomplete data in an organic manner. This assumption is often flawed, as incomplete data is a fact in various domains such as medical diagnosis and sensor analytics. Therefore, one might find it useful to be able to estimate the value of these functions in the presence of partially observed data. We propose methodologies to estimate the Gaussian Kernel, the Euclidean Distance, the Epanechnikov kernel and arbitrary basis functions in the presence of possibly incomplete feature vectors. To obtain such estimates, the incomplete feature vectors are treated as continuous random variables and, based on that, we take the expected value of the transforms of interest.
Métodos baseados em funções de base (como as funções sigmoid e a q-Gaussian) e medidas de similaridade (como distâncias ou funções de kernel) são comuns em Aprendizado de Máquina e áreas correlatas. Comumente, no entanto, esses métodos não são equipados para utilizar dados incompletos de maneira orgânica. Isso pode ser visto como um impedimento, uma vez que dados parcialmente observados são comuns em vários domínios, como aplicações médicas e dados provenientes de sensores. Nesta dissertação, propomos metodologias para estimar o valor do kernel Gaussiano, da distância Euclidiana, do kernel Epanechnikov e de funções de base arbitrárias na presença de vetores possivelmente parcialmente observados. Para obter tais estimativas, os vetores incompletos são tratados como variáveis aleatórias contínuas e, baseado nisso, tomamos o valor esperado da transformada de interesse.
Diaz, José Ignacio Valencia. "Modelagem não-paramétrica da dinâmica da taxa de juros instantânea utilizando contratos futuros da taxa média dos depósitos interfinanceiros de 1 dia (DI1)." reponame:Repositório Institucional do FGV, 2013. http://hdl.handle.net/10438/11130.
Full textApproved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2013-09-17T12:05:59Z (GMT) No. of bitstreams: 1 Dissertacao MPFE Jose Ignacio Valencia Diaz.pdf: 1741345 bytes, checksum: b45af943bf4f6e8a2a9963c07038d9dc (MD5)
Made available in DSpace on 2013-09-17T12:54:35Z (GMT). No. of bitstreams: 1 Dissertacao MPFE Jose Ignacio Valencia Diaz.pdf: 1741345 bytes, checksum: b45af943bf4f6e8a2a9963c07038d9dc (MD5) Previous issue date: 2013-08-26
Prediction models based on nonparametric estimation are in continuous development and have been permeating the quantitative community. Their main feature is that they do not consider as known a priori the form of the probability distributions functions (PDF), but allow the data to be used directly in order to build their own PDFs. In this work it is implemented the nonparametric pooled estimators from Sam and Jiang (2009) for drift and diffusion functions for the short rate diffusion process, by means of the use of yield series of different maturities provided by One Day Future Interbank Deposit contracts (ID1). The estimators are built from the perspective of kernel functions and they are optimized with a particular kernel format, in our case, Epanechnikov’s kernel, and with a smoothing parameter (bandwidth). Empiric experience indicates that the smoothing parameter is critical to find the probability density function that provides an optimal estimation in terms of MISE (Mean Integrated Squared Error) when testing the model with the traditional k-folds cross-validation method. Exceptions arise when the series do not have appropriate sizes, but the structural break of the diffusion process of the Brazilian interest short rate, since 2006, requires the reduction of the length of the series to the cost of reducing the predictive power of the model. This structural break represents the evolution of the Brazilian market, in an attempt to converge towards mature markets and it explains largely the unsatisfactory performance of the proposed estimator.
Modelos de predição baseados em estimações não-paramétricas continuam em desenvolvimento e têm permeado a comunidade quantitativa. Sua principal característica é que não consideram a priori distribuições de probabilidade conhecidas, mas permitem que os dados passados sirvam de base para a construção das próprias distribuições. Implementamos para o mercado brasileiro os estimadores agrupados não-paramétricos de Sam e Jiang (2009) para as funções de drift e de difusão do processo estocástico da taxa de juros instantânea, por meio do uso de séries de taxas de juros de diferentes maturidades fornecidas pelos contratos futuros de depósitos interfinanceiros de um dia (DI1). Os estimadores foram construídos sob a perspectiva da estimação por núcleos (kernels), que requer para a sua otimização um formato específico da função-núcleo. Neste trabalho, foi usado o núcleo de Epanechnikov, e um parâmetro de suavizamento (largura de banda), o qual é fundamental para encontrar a função de densidade de probabilidade ótima que forneça a estimação mais eficiente em termos do MISE (Mean Integrated Squared Error - Erro Quadrado Integrado Médio) no momento de testar o modelo com o tradicional método de validação cruzada de k-dobras. Ressalvas são feitas quando as séries não possuem os tamanhos adequados, mas a quebra estrutural do processo de difusão da taxa de juros brasileira, a partir do ano 2006, obriga à redução do tamanho das séries ao custo de reduzir o poder preditivo do modelo. A quebra estrutural representa um processo de amadurecimento do mercado brasileiro que provoca em grande medida o desempenho insatisfatório do estimador proposto.
Book chapters on the topic "Epanechnikov kernel"
González, Jorge, and Alina A. von Davier. "An Illustration of the Epanechnikov and Adaptive Continuization Methods in Kernel Equating." In Springer Proceedings in Mathematics & Statistics, 253–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56294-0_23.
Full textBodyanskiy, Yevgeniy, Olena Vynokurova, and Oleksii Tyshchenko. "Hybrid Wavelet-Neuro-Fuzzy Systems of Computational Intelligence in Data Mining Tasks." In Handbook of Research on Machine Learning Innovations and Trends, 787–825. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2229-4.ch035.
Full textConference papers on the topic "Epanechnikov kernel"
Guo, Qingchang, Xiaojuan Chang, and Hongxia Chu. "Mean-Shift of Variable Window Based on the Epanechnikov Kernel." In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4303914.
Full textOshiro, Masakuni, and Toshihiro Nishimura. "US image improvement using fuzzy Neural Network with Epanechnikov kernel." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415342.
Full textMoraes, Caroline, Denis Fantinato, and Aline Neves. "An Epanechnikov Kernel Based Method for Source Separation in Post-Nonlinear Mixtures." In XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais. Sociedade Brasileira de Telecomunicações, 2019. http://dx.doi.org/10.14209/sbrt.2019.1570558558.
Full textLiu, Boning, Yan Zhao, Xiaomeng Jiang, and Shigang Wang. "An Image Coding Approach Based on Mixture-of-experts Regression Using Epanechnikov Kernel." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682374.
Full textLi, Dawei, Lihong Xu, and Yang Wu. "Improved CAMShift object tracking based on Epanechnikov Kernel Density Estimation and Kalman filter." In 2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017. http://dx.doi.org/10.1109/ccdc.2017.7979044.
Full text