Academic literature on the topic 'Epidemiology – Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epidemiology – Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Epidemiology – Mathematical models"
Lopatin, A. A., E. V. Kuklev, V. A. Safronov, A. S. Razdorsky, L. V. Samoilova, and V. P. Toporkov. "Verification of Mathematical Models of Plague." Problems of Particularly Dangerous Infections, no. 3(113) (June 20, 2012): 26–28. http://dx.doi.org/10.21055/0370-1069-2012-3-26-28.
Full textHenson, Shandelle M., Fred Brauer, and Carlos Castillo-Chavez. "Mathematical Models in Population Biology and Epidemiology." American Mathematical Monthly 110, no. 3 (March 2003): 254. http://dx.doi.org/10.2307/3647954.
Full textRosner, Bernard A., Graham A. Colditz, Penny M. Webb, and Susan E. Hankinson. "Mathematical Models of Ovarian Cancer Incidence." Epidemiology 16, no. 4 (July 2005): 508–15. http://dx.doi.org/10.1097/01.ede.0000164557.81694.63.
Full textBLOWER, SALLY, and GRAHAM MEDLEY. "Epidemiology, HIV and drugs: mathematical models and data." Addiction 87, no. 3 (March 1992): 371–79. http://dx.doi.org/10.1111/j.1360-0443.1992.tb01938.x.
Full textKing, P. "Mathematical models in population biology and epidemiology [Book Reviews]." IEEE Engineering in Medicine and Biology Magazine 20, no. 4 (July 2001): 101. http://dx.doi.org/10.1109/memb.2001.940057.
Full textNaz, R., I. Naeem, and F. M. Mahomed. "A Partial Lagrangian Approach to Mathematical Models of Epidemiology." Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/602915.
Full textRosenberg, Noah A. "Population models, mathematical epidemiology, and the COVID-19 pandemic." Theoretical Population Biology 137 (February 2021): 1. http://dx.doi.org/10.1016/j.tpb.2021.01.001.
Full textChu, Kenneth C. "A nonmathematical view of mathematical models for cancer." Journal of Chronic Diseases 40 (January 1987): 163S—170S. http://dx.doi.org/10.1016/s0021-9681(87)80019-x.
Full text&NA;. "Biologically Based Mathematical Models of Lung Cancer Risk." Epidemiology 4, no. 3 (May 1993): 193–94. http://dx.doi.org/10.1097/00001648-199305000-00002.
Full textTom, Eric, and Kevin A. Schulman. "Mathematical Models in Decision Analysis." Infection Control and Hospital Epidemiology 18, no. 1 (January 1997): 65–73. http://dx.doi.org/10.2307/30141966.
Full textDissertations / Theses on the topic "Epidemiology – Mathematical models"
Bate, Andrew M. "Mathematical models in eco-epidemiology." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616875.
Full textBooton, Ross D. "Mathematical models of stress and epidemiology." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22549/.
Full textDe, la Harpe Alana. "A comparative analysis of mathematical models for HIV epidemiology." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96983.
Full textENGLISH ABSTRACT: HIV infection is one of the world’s biggest health problems, with millions of people infected worldwide. HIV infects cells in the immune system, where it primarily targets CD4+ T helper cells and without treatment, the disease leads to the collapse of the host immune system and ultimately death. Mathematical models have been used extensively to study the epidemiology of HIV/AIDS. They have proven to be effective tools in studying the transmission dynamics of HIV. These models provide predictions that can help better our understanding of the epidemiological patterns of HIV, especially the mechanism associated with the spread of the disease. In this thesis we made a functional comparison between existing epidemiological models for HIV, with the focus of the comparison on the force of infection (FOI). The spread of infection is a crucial part of any infectious disease, as the dynamics of the disease depends greatly on the rate of transmission from an infectious individual to a susceptible individual. First, a review was done to see what deterministic epidemiological models exist. We found that many manuscripts do not provide the necessary information to recreate the authors’ results and only a small amount of the models could be simulated. The reason for this is mainly due to a lack of information or due to mistakes in the article. The models were divided into four categories for the analysis. On the basis of the FOI, we distinguished between frequency- or density-dependent transmission, and as a second criterion we distinguished models on the sexual activity of the AIDS group. Subsequently, the models were compared in terms of their FOI, within and between these classes. We showed that for larger populations, frequency-dependent transmission should be used. This is the case for HIV, where the disease is mainly spread through sexual contact. Inclusion of AIDS patients in the group of infectious individuals is important for the accuracy of transmission dynamics. More than half of the studies that were selected in the review assumed that AIDS patients are too sick to engage in risky sexual behaviour. We see that including AIDS patients in the infectious individuals class has a significant effect on the FOI when the value for the probability of transmission for an individual with AIDS is bigger than that of the other classes. The analysis shows that the FOI can vary depending on the parameter values and the assumptions made. Many models compress various parameter values into one, most often the transmission probability. Not showing the parameter values separately makes it difficult to understand how the FOI works, since there are unknown factors that have an influence. Improving the accuracy of the FOI can help us to better understand what factors influence it, and also produce more realistic results. Writing the probability of transmission as a function of the viral load can help to make the FOI more accurate and also help in the understanding of the effects that viral dynamics have on the population transmission dynamics.
AFRIKAANSE OPSOMMING: MIV-infeksie is een van die wêreld se grootste gesondheidsprobleme, met miljoene mense wat wêreldwyd geïnfekteer is. MIV infekteer selle in die immuunstelsel, waar dit hoofsaaklik CD4+ T-helperselle teiken. Sonder behandeling lei die siekte tot die ineenstorting van die gasheer se immuunstelsel en uiteindelik sy dood. Wiskundige modelle word breedvoerig gebruik om die epidemiologie van MIV/vigs te bestudeer. Die modelle is doeltreffende instrumente in die studie van die oordrag-dinamika van MIV. Hulle lewer voorspellings wat kan help om ons begrip van epidemiologiese patrone van MIV, veral die meganisme wat verband hou met die verspreiding van die siekte, te verbeter. In hierdie tesis het ons ‘n funksionele vergelyking tussen bestaande epidemiologiese modelle vir MIV gedoen, met die fokus van die vergelyking op die tempo van infeksie (TVI). Die verspreiding van infeksie is ‘n belangrike deel van enige aansteeklike siekte, aangesien die dinamika van die siekte grootliks afhang van die tempo van oordrag van ‘n aansteeklike persoon na ‘n vatbare persoon. ‘n Oorsig is gedoen om te sien watter kompartementele epidemiologiese modelle alreeds bestaan. Ons het gevind dat baie van die manuskripte nie die nodige inligting voorsien wat nodig is om die resultate van die skrywers te repliseer nie, en slegs ‘n klein hoeveelheid van die modelle kon gesimuleer word. Die rede hiervoor is hoofsaaklik as gevolg van ‘n gebrek aan inligting of van foute in die artikel. Die modelle is in vier kategorieë vir die analise verdeel. Op grond van die TVI het ons tussen frekwensie- of digtheidsafhanklike oordrag onderskei, en as ‘n tweede kriterium het ons die modelle op die seksuele aktiwiteit van die vigs-groep onderskei. Daarna is die modelle binne en tussen die klasse vergelyk in terme van hul TVIs. Daar is gewys dat frekwensie-afhanklike oordrag gebruik moet word vir groter bevolkings. Dit is die geval van MIV, waar die siekte hoofsaaklik versprei word deur seksuele kontak. Die insluiting van die vigs-pasiënte in die groep van aansteeklike individue is belangrik vir die akkuraatheid van die oordrag-dinamika van MIV. Meer as helfte van die uitgesoekte studies aanvaar dat vigs-pasiënte te siek is om betrokke te raak by riskante seksuele gedrag. Ons sien dat die insluiting van vigs-pasiënte in die groep van aansteeklike individue ‘n beduidende uitwerking op die TVI het wanneer die waarde van die waarskynlikheid van oordrag van ‘n individu met vigs groter is as dié van die ander klasse. Die analise toon dat die TVI kan wissel afhangende van die parameter waardes en die aannames wat gemaak is. Baie modelle voeg verskeie parameter waardes bymekaar vir die waarskynlikheid van oordrag. Wanneer die parameter waardes nie apart gewys word nie, is dit moeilik om die werking van die TVI te verstaan, want daar is onbekende faktore wat ‘n invloed op die TVI het. Die verbetering van die akkuraatheid van die TVI kan ons help om die faktore wat dit beïnvloed beter te verstaan, en dit kan ook help om meer realistiese resultate te produseer. Om die waarskynlikheid van oordrag as ‘n funksie van die viruslading te skryf kan help om die TVI meer akkuraat te maak en dit kan ook help om die effek wat virale dinamika op die bevolkingsoordrag-dinamika het, beter te verstaan.
Otieno, Andrew Alex Omondi. "Application of lie group analysis to mathematical models in epidemiology." Thesis, Walter Sisulu University, 2013. http://hdl.handle.net/11260/100.
Full textLutambi, Angelina Mageni. "Basic properties of models for the spread of HIV/AIDS." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19641.
Full textENGLISH ABSTRACT: While research and population surveys in HIV/AIDS are well established in developed countries, Sub-Saharan Africa is still experiencing scarce HIV/AIDS information. Hence it depends on results obtained from models. Due to this dependence, it is important to understand the strengths and limitations of these models very well. In this study, a simple mathematical model is formulated and then extended to incorporate various features such as stages of HIV development, time delay in AIDS death occurrence, and risk groups. The analysis is neither purely mathematical nor does it concentrate on data but it is rather an exploratory approach, in which both mathematical methods and numerical simulations are used. It was found that the presence of stages leads to higher prevalence levels in a short term with an implication that the primary stage is the driver of the disease. Furthermore, it was found that time delay changed the mortality curves considerably, but it had less effect on the proportion of infectives. It was also shown that the characteristic behaviour of curves valid for most epidemics, namely that there is an initial increase, then a peak, and then a decrease occurs as a function of time, is possible in HIV only if low risk groups are present. It is concluded that reasonable or quality predictions from mathematical models are expected to require the inclusion of stages, risk groups, time delay, and other related properties with reasonable parameter values.
AFRIKAANSE OPSOMMING: Terwyl navorsing en bevolkingsopnames oor MIV/VIGS in ontwikkelde lande goed gevestig is, is daar in Afrika suid van die Sahara slegs beperkte inligting oor MIV/VIGS beskikbaar. Derhalwe moet daar van modelle gebruik gemaak word. Dit is weens hierdie feit noodsaaklik om die moontlikhede en beperkings van modelle goed te verstaan. In hierdie werk word ´n eenvoudige model voorgelˆe en dit word dan uitgebrei deur insluiting van aspekte soos stadiums van MIV outwikkeling, tydvertraging by VIGS-sterftes en risikogroepe in bevolkings. Die analise is beklemtoon nie die wiskundage vorme nie en ook nie die data nie. Dit is eerder ´n verkennende studie waarin beide wiskundige metodes en numeriese simula˙sie behandel word. Daar is bevind dat insluiting van stadiums op korttermyn tot ho¨er voorkoms vlakke aanleiding gee. Die gevolgtrekking is dat die primˆere stadium die siekte dryf. Verder is gevind dat die insluiting van tydvestraging wel die kurwe van sterfbegevalle sterk be¨ınvloed, maar dit het min invloed op die verhouding van aangestekte persone. Daar word getoon dat die kenmerkende gedrag van die meeste epidemi¨e, naamlik `n aanvanklike styging, `n piek en dan `n afname, in die geval van VIGS slegs voorkom as die bevolking dele bevat met lae risiko. Die algehele gevolgtrekking word gemaak dat vir goeie vooruitskattings met sinvolle parameters, op grond van wiskundige modelle, die insluiting van stadiums, risikogroepe en vertragings benodig word.
Lloyd, Alun Lewis. "Mathematical models for spatial heterogeneity in population dynamics and epidemiology." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337603.
Full textMcLean, A. R. "Mathematical models of the epidemiology of measles in developing countries." Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/47259.
Full textTosun, Kursad. "QUALITATIVE AND QUANTITATIVE ANALYSIS OF STOCHASTIC MODELS IN MATHEMATICAL EPIDEMIOLOGY." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/dissertations/732.
Full textThompson, Brett Morinaga. "Development, Implementation, and Analysis of a Contact Model for an Infectious Disease." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc9824/.
Full textGriette, Quentin. "Mathematical and numerical analysis of propagation models arising in evolutionary epidemiology." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS051/document.
Full textIn this thesis we consider several models of propagation arising in evolutionary epidemiology. We aim at performing a rigorous mathematical analysis leading to new biological insights. At first we investigate the spread of an epidemic in a population of homogeneously distributed hosts on a straight line. An underlying mutation process can shift the virulence of the pathogen between two values, causing an interaction between epidemiology and evolution. We study the propagation speed of the epidemic and the influence of some biologically relevant quantities, like the effects of stochasticity caused by the hosts' finite population size (numerical explorations), on this speed. In a second part we take into account a periodic heterogeneity in the hosts' population and study the propagation speed and the existence of pulsating fronts for the associated (non-cooperative) reaction-diffusion system. Finally, we consider a model in which the pathogen is allowed to shift between a large number of different phenotypes, and construct possibly singular traveling waves for the associated nonlocal equation, thus modelling concentration on an optimal trait
Books on the topic "Epidemiology – Mathematical models"
Brauer, Fred, Carlos Castillo-Chavez, and Zhilan Feng. Mathematical Models in Epidemiology. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9828-9.
Full textBrauer, Fred. Mathematical models in population biology and epidemiology. 2nd ed. New York: Springer, 2012.
Find full textBrauer, Fred, and Carlos Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1686-9.
Full textBrauer, Fred, and Carlos Castillo-Chávez. Mathematical Models in Population Biology and Epidemiology. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3516-1.
Full textCapasso, Vincenzo. Mathematical structures of epidemic systems. 2nd ed. Berlin: Springer, 2008.
Find full textCenter for Emerging Issues (U.S.). Overview of predictive infectious-disease modeling. Washington, D.C.]: United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Emerging Issues, 2005.
Find full textCourant Institute of Mathematical Sciences, ed. Mathematical methods for analysis of a complex disease. New York: Courant Institute of Mathematical Sciences, 2011.
Find full textMalchow, Horst. Spatiotemporal patterns in ecology and epidemiology: Theory, models, and simulation. Boca Raton: Chapman & Hall/CRC Press, 2008.
Find full textBook chapters on the topic "Epidemiology – Mathematical models"
van den Driessche, P. "Deterministic Compartmental Models: Extensions of Basic Models." In Mathematical Epidemiology, 147–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_5.
Full textBrauer, Fred. "Compartmental Models in Epidemiology." In Mathematical Epidemiology, 19–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_2.
Full textvan den Driessche, P. "Spatial Structure: Patch Models." In Mathematical Epidemiology, 179–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_7.
Full textAllen, Linda J. S. "An Introduction to Stochastic Epidemic Models." In Mathematical Epidemiology, 81–130. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_3.
Full textWu, Jianhong. "Spatial Structure: Partial Differential Equations Models." In Mathematical Epidemiology, 191–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_8.
Full textWonham, M. J., and M. A. Lewis. "A Comparative Analysis of Models for West Nile Virus." In Mathematical Epidemiology, 365–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_14.
Full textLi, Jia, and Fred Brauer. "Continuous-Time Age-Structured Models in Population Dynamics and Epidemiology." In Mathematical Epidemiology, 205–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_9.
Full textBauch, Chris T. "The Role of Mathematical Models in Explaining Recurrent Outbreaks of Infectious Childhood Diseases." In Mathematical Epidemiology, 297–319. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_11.
Full textNuño, M., C. Castillo-Chavez, Z. Feng, and M. Martcheva. "Mathematical Models of Influenza: The Role of Cross-Immunity, Quarantine and Age-Structure." In Mathematical Epidemiology, 349–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_13.
Full textKretzschmar, Mirjam, and Jacco Wallinga. "Mathematical Models in Infectious Disease Epidemiology." In Modern Infectious Disease Epidemiology, 209–21. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-93835-6_12.
Full textConference papers on the topic "Epidemiology – Mathematical models"
Báez-Sánchez, Andrés David. "A Mathematical Model for Behavioral Epidemiology: A Numerical Approach." In CNMAC 2017 - XXXVII Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2018. http://dx.doi.org/10.5540/03.2018.006.01.0299.
Full text