To see the other types of publications on this topic, follow the link: EphrinA.

Journal articles on the topic 'EphrinA'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'EphrinA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Minami, Masayoshi, Tatsuya Koyama, Yuki Wakayama, Shigetomo Fukuhara, and Naoki Mochizuki. "EphrinA/EphA signal facilitates insulin-like growth factor-I–induced myogenic differentiation through suppression of the Ras/extracellular signal–regulated kinase 1/2 cascade in myoblast cell lines." Molecular Biology of the Cell 22, no. 18 (2011): 3508–19. http://dx.doi.org/10.1091/mbc.e11-03-0183.

Full text
Abstract:
Insulin-like growth factor-I (IGF-I) activates not only the phosphatidylinositol 3-kinase (PI3K)–AKT cascade that is essential for myogenic differentiation but also the extracellular signal–regulated kinase (ERK) 1/2 cascade that inhibits myogenesis. We hypothesized that there must be a signal that inhibits ERK1/2 upon cell–cell contact required for skeletal myogenesis. Cell–cell contact–induced engagement of ephrin ligands and Eph receptors leads to downregulation of the Ras-ERK1/2 pathway through p120 Ras GTPase-activating protein (p120RasGAP). We therefore investigated the significance of the ephrin/Eph signal in IGF-I–induced myogenesis. EphrinA1-Fc suppressed IGF-I–induced activation of Ras and ERK1/2, but not that of AKT, in C2C12 myoblasts, whereas ephrinB1-Fc affected neither ERK1/2 nor AKT activated by IGF-I. IGF-I–dependent myogenic differentiation of C2C12 myoblasts was potentiated by ephrinA1-Fc. In p120RasGAP-depleted cells, ephrinA1-Fc failed to suppress the Ras-ERK1/2 cascade by IGF-I and to promote IGF-I–mediated myogenesis. EphrinA1-Fc did not promote IGF-I–dependent myogenesis when the ERK1/2 was constitutively activated. Furthermore, a dominant-negative EphA receptor blunted IGF-I–induced myogenesis in C2C12 and L6 myoblasts. However, the inhibition of IGF-I–mediated myogenesis by down-regulation of ephrinA/EphA signal was canceled by inactivation of the ERK1/2 pathway. Collectively, these findings demonstrate that the ephrinA/EphA signal facilitates IGF-I–induced myogenesis by suppressing the Ras-ERK1/2 cascade through p120RasGAP in myoblast cell lines.
APA, Harvard, Vancouver, ISO, and other styles
2

PRESTOZ, LAETITIA, ELLI CHATZOPOULOU, GREGORY LEMKINE, et al. "Control of axonophilic migration of oligodendrocyte precursor cells by Eph–ephrin interaction." Neuron Glia Biology 1, no. 1 (2004): 73–83. http://dx.doi.org/10.1017/s1740925x04000109.

Full text
Abstract:
The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell–cell and matrix–cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB 2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs. Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph–ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.
APA, Harvard, Vancouver, ISO, and other styles
3

Riedl, Jurgen A., Dominique T. Brandt, Eduard Batlle, Leo S. Price, Hans Clevers, and Johannes L. Bos. "Down-regulation of Rap1 activity is involved in ephrinB1-induced cell contraction." Biochemical Journal 389, no. 2 (2005): 465–69. http://dx.doi.org/10.1042/bj20050048.

Full text
Abstract:
Ephrins are cell surface ligands that activate Eph receptor tyrosine kinases. This ligand–receptor interaction plays a central role in the sorting of cells. We have previously shown that the ephrinB–EphB signalling pathway is also involved in the migration of intestinal precursor cells along the crypts. Using the colon cell line DLD1 expressing the EphB2 receptor, we showed that stimulation of these cells with soluble ephrinB1 results in a rapid retraction of cell extensions and a detachment of cells. On ephrinB1 stimulation, the small GTPases Rho and Ras are activated and Rap1 is inactivated. Importantly, when a constitutively active Rap1 mutant was introduced into these cells, ephrinB1-induced retraction was inhibited. From these results, we conclude that down-regulation of Rap1 is a prerequisite for ephrin-induced cell retraction in colon cells.
APA, Harvard, Vancouver, ISO, and other styles
4

Kuang, Shao-qing, Zhi-Hong Fang, Gonzalo Lopez, Weigang Tong, Hui Yang, and Guillermo Garcia-Manero. "Eph Receptor Tyrosine Kinases and Ephrin Ligands Are Epigenetically Inactivated in Acute Lymphoblastic Leukemia and Are Potential New Tumor Suppressor Genes in Human Leukemia." Blood 110, no. 11 (2007): 2128. http://dx.doi.org/10.1182/blood.v110.11.2128.2128.

Full text
Abstract:
Abstract The Eph (erythroprotein-producing hepatoma amplified sequence) family receptor tyrosine kinases and their ephrin ligands (ephrins) are involved in a variety of functions in normal cell development and cancer. We have identified several members of this family as potential targets of aberrant DNA methylation using Methylated CpG Island Amplification (MCA) / DNA promoter microarray technology. This is of importance as there are no prior reports of potential Eph receptor or Ephrin epigenetic inactivation in human leukemia. To further investigate the role of Eph receptor and ephrin family genes in leukemia, we have analyzed their DNA methylation status in a panel of 23 leukemia cell lines and 65 primary ALL patient samples. Aberrant DNA methylation of 9 of these genes (EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3) was detected in multiple leukemia cell lines but not in normal samples by bisulfite pyrosequencing. In ALL patient samples, the frequencies of DNA methylation detected in the promoter regions of these genes ranged from 23% to 87% for EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3. Expression analysis of 3 of these genes (EPHA5, EPHB4 and Ephrin B2) in leukemia cell lines by real-time PCR further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with DNA methyltransferase inhibitor 5′-aza-2′-deoxycytidine resulted in gene re-expression. Forced overexpression of EPHB4 using a lentivirus transduction system in Raji cell lines resulted in decreased cell proliferation and adhesion-independent cell growth, as well as in an increase in staurosporine induction of apoptosis. In addition, EPHB4 overexpression resulted in a significant downregulation of phosphorylated Akt pathway but had no effect on mitogen-activated protein kinase pathway. In summary, we describe for the first time the epigenetic suppression of Ephrin receptors and their ligands in human leukemia, indicating that these genes may be potential tumor suppressors in leukemia. Targeting of these pathways may result in the development of new potential therapies and biomarkers for patients with ALL.
APA, Harvard, Vancouver, ISO, and other styles
5

Sullivan, Chelsea S., Vishwa Mohan, Paul B. Manis, et al. "Developmental Regulation of Basket Interneuron Synapses and Behavior through NCAM in Mouse Prefrontal Cortex." Cerebral Cortex 30, no. 8 (2020): 4689–707. http://dx.doi.org/10.1093/cercor/bhaa074.

Full text
Abstract:
Abstract Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Hui, Kavi Devraj, Kerstin Möller, Stefan Liebner, Markus Hecker, and Thomas Korff. "EphrinB-mediated reverse signalling controls junctional integrity and pro-inflammatory differentiation of endothelial cells." Thrombosis and Haemostasis 112, no. 07 (2014): 151–63. http://dx.doi.org/10.1160/th13-12-1034.

Full text
Abstract:
SummaryThe EphB/ephrinB receptor-ligand system is pivotal for the development of the embryonic vasculature and for angiogenesis in the adult organism. We observed that (i) the expression of ephrinB2 and ephrinB1 is up-regulated in capillaries during inflammation, that (ii) these ligands are localised on the luminal endothelial surface, and that (iii) they interact with the ephrinB-receptor EphB2 on monocyte/macrophages. This study delineates the impact of ephrinB-mediated reverse signalling on the integrity and proinflammatory differentiation of the endothelium. To this end, in vitro analyses with human cultured endothelial cells reveal that knockdown of ephrinB2 or ephrinB1 impairs monocyte transmigration through the endothelium. While ephrinB2 but not ephrinB1 interacts with PECAM-1 (CD31) in this context, reverse signalling by ephrinB1 but not ephrinB2 elicits a c-Jun N-terminal kinase (JNK)-dependent up-regulation of E-selectin expression. Furthermore, treatment of endothelial cells with soluble EphB2 receptor bodies or EphB2-overexpressing mouse myeloma cells links ephrinB2 to PECAM-1 and induces its Src-dependent phosphorylation while diminishing Src homology phosphotyrosyl phosphatase-2 (SHP-2) activity and increasing endothelial cell permeability. We conclude that extravasation of EphB2 positive leukocyte populations is facilitated by lowering the integrity of endothelial cell junctions and enhancing the pro-inflammatory phenotype of the endothelium through activation of ephrinB ligands.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Xuan, Liu Xiaoli, Na Xu, et al. "EphrinB2/EphB4 Interaction Promotes Myeloid Leukemia Cell Invasion through RhoA-Mediated Mechanism." Blood 124, no. 21 (2014): 1018. http://dx.doi.org/10.1182/blood.v124.21.1018.1018.

Full text
Abstract:
Abstract Background and Objective: Several studies have reported the up-regulation of EphB receptor-tyrosine kinases and ephrinB ligands in a variety of tumors, suggesting a functional relation between EphB/ephrinB signaling and tumor progression. However, how they regulate the invasiveness of myeloid leukemia cells were still unknown. Our previously study suggested that EphB4 were highly expressed in patients with extramedullary leukemia compared with patients without extramedullary leukemia, which indicated that the expression of EphB4 was related with myeloid leukemia cell invasion. To address the molecular mechanism, we aimed to characterize the role of EphB4 and ephrinB2 ligands in the interaction of myeloid leukemia cells. Methods: To clarify the question, myeloid leukemia cell lines (K562 cells and THP-1 cells) treated with clustered ephrinA1–Fc proteins, ephrinB2–Fc proteins and Fc proteins were cultured in vitro, then migration and invasion were determined by transwell assay according to different time. Pulldown western immunoblot analysis were used to detect the level of GTP-RhoA and total RhoA; the phosphorylation of EphB4 and MMP9 expression were also determined by immunoblot analysis before and after the treatment of different clustered Fc proteins. Results: The results showed that after ephrinB2–Fc stimulation, the numbers of K562 cells migrating through transwell chamber were significantly enhanced compared to Fc proteins stimulation (1.85-fold, P=0.033), meanwhile, the numbers of K562 cells invading the matrigel also enhanced (1.46 -fold, P=0.025). However, the numbers of K562 cells migrating through transwell chamber after ephrinA1–Fc stimulation didn’t significantly increase compared to Fc proteins stimulation (P=0.411), and the numbers of K562 cells invading the matrigel also didn’t enhanced (P=0.072) after ephrinA1–Fc stimulation. Moreover, after ephrinB2–Fc stimulation, the numbers of THP-1 cells migrating through transwell chamber were significantly enhanced compared to Fc proteins stimulation (2.25-fold, P<0.01), meanwhile, the numbers of THP-1 cells invading the matrigel also enhanced (1.66 -fold, P<0.01). However, the numbers of THP-1 cells migrating through transwell chamber and the numbers of THP-1 cells invading the matrigel didn’t significantly enhanced (P>0.05, P>0.05) after ephrinA1–Fc stimulation. Furthermore, EphB4 immunoprecipitation followed by immunoblotting with anti-phosphotyrosine antibody revealed that EphB4 is phosphorylated on tyrosine in K562 cells after ephrinB2–Fc stimulation. Additionally, the level of active RhoA (GTP-RhoA) and MMP9 in K562 cells were both significantly increased in response to EphB4 receptor activation with its ligand ephrin-B2-Fc ( P<0.05). Conclusions: These findings suggested that EphB4/EprinB2 signaling played an important role in myeloid leukemia cells progression by promoting their migratory ability, activating RhoA activity and increasing MMP9 expression. Our findings reveal a novel regulation of this intriguing receptor/ligand family that contributes to the cell invasiveness of myeloid leukemia cells. Disclosures No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
8

Prospéri, Marie-Thérèse, Priscilla Lépine, Florent Dingli, et al. "Myosin 1b functions as an effector of EphB signaling to control cell repulsion." Journal of Cell Biology 210, no. 2 (2015): 347–61. http://dx.doi.org/10.1083/jcb.201501018.

Full text
Abstract:
Eph receptors and their membrane-tethered ligands, the ephrins, have important functions in embryo morphogenesis and in adult tissue homeostasis. Eph/ephrin signaling is essential for cell segregation and cell repulsion. This process is accompanied by morphological changes and actin remodeling that drives cell segregation and tissue patterning. The actin cortex must be mechanically coupled to the plasma membrane to orchestrate the cell morphology changes. Here, we demonstrate that myosin 1b that can mechanically link the membrane to the actin cytoskeleton interacts with EphB2 receptors via its tail and is tyrosine phosphorylated on its tail in an EphB2-dependent manner. Myosin 1b regulates the redistribution of myosin II in actomyosin fibers and the formation of filopodia at the interface of ephrinB1 and EphB2 cells, which are two processes mediated by EphB2 signaling that contribute to cell repulsion. Together, our results provide the first evidence that a myosin 1 functions as an effector of EphB2/ephrinB signaling, controls cell morphology, and thereby cell repulsion.
APA, Harvard, Vancouver, ISO, and other styles
9

Kojima, Takashi, Tae-Young Chung, Jin-Hong Chang, Rony Sayegh, Fabio H. Casanova, and Dimitri T. Azar. "Comparison of EphA Receptor Tyrosine Kinases and ephrinA Ligand Expression to EphB-ephrinB in Vascularized Corneas." Cornea 26, no. 5 (2007): 569–78. http://dx.doi.org/10.1097/ico.0b013e3180335526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gaitanos, Thomas N., Jorg Koerner, and Ruediger Klein. "Tiam–Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion." Journal of Cell Biology 214, no. 6 (2016): 735–52. http://dx.doi.org/10.1083/jcb.201512010.

Full text
Abstract:
Ephrin receptors interact with membrane-bound ephrin ligands to regulate contact-mediated attraction or repulsion between opposing cells, thereby influencing tissue morphogenesis. Cell repulsion requires bidirectional trans-endocytosis of clustered Eph–ephrin complexes at cell interfaces, but the mechanisms underlying this process are poorly understood. Here, we identified an actin-regulating pathway allowing ephrinB+ cells to trans-endocytose EphB receptors from opposing cells. Live imaging revealed Rac-dependent F-actin enrichment at sites of EphB2 internalization, but not during vesicle trafficking. Systematic depletion of Rho family GTPases and their regulatory proteins identified the Rac subfamily and the Rac-specific guanine nucleotide exchange factor Tiam2 as key components of EphB2 trans-endocytosis, a pathway previously implicated in Eph forward signaling, in which ephrins act as in trans ligands of Eph receptors. However, unlike in Eph signaling, this pathway is not required for uptake of soluble ligands in ephrinB+ cells. We also show that this pathway is required for EphB2-stimulated contact repulsion. These results support the existence of a conserved pathway for EphB trans-endocytosis that removes the physical tether between cells, thereby enabling cell repulsion.
APA, Harvard, Vancouver, ISO, and other styles
11

Hutchins, B. I., and L. Li. "EphrinA and TrkB Interact to Promote Axon Branching." Journal of Neuroscience 29, no. 14 (2009): 4329–31. http://dx.doi.org/10.1523/jneurosci.0238-09.2009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gong, Jingyi, Roman Körner, Louise Gaitanos, and Rüdiger Klein. "Exosomes mediate cell contact–independent ephrin-Eph signaling during axon guidance." Journal of Cell Biology 214, no. 1 (2016): 35–44. http://dx.doi.org/10.1083/jcb.201601085.

Full text
Abstract:
The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2+ EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2+ EVs in neural development and synapse physiology.
APA, Harvard, Vancouver, ISO, and other styles
13

Pensold, Daniel, Julia Gehrmann, Georg Pitschelatow, et al. "The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling." International Journal of Molecular Sciences 22, no. 3 (2021): 1332. http://dx.doi.org/10.3390/ijms22031332.

Full text
Abstract:
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
APA, Harvard, Vancouver, ISO, and other styles
14

BONG, Yong-Sik, Yeon-Hwa PARK, Hyun-Shik LEE, Kathleen MOOD, Akihiko ISHIMURA, and Ira O. DAAR. "Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein." Biochemical Journal 377, no. 2 (2004): 499–507. http://dx.doi.org/10.1042/bj20031449.

Full text
Abstract:
The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, are thought to play a role in the regulation of cell adhesion and migration during development by mediating cell-to-cell signalling events. The transmembrane ephrinB protein is a bidirectional signalling molecule that sends a forward signal through the activation of its cognate receptor tyrosine kinase residing on another cell. The reverse signal is transduced into the ephrinB-expressing cell via tyrosine phosphorylation of its conserved C-terminal cytoplasmic domain. Previous work from our laboratory has implicated the activated FGFR1 (fibroblast growth factor receptor 1) as a regulator of a de-adhesion signal that results from overexpression of ephrinB1. In the present study, we report the isolation of Xenopus Grb4 (growth-factor-receptor-bound protein 4), an ephrinB1-interacting protein, and we show that when expressed in Xenopus oocytes, ephrinB1 interacts with Grb4 in the presence of an activated FGFR1. Amino acid substitutions were generated in Grb4, and the resulting mutants were expressed along with ephrinB1 and an activated FGFR in Xenopus oocytes. Co-immunoprecipitation analysis shows that the FLVR motif within the Src homology 2 domain of Xenopus Grb4 is vital for this phosphorylation-dependent interaction with ephrinB1. More importantly, using deletion and substitution analysis we identify the tyrosine residue at position 298 of ephrinB1 as being required for the physical interaction with Grb4, whereas Tyr-305 and Tyr-310 are dispensable. Moreover, we show that the region between amino acids 301 and 304 of ephrinB1 is also required for this critical tyrosine-phosphorylation-dependent event.
APA, Harvard, Vancouver, ISO, and other styles
15

Matsui, Toshimitsu, Hiroshi Matsuoka, Akira Tamekane, et al. "Cell Adhesion and Migration Regulated by EphB6 Expressed on Human Hematopoietic Progenitors." Blood 106, no. 11 (2005): 1386. http://dx.doi.org/10.1182/blood.v106.11.1386.1386.

Full text
Abstract:
Abstract Normal human hematopoietic progenitors as well as leukemia/lymphoma cells express kinase-defective EphB6 receptors. The only unique high affinity ligand for EphB6 among eight known mammalian ephrins, ephrins-B2 is expressed not only on hematopoietic malignancies, but also on mesenchymal stem cells. However, the biological functions of the receptor and its ligand in hematopoietic cells are largely unknown. In the present study, we showed that the interaction between EphB6 and ephrinB2 could initiate forward as well as reverse signaling in vitro. Both pre-clustered and unclustered ligands could trigger the signal transduction, but pre-clustered ones more rapidly down-regulated the signaling. We also examined the EphB6/ephrinB2 function in cell adhesion and migration. Figure Figure HEK-EphB6 cells placed in the upper chamber of a Transwell apparatus, in which the lower side of filter was coated with different concentrations of ephrin-B2-Fc or Fc, were allowed to migrate to the lower side at 37°C overnight. Vector-transfected cells were used as controls. The cells that had migrated to the lower side of filter were stained, photographed. A BSA-coated filter is shown as a control. EphB6 exerted biphasic effects in response to different concentrations of the ephrin-B2. EphB6 promoted cell adhesion and migration when stimulated with low concentrations of ephrin-B2, whereas it induced repulsion and inhibited migration upon stimulation with high concentrations of ephrin-B2. A truncated EphB6 receptor lacking the cytoplasmic domain showed monophasic positive effects on cell adhesion and migration, indicating that the cytoplasmic domain is essential for the negative effects. We further explored the signal transduction of the biphasic effects. Figure Figure The Src family kinase, Fyn was co-immunoprecipitated with anti-EphB6 antibody in the absence or presence of ephrin-B2 stimulation. High concentrations of ephrin-B2 induced tyrosine phosphorylation of EphB6 through a Src family kinase activity. These results indicate that EphB6 can both positively and negatively regulate cell adhesion and migration, and suggest that tyrosine phosphorylation of the kinase-defective EphB6 receptor by a Src family kinase acts as the molecular switch for the functional transition. Thus, EphB6 expressed on hematopoietic cells may play an important role in the regulation of cell homing to hematopoietic tissues as well as leukemia cell infiltration.
APA, Harvard, Vancouver, ISO, and other styles
16

Kitamura, Takuya, Yukihito Kabuyama, Akihisa Kamataki, et al. "Enhancement of lymphocyte migration and cytokine production by ephrinB1 system in rheumatoid arthritis." American Journal of Physiology-Cell Physiology 294, no. 1 (2008): C189—C196. http://dx.doi.org/10.1152/ajpcell.00314.2007.

Full text
Abstract:
Although the etiology of early events in rheumatoid arthritis (RA) remains undefined, an anomaly in T cell homeostasis and hyperproliferation of synovial-lining cells are involved in the disease process. Since it has been reported that the ephrin/Eph receptor system plays important signaling roles in inflammation processes, we attempted to examine ephrinB molecules in T cells and synovial cells derived from RA in this study. The expression level of ephrinB1 was significantly high in synovial fibroblasts and CD3-positive exudate lymphocytes in synovial tissues derived from patients with RA compared with those in osteoarthritis (OA). Protein and mRNA levels of ephrinB1 were also higher in peripheral blood lymphocytes (PBLs) prepared from patients with RA than those from normal controls. Similar results were obtained from an animal model of human RA, collagen antibody-induced arthritis mice. Moreover, a recombinant ephrinB1/Fc fusion protein stimulated normal PBLs to exhibit enhanced migration and production of TNF-α. EphrinB1/Fc also activated synovial cells established from patients with RA to produce IL-6. Tyrosine phosphorylation of EphB1 was induced in these cells by ephrinB1/Fc. The CpG islands in the 5′ upstream regulatory region of the ephrinB1 gene were hypomethylated in RA patients compared with those of normal donors. These results suggest that ephrinB1 and EphB1 receptors play an important role in the inflammatory states of RA, especially by affecting the population and function of T cells. Inhibition of the ephrinB/EphB system might be a novel target for the treatment of RA.
APA, Harvard, Vancouver, ISO, and other styles
17

Marler, K. J. M., E. Becker-Barroso, A. Martinez, et al. "A TrkB/EphrinA Interaction Controls Retinal Axon Branching and Synaptogenesis." Journal of Neuroscience 28, no. 48 (2008): 12700–12712. http://dx.doi.org/10.1523/jneurosci.1915-08.2008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xia, Yang, Cheng Luo, Shenjun Dai, and Dezhong Yao. "Increased EphA/ephrinA expression in hippocampus of pilocarpine treated mouse." Epilepsy Research 105, no. 1-2 (2013): 20–29. http://dx.doi.org/10.1016/j.eplepsyres.2013.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Imondi, Ralph, and Zaven Kaprielian. "Commissural axon pathfinding on the contralateral side of the floor plate: a role for B-class ephrins in specifying the dorsoventral position of longitudinally projecting commissural axons." Development 128, no. 23 (2001): 4859–71. http://dx.doi.org/10.1242/dev.128.23.4859.

Full text
Abstract:
In both invertebrate and lower vertebrate species, decussated commissural axons travel away from the midline and assume positions within distinct longitudinal tracts. We demonstrate that in the developing chick and mouse spinal cord, most dorsally situated commissural neuron populations extend axons across the ventral midline and through the ventral white matter along an arcuate trajectory on the contralateral side of the floor plate. Within the dorsal (chick) and intermediate (mouse) marginal zone, commissural axons turn at a conserved boundary of transmembrane ephrin expression, adjacent to which they form a discrete ascending fiber tract. In vitro perturbation of endogenous EphB-ephrinB interactions results in the failure of commissural axons to turn at the appropriate dorsoventral position on the contralateral side of the spinal cord; consequently, axons inappropriately invade more dorsal regions of B-class ephrin expression in the dorsal spinal cord. Taken together, these observations suggest that B-class ephrins act locally during a late phase of commissural axon pathfinding to specify the dorsoventral position at which decussated commissural axons turn into the longitudinal axis.
APA, Harvard, Vancouver, ISO, and other styles
20

Peixoto, Francisca O., Patrícia Pereira-Terra, Rute S. Moura, Emanuel Carvalho-Dias, Jorge Correia-Pinto, and Cristina Nogueira-Silva. "The Role of Ephrins-B1 and -B2 During Fetal Rat Lung Development." Cellular Physiology and Biochemistry 35, no. 1 (2015): 104–15. http://dx.doi.org/10.1159/000369679.

Full text
Abstract:
Background/ Aims: The knowledge of the molecular network that governs fetal lung branching is an essential step towards the discovery of novel therapeutic targets against pulmonary pathologies. Lung consists of two highly branched systems: airways and vasculature. Ephrins and its receptors, Eph, have been implicated in cardiovascular development, angiogenesis and vascular remodeling. This study aims to clarify the role of these factors during lung morphogenesis. Methods: Ephrins-B1, -B2 and receptor EphB4 expression pattern was assessed in fetal rat lungs between 15.5 and 21.5 days post-conception, by immunohistochemistry. Fetal rat lungs were harvested at 13.5 dpc, cultured during 4 days and treated with increasing doses of ephrins-B1 and -B2 and the activity of key signaling pathways was assessed. Results: Ephrin-B1 presents mesenchymal expression, whereas ephrin-B2 and its receptor EphB4 were expressed by the epithelium. Both ephrins stimulated pulmonary branching. Moreover, while ephrin-B1 did not affect the pathways studied, ephrin-B2 supplementation decreased activity of JNK, ERK and STAT. This study characterizes the expression pattern of ephrins-B1, -B2 and EphB4 receptor throughout rat lung development. Conclusion: Our data highlight a possible role of ephrins as molecular stimulators of lung morphogenesis. Moreover, it supports the idea that classical vascular factors might play a role as airway growth promoters.
APA, Harvard, Vancouver, ISO, and other styles
21

Godfrey, Keith B., and Nicholas V. Swindale. "Modeling Development in Retinal Afferents: Retinotopy, Segregation, and EphrinA/EphA Mutants." PLoS ONE 9, no. 8 (2014): e104670. http://dx.doi.org/10.1371/journal.pone.0104670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Miura, Koichi, Jin-Min Nam, Chie Kojima, Naoki Mochizuki, and Hisataka Sabe. "EphA2 Engages Git1 to Suppress Arf6 Activity Modulating Epithelial Cell–Cell Contacts." Molecular Biology of the Cell 20, no. 7 (2009): 1949–59. http://dx.doi.org/10.1091/mbc.e08-06-0549.

Full text
Abstract:
ADP-ribosylation factor (Arf) 6 activity is crucially involved in the regulation of E-cadherin–based cell–cell adhesions. Erythropoietin-producing hepatocellular carcinoma (Eph)-family receptors recognize ligands, namely, ephrins, anchored to the membrane of apposing cells, and they mediate cell–cell contact-dependent events. Here, we found that Arf6 activity is down-regulated in Madin-Darby canine kidney cells, which is dependent on cell density and calcium ion concentration, and we provide evidence of a novel signaling pathway by which ligand-activated EphA2 suppresses Arf6 activity. This EphA2-mediated suppression of Arf6 activity was linked to the induction of cell compaction and polarization, but it was independent of the down-regulation of extracellular signal-regulated kinase 1/2 kinase activity. We show that G protein-coupled receptor kinase-interacting protein (Git) 1 and noncatalytic region of tyrosine kinase (Nck) 1 are involved in this pathway, in which ligand-activated EphA2, via its phosphorylated Tyr594, binds to the Src homology 2 domain of Nck1, and then via its Src homology 3 domain binds to the synaptic localizing domain of Git1 to suppress Arf6 activity. We propose a positive feedback loop in which E-cadherin–based cell–cell contacts enhance EphA-ephrinA signaling, which in turn down-regulates Arf6 activity to enhance E-cadherin–based cell–cell contacts as well as the apical-basal polarization of epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
23

FINNE, Eivind F., Else MUNTHE, and Hans-Christian AASHEIM. "A new ephrin-A1 isoform (ephrin-A1b) with altered receptor binding properties abrogates the cleavage of ephrin-A1a." Biochemical Journal 379, no. 1 (2004): 39–46. http://dx.doi.org/10.1042/bj20031619.

Full text
Abstract:
Ephrins are ligands for the Eph receptor tyrosine kinases, which play important roles in patterning nervous and vascular systems. Ephrin-A1 is a glycosylphosphatidylinositol-anchored ligand that binds to the EphA receptor tyrosine kinases. In the present study, we have identified a new ephrin-A1 isoform, denoted ephrin-A1b (ephrin-A1 isoform b). Compared with the originally described ephrin-A1 sequence, ephrin-A1a [Holzman, Marks and Dixit (1990) Mol. Cell. Biol. 10, 5830–5838], ephrin-A1b lacks a segment of 22 amino acids (residues 131–152). At the transcript level, exon 3 is spliced out in the transcript encoding ephrin-A1b. Transfection of HEK-293T cells (human embryonic kidney 293 cells) with an ephrin-A1b-expressing plasmid resulted in a significant expression of the protein on the cell surface. However, soluble EphA2 receptor (EphA2-Fc) bound weakly to ephrin-A1b-expressing transfectants, but bound strongly to ephrin-A1a-expressing transfectants. Ephrins have been shown to undergo regulated cleavage after interaction with their receptors. This process is inhibited by co-expression of ephrin-A1a and ephrin-A1b, indicating that ephrin-A1b influences the cleavage process. Taken together, these findings indicate that this newly described isoform may regulate the function of its ephrin-A1a counterpart.
APA, Harvard, Vancouver, ISO, and other styles
24

Ratner, Stuart, Charles A. Schiffer, and Jeffrey A. Zonder. "Inhibition of Multiple Myeloma Cell Adhesion to Fibronectin by Ephrin Ligation." Blood 104, no. 11 (2004): 2360. http://dx.doi.org/10.1182/blood.v104.11.2360.2360.

Full text
Abstract:
Abstract Multiple myeloma (MM) cell adhesion to fibronectin (FN), mediated via VLA-4 and VLA-5, has been shown to induce resistance to several chemotherapeutic drugs. Disruption of MM cell adhesion to FN and other marrow microenvironment elements might therefore enhance the effects of therapy. We now present the first evidence that Eph-ephrin signaling may be exploited to inhibit MM cell binding to fibronectin. Ephs are transmembrane tyrosine kinases and ephrins are their cell-surface ligands. There are two classes of Ephs and ephrins, A and B. Both Ephs and ephrins can transduce repulsive signals that cause interacting cells to lose contact with each other and with extracellular matrix. We are not aware of any previous systematic study of Eph and ephrin expression or function in MM cells. We have found MM cell lines H929, U266, and RPMI 8226 express members of the A classes of both Ephs and ephrins, but not the B classes. First, we demonstrated ligation with commercially available anti-ephrin A3 antibody was followed by ephrin capping and shedding from the cell surface. We next explored whether ephrin ligation affects MM cell adhesiveness in culture. Whereas H929, U266, and RPMI 8226 cells adhered rapidly to fibronectin-coated plastic surfaces, all three cell lines failed completely to adhere to a mixed coating of FN and rabbit anti-ephrin A3 antibody for a period of 2 hrs. This effect was not seen with FN + normal rabbit Ig. This suggests binding of ephrin A3 (or another cross-reacting A-class ephrin) by solid-state antibody triggers intracellular signals that interfere with initial steps of integrin-mediated adhesion. After 2 hr, spontaneous partial recovery of adhesion occurred, reaching a plateau of approximately 30% of control values by 24 hr. We postulate this recovery occurs via clipping of the extracellular ephrin domain by transmembrane metalloproteases, since recovery of FN adhesion was partially prevented by the metalloprotease inhibitor GM6001 (25 uM). Also consistent with this theory, we found in a separate experiment that GM6001 reduced the shedding of cross-linked A-class ephrins from MM cell lines. In summary, we have demonstrated that manipulation of EPH-ephrin signaling can impair MM-cell adhesion to FN, and that this effect is enhanced by simultaneous inhibition of metalloprotease activity. We are currently studying the effect of A-class ephrin ligation on adhesion-mediated drug resistance in MM cell lines. We also intend to evaluate EPH-ephrin expression in marrow specimens from patients with MM.
APA, Harvard, Vancouver, ISO, and other styles
25

Suetterlin, Philipp, Katharine M. Marler, and Uwe Drescher. "Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections." Seminars in Cell & Developmental Biology 23, no. 1 (2012): 1–6. http://dx.doi.org/10.1016/j.semcdb.2011.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wu, Dan, Zhenhe Suo, Gunnar B. Kristensen, et al. "Prognostic value of EphA2 and EphrinA-1 in squamous cell cervical carcinoma." Gynecologic Oncology 94, no. 2 (2004): 312–19. http://dx.doi.org/10.1016/j.ygyno.2004.05.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Benjumeda, I., A. Escalante, C. Law, et al. "Uncoupling of EphA/ephrinA Signaling and Spontaneous Activity in Neural Circuit Wiring." Journal of Neuroscience 33, no. 46 (2013): 18208–18. http://dx.doi.org/10.1523/jneurosci.1931-13.2013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chong, Lisa D., Eui Kyun Park, Erin Latimer, Robert Friesel, and Ira O. Daar. "Fibroblast Growth Factor Receptor-Mediated Rescue of x-Ephrin B1-Induced Cell Dissociation in XenopusEmbryos." Molecular and Cellular Biology 20, no. 2 (2000): 724–34. http://dx.doi.org/10.1128/mcb.20.2.724-734.2000.

Full text
Abstract:
ABSTRACT The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. Genetic evidence suggests that ephrins may transduce signals and become tyrosine phosphorylated during embryogenesis. However, the induction and functional significance of ephrin phosphorylation is not yet clear. Here, we report that when we used ectopically expressed proteins, we found that an activated fibroblast growth factor (FGF) receptor associated with and induced the phosphorylation of ephrin B1 on tyrosine. Moreover, this phosphorylation reduced the ability of overexpressed ephrin B1 to reduce cell adhesion. In addition, we identified a region in the cytoplasmic tail of ephrin B1 that is critical for interaction with the FGF receptor; we also report FGF-induced phosphorylation of ephrins in a neural tissue. This is the first demonstration of communication between the FGF receptor family and the Eph ligand family and implicates cross talk between these two cell surface molecules in regulating cell adhesion.
APA, Harvard, Vancouver, ISO, and other styles
29

Zhou, Xuan, Liu Xiaoli, Na Xu, et al. "Activation Of EphrinB2/EphB4 Influences Myeloid Leukemia Cell Migration and Invasion." Blood 122, no. 21 (2013): 1360. http://dx.doi.org/10.1182/blood.v122.21.1360.1360.

Full text
Abstract:
Abstract Eph receptors and ephrin ligands are cell-surface molecules capable of bidirectional signaling that control cell-cell interactions, migration and invasion. However, their role and regulation in myeloid leukemia cells remain to be defined. To address the hypothesis that Ephrin/EphB is an important regulator of myeloid leukemia cell migration and invasion, we first screened the mRNA levels of 23 eph and ligand ephrin RTK family members in myeloid leukemia cells (K562, HL-60, THP-1) and mononuclear cells from healthy donors, then found that EphB4, EphA5, EfnA1 highly expressed in most myeloid leukemia cells compared to healthy donors(P<0.05). Both the mRNA and protein levels of EphB4 and EphA5 were detected in 13 primary myeloid leukemia cells (5 from patients with extramedullary leukemia among 13 cases) and 10 mononuclear cells from healthy donors by real-time RT-PCR and Immunoblot analysis. The results showed that both the mRNA and protein levels of EphB4 and EphA5 were higher in 13 primary myeloid leukemia cells relative to the 10 healthy donors (P=0.046). Moreover, the EphB4 were highly expressed in 5 patients with extramedullary leukemia compared with 8 patients without extramedullary leukemia. These findings indicated that EphB4 and EphA5 expression were correlated with the development of myeloid leukemia cells, moreover, EphB4 may be closely related with myeloid leukemia cell migration or invasion. To further clarified the question, migration were determined in leukemia cell lines (K562 cells) which were treated with clustered ephrinA1–Fc proteins, ephrinB2–Fc proteins and Fc proteins by transwell migration assay. Invasion were also determined by matrigel invasion assay. The results showed that, after ephrinB2–Fc stimulation, the numbers of K562 cells migrating through transwell chamber were significantly enhanced compared to Fc proteins stimulation (1.8 to 2.5-fold, P<0.05), meanwhile, the numbers of K562 cells invading the matrigel also enhanced (1.2 to 1.8-fold, P<0.05). However, after ephrinA1–Fc stimulation, the numbers of K562 cells migrating through transwell chamber didn’t significantly increase compared to Fc proteins stimulation (P>0.05), and the numbers of K562 cells invading the matrigel also didn’t enhanced (P>0.05). These findings indicated that ephrinB2–Fc could activate EphB4, leading to the change of myeloid leukemia cell migration and invasion. Further study may help to assess a promising potential of this protein to be used as a prognostic marker or as a target for a molecular therapy. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
30

Xu, Qiling, Georg Mellitzer, and David G. Wilkinson. "Roles of Eph receptors and ephrins in segmental patterning." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, no. 1399 (2000): 993–1002. http://dx.doi.org/10.1098/rstb.2000.0635.

Full text
Abstract:
Eph receptor tyrosine kinases and their membrane–bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol–anchored ephrin–A ligands, and EphB receptors bind to transmembrane ephrin–B proteins. Ephrin–B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact–dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.
APA, Harvard, Vancouver, ISO, and other styles
31

Gong, Jingyi, Thomas N. Gaitanos, Olivia Luu, et al. "Gulp1 controls Eph/ephrin trogocytosis and is important for cell rearrangements during development." Journal of Cell Biology 218, no. 10 (2019): 3455–71. http://dx.doi.org/10.1083/jcb.201901032.

Full text
Abstract:
Trogocytosis, in which cells nibble away parts of neighboring cells, is an intercellular cannibalism process conserved from protozoa to mammals. Its underlying molecular mechanisms are not well understood and are likely distinct from phagocytosis, a process that clears entire cells. Bi-directional contact repulsion induced by Eph/ephrin signaling involves transfer of membrane patches and full-length Eph/ephrin protein complexes between opposing cells, resembling trogocytosis. Here, we show that the phagocytic adaptor protein Gulp1 regulates EphB/ephrinB trogocytosis to achieve efficient cell rearrangements of cultured cells and during embryonic development. Gulp1 mediates trogocytosis bi-directionally by dynamic engagement with EphB/ephrinB protein clusters in cooperation with the Rac-specific guanine nucleotide exchange factor Tiam2. Ultimately, Gulp1’s presence at the Eph/ephrin cluster is a prerequisite for recruiting the endocytic GTPase dynamin. These results suggest that EphB/ephrinB trogocytosis, unlike other trogocytosis events, uses a phagocytosis-like mechanism to achieve efficient membrane scission and engulfment.
APA, Harvard, Vancouver, ISO, and other styles
32

Abdul-Aziz, Noraishah M., Mark Turmaine, Nicholas D. E. Greene, and Andrew J. Copp. "EphrinA-EphA receptor interactions in mouse spinal neurulation: implications for neural fold fusion." International Journal of Developmental Biology 53, no. 4 (2009): 559–68. http://dx.doi.org/10.1387/ijdb.082777na.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Abdul-Wajid, Sarah, Heidi Morales-Diaz, Stephanie M. Khairallah, and William C. Smith. "T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression." Cell Reports 13, no. 4 (2015): 829–39. http://dx.doi.org/10.1016/j.celrep.2015.09.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ivanov, Andrei I., Alexandre A. Steiner, Adrienne C. Scheck, and Andrej A. Romanovsky. "Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats." Physiological Genomics 21, no. 2 (2005): 152–60. http://dx.doi.org/10.1152/physiolgenomics.00043.2004.

Full text
Abstract:
Erythropoietin-producing hepatocellular (Eph) receptor tyrosine kinases and their ligands, ephrins, are involved in embryogenesis and oncogenesis by mediating cell adhesion and migration. Although ephrins can be induced by bacterial LPS in vitro, whether they are involved in inflammation in vivo is unknown. Using differential mRNA display, we found that a febrigenic dose of LPS (50 μg/kg iv) induces a strong transcriptional upregulation of ephrin-A1 in rat liver. We confirmed this finding by real-time RT-PCR. We then quantified the mRNA expression of different ephrins and Eph receptors at phases 1–3 of LPS fever in different organs. Febrile phases 2 (90 min post-LPS) and 3 (300 min) were characterized by robust upregulation (up to 16-fold) and downregulation (up to 21-fold) of several ephrins and Eph receptors. With the exception of EphA2, which showed upregulation in the brain at phase 2, expressional changes of Eph receptors and ephrins were limited to the LPS-processing organs: liver and lung. Characteristic, counter-directed changes in expressional regulation of Eph receptors and their corresponding ligands were found: upregulation of EphA2, downregulation of ephrin-A1 in the liver and lung at phase 2; downregulation of EphB3, upregulation of ephrin-B2 in the liver at phase 2; downregulation of EphA1 and EphA3, upregulation of ephrins-A1 and -A3 in liver at phase 3. In the liver, transcriptional changes of EphA2 and EphB3 at phase 2 were confirmed at protein level. These coordinated, phase-specific responses suggest that different sets of ephrins and Eph receptors may be involved in cellular events (such as disruption of tissue barriers and leukocyte transmigration) underlying different stages of systemic inflammatory response to LPS.
APA, Harvard, Vancouver, ISO, and other styles
35

Lawrenson, Isobel D., Sabine H. Wimmer-Kleikamp, Peter Lock, et al. "Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling." Journal of Cell Science 115, no. 5 (2002): 1059–72. http://dx.doi.org/10.1242/jcs.115.5.1059.

Full text
Abstract:
Eph receptor tyrosine kinases and ephrins regulate morphogenesis in the developing embryo where they effect adhesion and motility of interacting cells. Although scarcely expressed in adult tissues, Eph receptors and ephrins are overexpressed in a range of tumours. In malignant melanoma, increased Eph and ephrin expression levels correlate with metastatic progression. We have examined cellular and biochemical responses of EphA3-expressing melanoma cell lines and human epithelial kidney 293T cells to stimulation with polymeric ephrin-A5 in solution and with surfaces of defined ephrin-A5 densities. Within minutes, rapid reorganisation of the actin and myosin cytoskeleton occurs through activation of RhoA, leading to the retraction of cellular protrusions,membrane blebbing and detachment, but not apoptosis. These responses are inhibited by monomeric ephrin-A5, showing that receptor clustering is required for this EphA3 response. Furthermore, the adapter CrkII, which associates with tyrosine-phosphorylated EphA3 in vitro, is recruited in vivo to ephrin-A5-stimulated EphA3. Expression of an SH3-domain mutated CrkII ablates cell rounding, blebbing and detachment. Our results suggest that recruitment of CrkII and activation of Rho signalling are responsible for EphA3-mediated cell rounding, blebbing and de-adhesion, and that ephrin-A5-mediated receptor clustering and EphA3 tyrosine kinase activity are essential for this response.
APA, Harvard, Vancouver, ISO, and other styles
36

Arcas, Aida, David G. Wilkinson, and M. Ángela Nieto. "The Evolutionary History of Ephs and Ephrins: Toward Multicellular Organisms." Molecular Biology and Evolution 37, no. 2 (2019): 379–94. http://dx.doi.org/10.1093/molbev/msz222.

Full text
Abstract:
Abstract Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell–cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell–cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.
APA, Harvard, Vancouver, ISO, and other styles
37

Hornberger, Martin R., Dieter Dütting, Thomas Ciossek, et al. "Modulation of EphA Receptor Function by Coexpressed EphrinA Ligands on Retinal Ganglion Cell Axons." Neuron 22, no. 4 (1999): 731–42. http://dx.doi.org/10.1016/s0896-6273(00)80732-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brennaman, Leann H., Xuying Zhang, Hanjun Guan, et al. "Polysialylated NCAM and EphrinA/EphA Regulate Synaptic Development of GABAergic Interneurons in Prefrontal Cortex." Cerebral Cortex 23, no. 1 (2012): 162–77. http://dx.doi.org/10.1093/cercor/bhr392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Holm, R., S. Knopp, Z. Suo, C. Trope, and J. M. Nesland. "Expression of EphA2 and EphrinA-1 in vulvar carcinomas and its relation to prognosis." Journal of Clinical Pathology 60, no. 10 (2006): 1086–91. http://dx.doi.org/10.1136/jcp.2006.041194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dudanova, Irina, Graziana Gatto, and Rüdiger Klein. "GDNF Acts as a Chemoattractant to Support ephrinA-Induced Repulsion of Limb Motor Axons." Current Biology 20, no. 23 (2010): 2150–56. http://dx.doi.org/10.1016/j.cub.2010.11.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Negrete, Oscar A., David Chu, Hector C. Aguilar, and Benhur Lee. "Single Amino Acid Changes in the Nipah and Hendra Virus Attachment Glycoproteins Distinguish EphrinB2 from EphrinB3 Usage." Journal of Virology 81, no. 19 (2007): 10804–14. http://dx.doi.org/10.1128/jvi.00999-07.

Full text
Abstract:
ABSTRACT The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are lethal emerging paramyxoviruses. EphrinB2 and ephrinB3 have been identified as receptors for henipavirus entry. NiV and HeV share similar cellular tropisms and likely use an identical receptor set, although a quantitative comparison of receptor usage by NiV and HeV has not been reported. Here we show that (i) soluble NiV attachment protein G (sNiV-G) bound to cell surface-expressed ephrinB3 with a 30-fold higher affinity than that of sHeV-G, (ii) NiV envelope pseudotyped reporter virus (NiVpp) entered ephrinB3-expressing cells much more efficiently than did HeV pseudotyped particles (HeVpp), and (iii) NiVpp but not HeVpp entry was inhibited efficiently by soluble ephrinB3. These data underscore the finding that NiV uses ephrinB3 more efficiently than does HeV. Henipavirus G chimeric protein analysis implicated residue 507 in the G ectodomain in efficient ephrinB3 usage. Curiously, alternative versions of published HeV-G sequences show variations at residue 507 that can clearly affect ephrinB3 but not ephrinB2 usage. We further defined surrounding mutations (W504A and E505A) that diminished ephrinB3-dependent binding and viral entry without compromising ephrinB2 receptor usage and another mutation (E533Q) that abrogated both ephrinB2 and -B3 usage. Our results suggest that ephrinB2 and -B3 binding determinants on henipavirus G are distinct and dissociable. Global expression analysis showed that ephrinB3, but not ephrinB2, is expressed in the brain stem. Thus, ephrinB3-mediated viral entry and pathology may underlie the severe brain stem neuronal dysfunction seen in fatal Nipah viral encephalitis. Characterizing the determinants of ephrinB2 versus -B3 usage will further our understanding of henipavirus pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
42

Santiago, Alicia, and Carol A. Erickson. "Ephrin-B ligands play a dual role in the control of neural crest cell migration." Development 129, no. 15 (2002): 3621–32. http://dx.doi.org/10.1242/dev.129.15.3621.

Full text
Abstract:
Little is known about the mechanisms that direct neural crest cells to the appropriate migratory pathways. Our aim was to determine how neural crest cells that are specified as neurons and glial cells only migrate ventrally and are prevented from migrating dorsolaterally into the skin, whereas neural crest cells specified as melanoblasts are directed into the dorsolateral pathway. Eph receptors and their ephrin ligands have been shown to be essential for migration of many cell types during embryonic development. Consequently, we asked if ephrin-B proteins participate in the guidance of melanoblasts along the dorsolateral pathway, and prevent early migratory neural crest cells from invading the dorsolateral pathway. Using Fc fusion proteins, we detected the expression of ephrin-B ligands in the dorsolateral pathway at the stage when neural crest cells are migrating ventrally. Furthermore, we show that ephrins block dorsolateral migration of early-migrating neural crest cells because when we disrupt the Eph-ephrin interactions by addition of soluble ephrin-B ligand to trunk explants, early neural crest cells migrate inappropriately into the dorsolateral pathway. Surprisingly, we discovered the ephrin-B ligands continue to be expressed along the dorsolateral pathway during melanoblast migration. RT-PCR analysis, in situ hybridisation, and cell surface-labelling of neural crest cell cultures demonstrate that melanoblasts express several EphB receptors. In adhesion assays, engagement of ephrin-B ligands to EphB receptors increases melanoblast attachment to fibronectin. Cell migration assays demonstrate that ephrin-B ligands stimulate the migration of melanoblasts. Furthermore, when Eph signalling is disrupted in vivo, melanoblasts are prevented from migrating dorsolaterally, suggesting ephrin-B ligands promote the dorsolateral migration of melanoblasts. Thus, transmembrane ephrins act as bifunctional guidance cues: they first repel early migratory neural crest cells from the dorsolateral path, and then later stimulate the migration of melanoblasts into this pathway. The mechanisms by which ephrins regulate repulsion or attraction in neural crest cells are unknown. One possibility is that the cellular response involves signalling to the actin cytoskeleton, potentially involving the activation of Cdc42/Rac family of GTPases. In support of this hypothesis, we show that adhesion of early migratory cells to an ephrin-B-derivatized substratum results in cell rounding and disruption of the actin cytoskeleton, whereas plating of melanoblasts on an ephrin-B substratum induces the formation of microspikes filled with F-actin.
APA, Harvard, Vancouver, ISO, and other styles
43

Batista, Chary Marquez, Leonardo Luis Torres Bianqui, Bruno Bonganha Zanon, et al. "Behavioral Improvement and Regulation of Molecules Related to Neuroplasticity in Ischemic Rat Spinal Cord Treated with PEDF." Neural Plasticity 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/451639.

Full text
Abstract:
Pigment epithelium derived factor (PEDF) exerts trophic actions to motoneurons and modulates nonneuronal restorative events, but its effects on neuroplasticity responses after spinal cord (SC) injury are unknown. Rats received a low thoracic SC photothrombotic ischemia and local injection of PEDF and were evaluated behaviorally six weeks later. PEDF actions were detailed in SC ventral horn (motor) in the levels of the lumbar central pattern generator (CPG), far from the injury site. Molecules related to neuroplasticity (MAP-2), those that are able to modulate such event, for instance, neurotrophic factors (NT-3, GDNF, BDNF, and FGF-2), chondroitin sulfate proteoglycans (CSPG), and those associated with angiogenesis and antiapoptosis (laminin and Bcl-2) and Eph (receptor)/ephrin system were evaluated at cellular or molecular levels. PEDF injection improved motor behavioral performance and increased MAP-2 levels and dendritic processes in the region of lumbar CPG. Treatment also elevated GDNF and decreased NT-3, laminin, and CSPG. Injury elevated EphA4 and ephrin-B1 levels, and PEDF treatment increased ephrin A2 and ephrins B1, B2, and B3. Eph receptors and ephrins were found in specific populations of neurons and astrocytes. PEDF treatment to SC injury triggered neuroplasticity in lumbar CPG and regulation of neurotrophic factors, extracellular matrix molecules, and ephrins.
APA, Harvard, Vancouver, ISO, and other styles
44

Pergaris, Alexandros, Eugene Danas, Dimitrios Goutas, Alexandros G. Sykaras, Angelos Soranidis, and Stamatios Theocharis. "The Clinical Impact of the EPH/Ephrin System in Cancer: Unwinding the Thread." International Journal of Molecular Sciences 22, no. 16 (2021): 8412. http://dx.doi.org/10.3390/ijms22168412.

Full text
Abstract:
Erythropoietin-producing human hepatocellular receptors (EPHs) compose the largest known subfamily of receptor tyrosine kinases (RTKs). They bind and interact with the EPH family receptor interacting proteins (ephrins). EPHs/ephrins are implicated in a variety of physiological processes, as well as in cancer pathogenesis. With neoplastic disease remaining a leading cause of death world-wide, the development of novel biomarkers aiding in the field of diagnosis, prognosis, and disease monitoring is of utmost importance. A multitude of studies have proven the association between the expression of members of the EPH/ephrin system and various clinicopathological parameters, including disease stage, tumor histologic grade, and patients’ overall survival. Besides their utilization in timely disease detection and assessment of outcome, EPHs/ephrins could also represent possible novel therapeutic targets. The aim of the current review of the literature was to present the existing data regarding the association between EPH/ephrin system expression and the clinical characteristics of malignant tumors.
APA, Harvard, Vancouver, ISO, and other styles
45

Laing, Eric D., Chanakha K. Navaratnarajah, Sofia Cheliout Da Silva, et al. "Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus." Proceedings of the National Academy of Sciences 116, no. 41 (2019): 20707–15. http://dx.doi.org/10.1073/pnas.1911773116.

Full text
Abstract:
Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.
APA, Harvard, Vancouver, ISO, and other styles
46

Prévost, Nicolas, Donna S. Woulfe, Massimiliano Tognolini, et al. "Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1." Blood 103, no. 4 (2004): 1348–55. http://dx.doi.org/10.1182/blood-2003-06-1781.

Full text
Abstract:
Abstract We have previously shown that platelets express 2 receptor tyrosine kinases, EphA4 and EphB1, and the Eph kinase ligand, ephrinB1, and proposed that transcellular Eph/ephrin interactions made possible by the onset of platelet aggregation promote the further growth and stability of the hemostatic plug. The present study examines how this might occur. The results show that clustering of either ephrinB1 or EphA4 causes platelets to adhere to immobilized fibrinogen via αIIbβ3. Adhesion occurs more slowly than with adenosine diphosphate (ADP) and requires phosphatidylinositol 3 (PI3)–kinase and protein kinase C activity but not ephrinB1 phosphorylation. By itself, Eph and ephrin signaling is insufficient to cause aggregation or the binding of soluble fibrinogen, but it can potentiate aggregation initiated by a Ca++ ionophore or by agonists for thrombin and thromboxane receptors. It also enhances Rap1 activation without requiring ADP secretion, ephrinB1 phosphorylation, or the activation of PI3-kinase and Src. From this we conclude that (1) Eph/ephrin signaling enhances the ability of platelet agonists to cause aggregation provided that those agonists can increase cytosolic Ca++; (2) this is accomplished in part by activating Rap1; and (3) these effects require oligomerization of ephrinB1 but not phosphotyrosine-based interactions with the ephrinB1 cytoplasmic domain.
APA, Harvard, Vancouver, ISO, and other styles
47

Suetterlin, Philipp, and Uwe Drescher. "Target-Independent EphrinA/EphA-Mediated Axon-Axon Repulsion as a Novel Element in Retinocollicular Mapping." Neuron 84, no. 4 (2014): 740–52. http://dx.doi.org/10.1016/j.neuron.2014.09.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bossing, Torsten, and Andrea H. Brand. "Dephrin, a transmembrane ephrin with a unique structure, prevents interneuronal axons from exiting the Drosophila embryonic CNS." Development 129, no. 18 (2002): 4205–18. http://dx.doi.org/10.1242/dev.129.18.4205.

Full text
Abstract:
Ephrin/Eph signalling is crucial for axonal pathfinding in vertebrates and invertebrates. We identified the Drosophila ephrin orthologue, Dephrin, and describe for the first time the role of ephrin/Eph signalling in the embryonic central nervous system (CNS). Dephrin is a transmembrane ephrin with a unique N terminus and an ephrinB-like cytoplasmic tail. Dephrin binds and interacts with DEph, the Drosophila Eph-like receptor, and Dephrin and DEph are confined to different neuronal compartments. Loss of Dephrin or DEph causes the abberant exit of interneuronal axons from the CNS, whereas ectopic expression of Dephrin halts axonal growth. We propose that the longitudinal tracts in the Drosophila CNS are moulded by a repulsive outer border of Dephrin expression.
APA, Harvard, Vancouver, ISO, and other styles
49

Gervais, Manon, Gwenaël Labouèbe, Alexandre Picard, Bernard Thorens, and Sophie Croizier. "EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis." PLOS Biology 18, no. 11 (2020): e3000680. http://dx.doi.org/10.1371/journal.pbio.3000680.

Full text
Abstract:
Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding.
APA, Harvard, Vancouver, ISO, and other styles
50

Mohd-Zin, Siti W., Nor-Linda Abdullah, Aminah Abdullah, et al. "Identification of the genomic mutation in Epha4rb-2J/rb-2J mice." Genome 59, no. 7 (2016): 439–48. http://dx.doi.org/10.1139/gen-2015-0142.

Full text
Abstract:
The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4rb-2J/rb-2J, is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or “hopping gait” phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4rb-2J corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4rb-2J allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein–protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!