Academic literature on the topic 'EphB4 receptor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'EphB4 receptor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "EphB4 receptor"

1

Helbling, P. M., D. M. Saulnier, and A. W. Brandli. "The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis." Development 127, no. 2 (January 15, 2000): 269–78. http://dx.doi.org/10.1242/dev.127.2.269.

Full text
Abstract:
The cues and signaling systems that guide the formation of embryonic blood vessels in tissues and organs are poorly understood. Members of the Eph family of receptor tyrosine kinases and their cell membrane-anchored ligands, the ephrins, have been assigned important roles in the control of cell migration during embryogenesis, particularly in axon guidance and neural crest migration. Here we investigated the role of EphB receptors and their ligands during embryonic blood vessel development in Xenopus laevis. In a survey of tadpole-stage Xenopus embryos for EphB receptor expression, we detected expression of EphB4 receptors in the posterior cardinal veins and their derivatives, the intersomitic veins. Vascular expression of other EphB receptors, including EphB1, EphB2 or EphB3, could however not be observed, suggesting that EphB4 is the principal EphB receptor of the early embryonic vasculature of Xenopus. Furthermore, we found that ephrin-B ligands are expressed complementary to EphB4 in the somites adjacent to the migratory pathways taken by intersomitic veins during angiogenic growth. We performed RNA injection experiments to study the function of EphB4 and its ligands in intersomitic vein development. Disruption of EphB4 signaling by dominant negative EphB4 receptors or misexpression of ephrin-B ligands in Xenopus embryos resulted in intersomitic veins growing abnormally into the adjacent somitic tissue. Our findings demonstrate that EphB4 and B-class ephrins act as regulators of angiogenesis possibly by mediating repulsive guidance cues to migrating endothelial cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Nai-Ying, Elena B. Pasquale, Laurie B. Owen, and Iryna M. Ethell. "The EphB4 Receptor-tyrosine Kinase Promotes the Migration of Melanoma Cells through Rho-mediated Actin Cytoskeleton Reorganization." Journal of Biological Chemistry 281, no. 43 (August 31, 2006): 32574–86. http://dx.doi.org/10.1074/jbc.m604338200.

Full text
Abstract:
Several studies have reported the up-regulation of EphB receptor-tyrosine kinases and ephrin-B ligands in a variety of tumors, suggesting a functional relation between EphB/ephrin-B signaling and tumor progression. The ability of the EphB receptors to regulate cell migration and promote angiogenesis likely contributes to tumor progression and metastasis. Here we show that EphB receptors, and especially EphB4, regulate the migration of murine melanoma cells. Highly malignant melanoma cells express the highest levels of EphB4 receptor and migrate faster than less malignant melanoma cells. Furthermore, inhibition of EphB receptor forward signaling by overexpression of a form of EphB4 lacking the cytoplasmic portion or by treatment with competitively acting soluble EphB2-Fc results in slower melanoma cell migration. In contrast, overexpression of active EphB4 significantly enhances cell migration. The effects of EphB4 receptor on cell migration and cell morphology require its kinase activity because the inhibition of EphB4 kinase activity by overexpression of kinase dead EphB4 inhibits cell migration and affects the organization of actin cytoskeleton. Activation of EphB4 receptor with its ligand ephrin-B2-Fc enhances the migratory ability of melanoma cells and increases RhoA activity, whereas inhibiting EphB receptor forward signaling decreases RhoA activity. Moreover, expression of dominant negative RhoA blocks the effects of active EphB4 on cell migration and actin organization. These data suggest that EphB4 forward signaling contributes to the high migratory ability of invasive melanoma cells by influencing RhoA-mediated actin cytoskeleton reorganization.
APA, Harvard, Vancouver, ISO, and other styles
3

Kuang, Shao-qing, Zhi-Hong Fang, Gonzalo Lopez, Weigang Tong, Hui Yang, and Guillermo Garcia-Manero. "Eph Receptor Tyrosine Kinases and Ephrin Ligands Are Epigenetically Inactivated in Acute Lymphoblastic Leukemia and Are Potential New Tumor Suppressor Genes in Human Leukemia." Blood 110, no. 11 (November 16, 2007): 2128. http://dx.doi.org/10.1182/blood.v110.11.2128.2128.

Full text
Abstract:
Abstract The Eph (erythroprotein-producing hepatoma amplified sequence) family receptor tyrosine kinases and their ephrin ligands (ephrins) are involved in a variety of functions in normal cell development and cancer. We have identified several members of this family as potential targets of aberrant DNA methylation using Methylated CpG Island Amplification (MCA) / DNA promoter microarray technology. This is of importance as there are no prior reports of potential Eph receptor or Ephrin epigenetic inactivation in human leukemia. To further investigate the role of Eph receptor and ephrin family genes in leukemia, we have analyzed their DNA methylation status in a panel of 23 leukemia cell lines and 65 primary ALL patient samples. Aberrant DNA methylation of 9 of these genes (EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3) was detected in multiple leukemia cell lines but not in normal samples by bisulfite pyrosequencing. In ALL patient samples, the frequencies of DNA methylation detected in the promoter regions of these genes ranged from 23% to 87% for EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3. Expression analysis of 3 of these genes (EPHA5, EPHB4 and Ephrin B2) in leukemia cell lines by real-time PCR further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with DNA methyltransferase inhibitor 5′-aza-2′-deoxycytidine resulted in gene re-expression. Forced overexpression of EPHB4 using a lentivirus transduction system in Raji cell lines resulted in decreased cell proliferation and adhesion-independent cell growth, as well as in an increase in staurosporine induction of apoptosis. In addition, EPHB4 overexpression resulted in a significant downregulation of phosphorylated Akt pathway but had no effect on mitogen-activated protein kinase pathway. In summary, we describe for the first time the epigenetic suppression of Ephrin receptors and their ligands in human leukemia, indicating that these genes may be potential tumor suppressors in leukemia. Targeting of these pathways may result in the development of new potential therapies and biomarkers for patients with ALL.
APA, Harvard, Vancouver, ISO, and other styles
4

ter Elst, Arja, Kim R. Kampen, Sander H. Diks, Steven M. Kornblau, Guillermo Garcia-Manero, and Evelina S. De Bont. "EphrinB1 Activation As a Potential New Treatment Option in AML." Blood 118, no. 21 (November 18, 2011): 5235. http://dx.doi.org/10.1182/blood.v118.21.5235.5235.

Full text
Abstract:
Abstract Abstract 5235 Aberrant Ephrin signaling has been shown to be an important pathway that contributes to the pathogenesis of many solid tumors (Surawska et al. Cytokine & Growth factor reviews 2004). Deregulated ephrin receptor (Eph) and ligand (Efn) expression is often associated with poor prognosis in solid tumors. Ephrin receptor and ligand overexpression can result in tumorigenesis through induced tumor growth, tumor cell survival, angiogenesis and metastasis (Surawska et al. Cytokine & Growth Factor Reviews 2004; Campbell et al. Curr. Isues Mol. Biol. 2008; Chen et al. Cancer Research 2008). In normal cells Eph receptors and ligands play key roles in vascular patterning, where they function in endothelial cell migration, and proliferation (Adams et al, Genes Dev. 1999; Zhang et al., Blood 2001). Thus far particularly EphB4 receptor and ephrin-B2 ligand have been implicated in the process of normal angiogenesis. In acute myeloid leukemia (AML) patients it was found that bone marrow biopsies at diagnosis exhibited enhanced microvessel density (MVD) (de Bont ES et al., BJH 2001; Byrd JC et al., Blood 2002; Padro et al., Blood 2000). Normal hematopoietic stem cells (HSCs) express the following mRNA transcripts ephrin receptors EphA1, EphA2, EphB2, and EphB4 and ephrin ligands EfnA3, EfnA4, and EfnB2. Moreover, overexpression of EphB4 receptor in HSCs (from cord blood) resulted in enhanced differentiation towards megakaryocytes (Wang et al. Blood 2002). In AML cell lines there is a common co-expression on protein level observed between EphB4 receptor and ephrin-B2 ligand. Recently, an aberrant DNA methylation of ephrin receptors and ligands was described in acute lymphocytic and myelocytic leukemia cell lines (Kuang et al. Blood 2010). In addition, restoration of EphB4 expression in an acute lymphoid leukemia cell line resulted in reduced proliferation and apoptotic cell death. These data suggests that the ephrin signaling pathway might play an important role in leukemia. In a previous study we have found high kinase activity of EphB receptors and high phosphorylation levels of EphB receptors in AML samples, as measured using kinase arrays and proteome profiler arrays. In this study, we have found extensive membrane expression of EphB1 on AML cell lines and primary AML blasts. To identify the role of Ephrin signaling in AML, two AML cell lines THP-1 and HL60 with an EphB1 membrane expressing cell percentage of 70% and 20% respectively were chosen for stimulation with Ephrin-B1 ligand. Treatment of these cell lines with Ephrin-B1 ligand resulted in a decreased proliferation 30% in THP-1 cells versus 22% in HL60 cells and increased apoptosis 23% in THP-1 cells and 4% in HL60 cells. Of note, the most prominent effect of Ephrin-B1 stimulation was found in THP-1 cells, this cell line contained a higher percentage of EphB1 membrane expressing cells. We further investigated the mechanism through which EphB1 reduces leukemic cell growth and induces leukemic cell death in THP-1 cells. Westernblot analysis of cell cycle regulators showed that expression of the anti-apoptotic protein BCL2 is reduced upon Ephrin-B1 ligand stimulation and the expression of the pro-apoptotic protein BAX is induced. In addition, mRNA expression of the cell cycle inhibitor of cell cycle progression p21 was found to be 2,5 fold upregulated in ephrin-B1 ligand treated cells compared to untreated control cells. MGG stainings of Ephrin-B1 treated cells revealed multiple cells with two nuclei in both THP-1 and HL60 cells. These results indicate that a high percentage of AML cells express EphB1 receptor on the membrane and that stimulation of these cells with Ephrin-B1 ligand results in reduced leukemic growth and increased cell death. EphrinB1 activation in AML deserves further investigation considering EphB1 as a putative new treatment option for AML patients. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Kyeong, Hossam Nada, Hyun Jung Byun, Chang Hoon Lee, and Ahmed Elkamhawy. "Hit Identification of a Novel Quinazoline Sulfonamide as a Promising EphB3 Inhibitor: Design, Virtual Combinatorial Library, Synthesis, Biological Evaluation, and Docking Simulation Studies." Pharmaceuticals 14, no. 12 (November 30, 2021): 1247. http://dx.doi.org/10.3390/ph14121247.

Full text
Abstract:
EphB3 is a major key player in a variety of cellular activities, including cell migration, proliferation, and apoptosis. However, the exact role of EphB3 in cancer remains ambiguous. Accordingly, new EphB3 inhibitors can increase the understanding of the exact roles of the receptor and may act as promising therapeutic candidates. Herein, a hybrid approach of structure-based design and virtual combinatorial library generated 34 quinazoline sulfonamides as potential selective EphB3 inhibitors. A molecular docking study over EphB3 predicted the binding affinities of the generated library, and the top seven hit compounds (3a and 4a–f), with GlideScore ≥ −6.20 Kcal/mol, were chosen for further MM-GBSA calculations. Out of the seven top hits, compound 4c showed the highest MM-GBSA binding free energy (−74.13 Kcal/mol). To validate these predicted results, compounds 3a and 4a–f were synthesized and characterized using NMR, HRMS, and HPLC. The biological evaluation revealed compound 4c as a potent EphB3 inhibitory lead (IC50 = 1.04 µM). The screening of 4c over a mini-panel of kinases consisting of EGFR, Aurora A, Aurora B, CDK2/cyclin A, EphB1, EphB2, EphB4, ERBB2/HER2, and KDR/VEGFR2, showed a promising selective profile against EphB3 isoform. A dose-dependent assay of compound 4c and a molecular docking study over the different forms of EphB provided insights into the elicited biological activities and highlighted reasonable explanations of the selectivity.
APA, Harvard, Vancouver, ISO, and other styles
6

Kawano, Hiroki, Yoshio Katayama, Kentaro Minagawa, Manabu Shimoyama, Mark Henkemeyer, and Toshimitsu Matsui. "A Novel Feedback Mechanism by Ephrin-B1/B2 In T Cell Activation: Concentration-Dependent Switch From Costimulation to Inhibition." Blood 116, no. 21 (November 19, 2010): 277. http://dx.doi.org/10.1182/blood.v116.21.277.277.

Full text
Abstract:
Abstract Abstract 277 Eph is the largest known family of receptor tyrosine kinases, and bind to a cell surface-associated ligand, ephrin on neighboring cells upon direct cell-cell contact. The ensuing bidirectional signals have been recognized as a major form of contact-dependent cell communications, such as cell attraction and repulsion to control accurate spatial and temporal patterning in the development of the central nervous system. EphBs, EphB6 in particular, are expressed in T cells and its specific ligand, ephrin-B2 has been shown to act as a costimulatory molecule for the T cell receptor (TCR)-mediated cell proliferation. Recently, another remarkable feature of ephrins, a concentration-dependent transition from promotion to inhibition in axon growth has emerged in ephrin-As. Thus, we postulated that this type of ligand concentration dependent functional transition would be suitable for the delicate tuning of immune responses to avoid reckless drive. To figure this out, we carefully evaluated the costimulatory effects of ephrin-Bs by using murine primary T cells. Interestingly, low doses of solid phase ephrin-B1 as well as ephrin-B2 (at up to 5μ g/ml) costimulated, to the comparable level with anti-CD28, T cell proliferation induced by suboptimal concentration of immobilized anti-CD3 antibody, but high concentrations of ephrin-B1/B2 inhibited the TCR-mediated proliferation significantly (by approximately 70% reduction from the baseline at 20μ g/ml). The similar concentration-dependent transition from coactivation to inhibition was also observed under the optimal CD3 stimulation. The concentration-dependent biphasic effects, positively at low concentration and negatively at high concentration, by ephrin-B1/B2 in T cell activation were confirmed in the cytokine production such as TNF-α, IL-2, and IFN-γ. In contrast, ephrin-B3 showed steadily increasing stimulatory effect even in higher concentrations in proliferation and cytokine production. We speculated that these unique modulations were partly mediated by EphB6 because EphB6 transfected in HEK293T cells has been shown to exert biphasic effects in cell adhesion and migration in response to different concentrations of ephrin-B2. T cell derived from Ephb6 -/- mice showed decreased CD3-stimulated cell proliferation as reported previously. However, the unique comodulatory pattern by each ephrin-B was virtually preserved in Ephb6 -/- T cells. Since the functions of Eph family could be redundant, we further investigated by generating multiple EphB knockout mice lacking four genes, Ephb1, Ephb2, Ephb3 and Ephb6. Surprisingly, no further alteration was observed in T cells from the quadruple knockout mice compared to the Ephb6 single deficiency. We also confirmed that EphA4, an exception in EphA receptor family which binds ephrin-Bs, was not expressed in T cells by RT-PCR. Taken together with the fact that EphB5 does not exist in mammals, the unique comodification by ephrin-Bs might be regulated by EphB4. Next, we examined the cross-talk of EphB forward signaling with TCR pathway. The inhibitor of p38MAPK and p44/42MAPK significantly reduced the TCR-mediated proliferation, but did conserve the concentration-dependent effects of ephrin-B1/B2, suggesting the interference with EphB signaling in TCR signal transduction at the upstream of MAPKs which are important for cell growth and survival. Immuno-blot analyses revealed that high concentrations of ephrin-B1/B2, but not ephrin-B3, clearly inhibited the anti-CD3 induced phosphorylation of Lck and its downstream signaling molecules such as ZAP70, c-Raf, MEK1/2, Erk, and Akt, although the phosphorylation of CD3ζ was not inhibited by high concentrations of any ephrin-Bs. These data suggest that Eph signaling upon stimulation by high concentrations of ephrin-B1/B2 may engage in negative feedback to TCR signals via Lck. The present studies demonstrate that TCR-mediated primary T cell activation may be highly governed by EphB/ephrin-B axis with a complexity determined by the combination as well as the concentration of different ephrin-Bs expressed in immunological microenvironments. EphB-involved in negative feedback of T cell activation could be a novel therapeutic target to inhibit the most proximal TCR signaling molecule, Lck. The generation of strong signaling molecule which mimics ephrin-B1/B2 would be an effective strategy to control T cell mediated immune disorders. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
7

Salvucci, Ombretta, Maria de la Luz Sierra, Jose A. Martina, Peter J. McCormick, and Giovanna Tosato. "EphB2 and EphB4 receptors forward signaling promotes SDF-1–induced endothelial cell chemotaxis and branching remodeling." Blood 108, no. 9 (November 1, 2006): 2914–22. http://dx.doi.org/10.1182/blood-2006-05-023341.

Full text
Abstract:
Abstract The complex molecular mechanisms that drive endothelial cell movement and the formation of new vessels are poorly understood and require further investigation. Eph receptor tyrosine kinases and their membrane-anchored ephrin ligands regulate cell movements mostly by cell–cell contact, whereas the G-protein–coupled receptor CXCR4 and its unique SDF-1 chemokine ligand regulate cell movement mostly through soluble gradients. By using biochemical and functional approaches, we investigated how ephrinB and SDF-1 orchestrate endothelial cell movement and morphogenesis into capillary-like structures. We describe how endogenous EphB2 and EphB4 signaling are required for the formation of extracellular matrix–dependent capillary-like structures in primary human endothelial cells. We further demonstrate that EphB2 and EphB4 activation enhance SDF-1–induced signaling and chemotaxis that are also required for extracellular matrix–dependent endothelial cell clustering. These results support a model in which SDF-1 gradients first promote endothelial cell clustering and then EphB2 and EphB4 critically contribute to subsequent cell movement and alignment into cord-like structures. This study reveals a requirement for endogenous Eph signaling in endothelial cell morphogenic processes, uncovers a novel link between EphB forward signaling and SDF-1–induced signaling, and demonstrates a mechanism for cooperative regulation of endothelial cell movement.
APA, Harvard, Vancouver, ISO, and other styles
8

Wagner, Melany J., Marilyn S. Hsiung, Gerald D. Gish, Rick D. Bagshaw, Sasha A. Doodnauth, Mohamed A. Soliman, Claus Jørgensen, Monika Tucholska, and Robert Rottapel. "The Shb scaffold binds the Nck adaptor protein, p120 RasGAP, and Chimaerins and thereby facilitates heterotypic cell segregation by the receptor EphB2." Journal of Biological Chemistry 295, no. 12 (February 14, 2020): 3932–44. http://dx.doi.org/10.1074/jbc.ra119.009276.

Full text
Abstract:
Eph receptors are a family of receptor tyrosine kinases that control directional cell movement during various biological processes, including embryogenesis, neuronal pathfinding, and tumor formation. The biochemical pathways of Eph receptors are context-dependent in part because of the varied composition of a heterotypic, oligomeric, active Eph receptor complex. Downstream of the Eph receptors, little is known about the essential phosphorylation events that define the context and instruct cell movement. Here, we define a pathway that is required for Eph receptor B2 (EphB2)–mediated cell sorting and is conserved among multiple Eph receptors. Utilizing a HEK293 model of EphB2+/ephrinB1+ cell segregation, we found that the scaffold adaptor protein SH2 domain–containing adaptor protein B (Shb) is essential for EphB2 functionality. Further characterization revealed that Shb interacts with known modulators of cytoskeletal rearrangement and cell mobility, including Nck adaptor protein (Nck), p120-Ras GTPase-activating protein (RasGAP), and the α- and β-Chimaerin Rac GAPs. We noted that phosphorylation of Tyr297, Tyr246, and Tyr336 of Shb is required for EphB2–ephrinB1 boundary formation, as well as binding of Nck, RasGAP, and the chimaerins, respectively. Similar complexes were formed in the context of EphA4, EphA8, EphB2, and EphB4 receptor activation. These results indicate that phosphotyrosine-mediated signaling through Shb is essential in EphB2-mediated heterotypic cell segregation and suggest a conserved function for Shb downstream of multiple Eph receptors.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Wenqing, Lai Wen, Bhavisha Rathod, Anne-Claude Gingras, Klaus Ley, and Ho-Sup Lee. "Kindlin2 enables EphB/ephrinB bi-directional signaling to support vascular development." Life Science Alliance 6, no. 3 (December 27, 2022): e202201800. http://dx.doi.org/10.26508/lsa.202201800.

Full text
Abstract:
Direct contact between cells expressing either ephrin ligands or Eph receptor tyrosine kinase produces diverse developmental responses. Transmembrane ephrinB ligands play active roles in transducing bi-directional signals downstream of EphB/ephrinB interaction. However, it has not been well understood how ephrinB relays transcellular signals to neighboring cells and what intracellular effectors are involved. Here, we report that kindlin2 can mediate bi-directional ephrinB signaling through binding to a highly conserved NIYY motif in the ephrinB2 cytoplasmic tail. We show this interaction is important for EphB/ephrinB-mediated integrin activation in mammalian cells and for blood vessel morphogenesis during zebrafish development. A mixed two-cell population study revealed that kindlin2 (in ephrinB2-expressing cells) modulates transcellular EphB4 activation by promoting ephrinB2 clustering. This mechanism is also operative for EphB2/ephrinB1, suggesting that kindlin2-mediated regulation is conserved for EphB/ephrinB signaling pathways. Together, these findings show that kindlin2 enables EphB4/ephrinB2 bi-directional signal transmission.
APA, Harvard, Vancouver, ISO, and other styles
10

Kuang, Shao-Qing, Hao Bai, Zhi-Hong Fang, Gonzalo Lopez, Hui Yang, Weigang Tong, Zack Z. Wang, and Guillermo Garcia-Manero. "Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia." Blood 115, no. 12 (March 25, 2010): 2412–19. http://dx.doi.org/10.1182/blood-2009-05-222208.

Full text
Abstract:
Eph receptors and their ephrin ligands are involved in normal hematopoietic development and tumorigenesis. Using methylated CpG island amplification/DNA promoter microarray, we identified several EPH receptor and EPHRIN genes as potential hypermethylation targets in acute lymphoblastic leukemia (ALL). We subsequently studied the DNA methylation status of the Eph/ephrin family by bisulfite pyrosequencing. Hypermethylation of EPHA2, -A4, -A5, -A6, -A7, -A10, EPHB1, -B2, -B3, -B4, EFNA1, -A3, -A5, and EFNB1 and -B2 genes was detected in leukemia cell lines and primary ALL bone marrow samples. Expression analysis of EPHB4, EFNB2, and EFNA5 genes demonstrated that DNA methylation was associated with gene silencing. We cloned the promoter region of EPHB4 and demonstrated that promoter hypermethylation can result in EPHB4 transcriptional silencing. Restoration of EPHB4 expression by lentiviral transduction resulted in reduced proliferation and apoptotic cell death in Raji cells in which EPHB4 is methylated and silenced. Finally, we demonstrated that phosphorylated Akt is down-regulated in Raji cells transduced with EPHB4. These results suggest that epigenetic silencing by hypermethylation of EPH/EPHRIN family genes contributes to ALL pathogenesis and that EPHB4 can function as a tumor suppressor in ALL.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "EphB4 receptor"

1

Rivera, Mariangela. "The Role of EphB4 Tyrosine Kinase in Mouse Lung Endothelial Cell Function." Yale University, 2010. http://ymtdl.med.yale.edu/theses/available/etd-05062010-103231/.

Full text
Abstract:
EphB4, a known venous marker, represents a potential therapeutic target in modern vascular medicine. This study looked at the role of EphB4 as it pertains to basic cell functions in a mouse lung endothelium model (MLEC). Basic science techniques of microscopy, blotting and antibody labeling were used to evaluate and measure cellular response to EphB4 stimulation and manipulation. We found significant changes in MLEC cellular functions due to heterozygous knockout of the EphB4 receptor. These changes included decreased cellular migration and proliferation in knockout cells. We also saw increases in other cellular functions, such as tube formation and nitric oxide formation. From these data we were able to conclude that EphB4 is an active kinase in differentiated cells with a significant inhibitory effect. In EphB4 +/- knockout cell lines there was a lack of EphB4 inhibition and AKT and ERK showed increased activity. This work clearly implicates EphB4 as a major regulator of the basic cellular function of endothelia and highlights the need for further investigation into the specific pathways by which it functions.
APA, Harvard, Vancouver, ISO, and other styles
2

Rutkowski, Raphael C. "New roles for EPHB4 in prostate cancer." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/98748/8/Raphael%20Rutkowski%20Thesis.pdf.

Full text
Abstract:
This thesis presents insight into the signalling pathways of EphB4, a protein known to be involved in cancer progression. A new method was developed and used to identify a number of proteins that can interact with EphB4; and a novel mechanism of action for EphB4 was identified, where EphB4 was transported outside of the host cell by small vesicles called exosomes. These findings suggest that EphB4 may play important roles in pathways in both normal and disease states, and opens up new research directions into understanding the mechanisms, signalling pathways and cellular consequences of these new roles for EphB4.
APA, Harvard, Vancouver, ISO, and other styles
3

Chennakesava, Cuddapah Sunku. "Involvement of EphB4 receptor and ephrin-B2 ligand expression in human placentation /." [S.l.] : [s.n.], 2005. http://www.zb.unibe.ch/download/eldiss/05chennakesava_cs.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lisle, Jessica E. "Proteolytic regulation of the EphB4-Ephrin-B2 signalling axis in prostate cancer." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/101573/1/Jessica_Lisle_Thesis.pdf.

Full text
Abstract:
EphB4 is a receptor protein over-expressed by many different cancers. This study explored the regulation of EphB4 and its binding partner, the ephrin-B2 ligand, in prostate cancer cells. This work showed that both EphB4 and ephrin-B2 can be cleaved by an important prostate cancer associated protease, KLK4 and this regulates the interaction between EphB4 and ephrin-B2 to activate different biological responses which could contribute to the initiation and progression of prostate cancer. This is a novel mechanism, that with further investigation, may provide new options for the development of anti-cancer therapies.
APA, Harvard, Vancouver, ISO, and other styles
5

Zariana, Nikolova. "Involvement of the receptor tyrosine kinase EPHB4 and its ligand EPHROIN-B2 in normal mammary gland development and carcinogenesis /." Cambridge : Company of Biologists, 1998. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coonan, Jason R. "Regulation of neural connectivity by the EphA4 receptor tyrosine kinase /." Connect to thesis, 2001. http://eprints.unimelb.edu.au/archive/00000727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deininger, Katrin. "Molecular and functional interaction of Ras/Rab interactor 1 and EphA4 receptor." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-65466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stimamiglio, Marco Augusto. "Papel das interações mediadas pelo receptor EphB2 sobre a migração de precursores de célula T." reponame:Repositório Institucional da FIOCRUZ, 2009. https://www.arca.fiocruz.br/handle/icict/13816.

Full text
Abstract:
Made available in DSpace on 2016-04-15T12:59:57Z (GMT). No. of bitstreams: 2 marco_stimamiglio_ioc_dout_2009.pdf: 7045829 bytes, checksum: 6668ee161093cf29f56e28a841129af4 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil
A colonização do timo por precursores hematopoéticos representa um evento crucial para o desenvolvimento deste próprio órgão, assim como garante a diferenciação e a formação do repertório de células T maduras. Entretanto, os mecanismos moleculares que dirigem este processo não são totalmente conhecidos. A entrada destes precursores depende da ativação de uma cascata de sinalizações intermoleculares, onde participam algumas moléculas, como as integrinas e as quimiocinas. Os receptores Eph, que compõem a maior família de receptores tirosina-quinase, representam importantes moléculas reguladoras do desenvolvimento de sistemas e órgãos, sendo encontrados também no tecido linfóide. Mais recentemente, essa família de receptores, juntamente com seus ligantes, efrinas, foi descrita como moléculas co-estimulatórias de sinais transmitidos em linfócitos T pelo receptor de antígeno, por quimiocinas e integrinas. Neste contexto, o objetivo central deste trabalho foi o de avaliar as possíveis funções dos receptores Eph, em particular EphB2, em modular a atividade migratória de precursores T durante os processos de colonização do timo e maturação intratímica de linfócitos Nossos resultados demonstram a expressão dos receptores EphB2 no timo de camundongos e a sua participação tanto nos processos iniciais da organogênese do timo, quanto na diferenciação intratímica de timócitos. Este receptor, assim como seus principais ligantes, também é expresso em células precursoras derivadas da medula óssea de camundongos e é capaz de modular a migração e a capacidade de entrada destes precursores em lóbulos tímicos alinfóides. Além disso, vimos que a falta deste receptor, ou de seu domínio catalítico tirosina-quinase, promove uma redução na deposição de proteínas da matriz extracelular e de quimiocinas no timo, assim como resulta em importante inibição da entrada dos precursores hematopoiéticos neste órgão. De igual maneira, o desequilíbrio dos sinais transmitidos pelo complexo EphB2/efrina-B impede o correto posicionamento intratímico destes precursores, possivelmente levando a um bloqueio na maturação dos timócitos. Finalmente, demonstramos que a ausência do receptor ou dos sinais EphB2 não modifica os níveis de expressão de outros receptores como integrinas e receptores de quimiocina nos precursores hematopoiéticos e timócitos, mas possivelmente modula sua atividade e, desta forma, a atividade migratória destas células frente a estímulos hapto e quimiotáticos. Em conjunto, nossos resultados apontam uma importante participação dos sinais desencadeados pelo complexo Eph/efrina e sua co-regulação com outros receptores que modulam o processo de migração dos precursores de células T, desde sua entrada no timo, até o seu correto desenvolvimento e migração dentro deste órgão
Thymus settling by hematopoietic progenitors represents a crucial event during thymus ontogeny and guarantees the proper differentiation of the T-cell repertoire. However, the molecular mechanisms that drive such process are not completely understood. Progenitor settling depends on the activation of intercellular signaling cascades, where some integrins and chemokines play a role. Eph receptors, th e major tyrosine-kinase receptor family, are important regulatory molecules for the development of several systems and organs, being also expressed in lymphoid tissues. More recently, this receptor family, conjointly with the corresponding ligands, the ephrins, has been reported as costimulatory molecules for the T- cell receptor, chemokine receptors and integrins on T lymphocytes. In this context, the aim of this work was to evaluate the possible functions of Eph receptors, in particular EphB2, as modulators of T-cell progenitor migration during thymus settling and intrathymic T-cell maturation. Our results demonstrate that EphB2 receptors are expressed in the mouse thymus and participate in its organogenesis and intrathymic T-cell development. This receptor and its main ligands are also expressed in mouse bone marrow-derived progenitor cells, being able to modulate migration and the ability of these cells to settling thymic lobes. Moreover, the lack of such receptor, or its tyrosine-kinase domain, results in a reduced deposition of extracellular matrix proteins and chemokines in the thymus, and leads to an important inhibition of thymus settling by hematopoietic progenitors. Furthermore, an imbalance of the signals transmitted by EphB2/ephrin-B complex prevents proper intrathymic positioning of progenitor cells, possibly causing a blockade in thymocyte maturation. Finally, we demonstrated that the lack of EphB2 receptor or signaling does not change the expression level of integrins and chemokine receptors on hematopoietic progenitors and thymocytes, but possibly modulates the activity of these receptors and the cell migration activity through hapto and chemotactic stimuli. Taken together, our results point to an important participation of Eph/ephrin complex signaling and its cross-regulation with other receptors that modulates T-cell migration process, from thymus settling until the pr oper thymocyte development within the organ.
APA, Harvard, Vancouver, ISO, and other styles
9

Soskis, Michael. "A Chemical-Genetic Study of EphB Receptor Tyrosine Kinase Signaling in the Developing Nervous System." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10525.

Full text
Abstract:
EphB receptor tyrosine kinases regulate cell-cell contacts throughout nervous system development, mediating processes as diverse as axon guidance, topographic mapping, neuronal migration and synapse formation. EphBs bind to a group of ligands, ephrin-Bs, which span the plasma membrane, thus allowing for bidirectional signaling between cells. Since EphBs are capable of multiple modes of signaling, and since they regulate numerous interdependent stages of development, it has been challenging to define which signaling functions of EphBs mediate particular developmental events. To overcome this hurdle, we developed an approach combining chemical biology with genetic engineering to reversibly inhibit EphB receptors in vivo. By mutating a residue in the receptor’s ATP-binding pocket, we rendered its kinase activity sensitive to reversible inhibition by PP1 analogs that do not inhibit wild type receptors. We engineered triple knockin mice bearing this mutation in which the kinase activity of EphB1, EphB2, and EphB3 can be rapidly, reversibly, and specifically blocked. Since we are able to block the kinase activity of EphBs while leaving their scaffolding and reverse signaling capabilities intact, we can precisely isolate the role of the kinase domain. In addition, acute inhibition can circumvent the developmental compensation that may occur after genetic mutations and can even allow the controlled study of EphBs in the mature brain and in disease models. Using these mice, termed analog-sensitive EphB triple knockin (AS-EphB TKI) mice, we demonstrate a requirement for the kinase-dependent signaling of EphBs in the collapse of retinal ganglion cell growth cones in vitro and the guidance of retinal axons at the optic chiasm in vivo. In addition, we show that the formation of several cortical axon tracts, including the corpus callosum, requires EphB tyrosine kinase signaling. In contrast, we find that steps in synapse development that are thought to be EphB-dependent occur normally when the kinase activity of EphBs is inhibited. We conclude that a cardinal in vivo function of EphB signaling, the ability to mediate axon guidance via growth cone repulsion, requires the tyrosine kinase activity of EphBs, while the development of functional excitatory synapses is independent of EphB tyrosine kinase activity.
APA, Harvard, Vancouver, ISO, and other styles
10

McGuire, David Robert. "Silencing Endothelial EphA4 Alters Transcriptional Regulation of Angiogenic Factors to Promote Vessel Recovery Following TBI." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99318.

Full text
Abstract:
Traumatic brain injury (TBI) can cause a number of deleterious effects to the neurovascular system, including reduced cerebral blood flow (CBF), vascular regression, and ischemia, resulting in cognitive decline. Research into therapeutic targets to restore neurovascular function following injury has identified endothelial EphA4 receptor tyrosine kinase as a major regulator of vascular regrowth. The research outlined herein utilizes an endothelial-specific EphA4 knockout mouse model (KO-EphA4flf/Tie2-Cre) to determine the extent to which this receptor may influence vascular regrowth following TBI. Analysis of the colocalization and proximity of endothelial and mural cell markers (i.e. PECAM-1 and PDGFRβ, respectively) in immunohistochemically-stained brain sections demonstrates that EphA4 silencing does not seem to affect the physical association between, nor total amounts of, endothelial cells and pericytes, between genotypes by 4 days post-injury (dpi). Nevertheless, these measures demonstrate that these cell types may preferentially proliferate and/or expand into peri-lesion tissue in both KO-EphA4flf/Tie2-Cre) and WT-EphA4fl/fl mice. These data further suggest that both genotypes experience homogeneity of PECAM-1 and PDGFRβ expression between regions of the injury cavity. Gene expression analysis using mRNA samples from both genotypes reveals that KO-EphA4flf/Tie2-Cre CCI-injured mice experience increased expression of Vegfa, Flt1, and Fn (Fibronectin) compared to sham-injured condition knockouts. These results demonstrate changes in expression of angiogenic factors in the absence of early differences in patterns of vessel formation, which may underlie improved vascular regrowth, as well as outline a potential mechanism wherein the interplay between these factors and EphA4 silencing may lead to improved cognitive outcomes following TBI.
Master of Science
Every day in the United States, an average of 155 people die due to the consequences of traumatic brain injury (TBI), with many survivors suffering life-long debilitating effects, including deficits in behavior, mobility, and cognitive ability. Because of this, there is a need for researchers to identify therapeutic strategies to stimulate recovery and improve patient outcomes. Recent advancements in the field of vascular biology have identified the regrowth of the blood vessels in the brain following TBI-induced damage as an important step in the recovery process, since the resulting increases in blood flow to damaged tissue will provide oxygen and nutrients necessary to fuel recovery. The work presented in this Masters thesis follows in this vein by examining a protein receptor known as EphA4, which is found on cells within blood vessels and has been implicated in reducing the rate of vessel growth under injury conditions. By blocking the activity of EphA4, we hoped to find increased vascular regrowth following brain injury in mice. During the experiments outlined herein, it was found that there were no statistically significant differences in vessel-associated cell densities between mice with or without EphA4 activity 4 days after injury, but there were differences in the levels of proteins and/or signals associated with vessel growth. Based on these results, we conclude that removing EphA4 activity increases expression of these pro-vessel growth proteins in mouse brains following injury at these early time points, potentially leading to increased vessel growth and improved recovery over subsequent weeks following injury.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "EphB4 receptor"

1

Makowiecki, Mark Paul. Characterizing the role of EphB4 receptor tyrosine kinase during Xenopus gastrulation. 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "EphB4 receptor"

1

Gavazzi, Isabella. "Ephb receptors and persistent pain." In An Introduction to Pain and its Relation to Nervous System Disorders, 201–24. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118455968.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, M. C., R. W. Cho, and P. F. Worley. "Glutamate Receptor Clusters: Narp, EphB2 Receptor, Stargazin." In Encyclopedia of Neuroscience, 895–99. Elsevier, 2009. http://dx.doi.org/10.1016/b978-008045046-9.00363-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salvucci, Ombretta, and Giovanna Tosato. "Essential Roles of EphB Receptors and EphrinB Ligands in Endothelial Cell Function and Angiogenesis." In Advances in Cancer Research, 21–57. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-386503-8.00002-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "EphB4 receptor"

1

Yang, Nai-Ying Michelle, Nikki Noren Hooten, and Elena B. Pasquale. "Abstract 3115: Ephrin-dependent and -independent activities of the receptor tyrosine kinase EphB4." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dopeso, Higinio, Silvia Mateo-Lozano, Veronica Davalos, Rocco Mazzolini, Paulo Rodrigues, Laura Lagares-Tena, Julian Ceron, et al. "Abstract 5756: The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chakravarti, Nitin, Jonathan L. Curry, Roland L. Bassett, and Victor G. Prieto. "Abstract 596: Differential cellular localization of Ephrin receptor tyrosine kinase B4 (EphB4) in melanoma progression." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Grace X., Binyun Ma, Valery G. Krasnoperov, Imran Siddiqi, Akash Sali, Gangning Liang, Inderbir S. Gill, et al. "Abstract 3139: EphB4-EphrinB2 receptor-ligand are downstream effectors and novel targets of PTEN deficient prostate cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Grace X., Binyun Ma, Valery G. Krasnoperov, Imran Siddiqi, Akash Sali, Gangning Liang, Inderbir S. Gill, et al. "Abstract 3139: EphB4-EphrinB2 receptor-ligand are downstream effectors and novel targets of PTEN deficient prostate cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-3139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

You, Jian, Chiyi Xiong, and Chun Li. "Abstract 5694: Targeted photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres directed at EphB4 receptors." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Shervin D., Prakash Rath, Bachchu Lal, Jean-Philippe Richard, Yunqing Li Li, C. Rory Goodwin, John Laterra, and Shuli Xia. "Abstract 4311: EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Priddy, Samuel, Phylip Chen, Nathan Rossi, and Robert A. Johnson. "Abstract 3919: Transformation of mouse embryonic neuronal stem cells by EphB2 requires receptor mediated activation of the MAPK pathway." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhatia, Shilpa, Anastacia Griego, Shelby Lennon, Ayman Oweida, Jaspreet Sharma, Christina Rohmer, Nomin Uyanga, et al. "Abstract 2946: Role of EphB3 receptor in mediating head and neck tumor growth, cell migration, and response to PI3K inhibitor." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2946.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "EphB4 receptor"

1

Pasquale, Elena B. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada497184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pasquale, Elena B. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada462906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pasquale, Elena B. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada479575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography