Academic literature on the topic 'Epigenetic chromatin modifications'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epigenetic chromatin modifications.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Epigenetic chromatin modifications"

1

Huang, Chang, Mo Xu, and Bing Zhu. "Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks?" Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1609 (2013): 20110332. http://dx.doi.org/10.1098/rstb.2011.0332.

Full text
Abstract:
‘Epigenetics’ has been defined as the study of ‘mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence’. Chromatin modifications are major carriers of epigenetic information that both reflect and affect the transcriptional states of underlying genes. Several histone modifications are key players that are responsible for classical epigenetic phenomena. However, the mechanisms by which cells pass their histone modifications to daughter cells through mitotic division remain to be unveiled. Here, we review recent progress in the field
APA, Harvard, Vancouver, ISO, and other styles
2

Braszewska-Zalewska, Agnieszka, Tytus Bernas, and Jolanta Maluszynska. "Epigenetic chromatin modifications in Brassica genomes." Genome 53, no. 3 (2010): 203–10. http://dx.doi.org/10.1139/g09-088.

Full text
Abstract:
Epigenetic modifications such as histone and DNA methylation are highly conserved among eukaryotes, although the nuclear patterns of these modifications vary between different species. Brassica species represent a very attractive model for analysis of epigenetic changes because of their differences in genome size, ploidy level, and the organization of heterochromatin blocks. Brassica rapa and B. oleracea are diploid species, and B. napus is an allotetraploid species that arose from the hybridization of these two diploids. We found that patterns of DNA and histone H3 methylation differ between
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jiaqiu, Hongchuan Jin, and Xian Wang. "Epigenetic Biomarkers: Potential Applications in Gastrointestinal Cancers." ISRN Gastroenterology 2014 (March 6, 2014): 1–10. http://dx.doi.org/10.1155/2014/464015.

Full text
Abstract:
Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal c
APA, Harvard, Vancouver, ISO, and other styles
4

Kaur, Jasmine, Abdelkader Daoud, and Scott T. Eblen. "Targeting Chromatin Remodeling for Cancer Therapy." Current Molecular Pharmacology 12, no. 3 (2019): 215–29. http://dx.doi.org/10.2174/1874467212666190215112915.

Full text
Abstract:
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of gen
APA, Harvard, Vancouver, ISO, and other styles
5

Winter, Stefan, and Wolfgang Fischle. "Epigenetic markers and their cross-talk." Essays in Biochemistry 48 (September 20, 2010): 45–61. http://dx.doi.org/10.1042/bse0480045.

Full text
Abstract:
Post-translational modifications of histone proteins in conjunction with DNA methylation represent important events in the regulation of local and global genome functions. Advances in the study of these chromatin modifications established temporal and spatial co-localization of several distinct ‘marks’ on the same histone and/or the same nucleosome. Such complex modification patterns suggest the possibility of combinatorial effects. This idea was originally proposed to establish a code of histone modifications that regulates the interpretation of the genetic code of DNA. Indeed, interdependenc
APA, Harvard, Vancouver, ISO, and other styles
6

Sengupta, Antara, Akansha Ganguly, and Shantanu Chowdhury. "Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects." Molecules 24, no. 3 (2019): 582. http://dx.doi.org/10.3390/molecules24030582.

Full text
Abstract:
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics—in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple onc
APA, Harvard, Vancouver, ISO, and other styles
7

Dhar, Manoj Kumar, Parivartan Vishal, Rahul Sharma, and Sanjana Kaul. "Epigenetic Dynamics: Role of Epimarks and Underlying Machinery in Plants Exposed to Abiotic Stress." International Journal of Genomics 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/187146.

Full text
Abstract:
Abiotic stress induces several changes in plants at physiological and molecular level. Plants have evolved regulatory mechanisms guided towards establishment of stress tolerance in which epigenetic modifications play a pivotal role. We provide examples of gene expression changes that are brought about by conversion of active chromatin to silent heterochromatin and vice versa. Methylation of CG sites and specific modification of histone tail determine whether a particular locus is transcriptionally active or silent. We present a lucid review of epigenetic machinery and epigenetic alterations in
APA, Harvard, Vancouver, ISO, and other styles
8

Molina-Serrano, Diego, Vassia Schiza, and Antonis Kirmizis. "Cross-talk among epigenetic modifications: lessons from histone arginine methylation." Biochemical Society Transactions 41, no. 3 (2013): 751–59. http://dx.doi.org/10.1042/bst20130003.

Full text
Abstract:
Epigenetic modifications, including those occurring on DNA and on histone proteins, control gene expression by establishing and maintaining different chromatin states. In recent years, it has become apparent that epigenetic modifications do not function alone, but work together in various combinations, and cross-regulate each other in a manner that diversifies their functional states. Arginine methylation is one of the numerous PTMs (post-translational modifications) occurring on histones, catalysed by a family of PRMTs (protein arginine methyltransferases). This modification is involved in th
APA, Harvard, Vancouver, ISO, and other styles
9

Kheir, Tony Bou, and Anders H. Lund. "Epigenetic dynamics across the cell cycle." Essays in Biochemistry 48 (September 20, 2010): 107–20. http://dx.doi.org/10.1042/bse0480107.

Full text
Abstract:
Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle, and are shown to influence and be influenced by cell-cycle progression. Chromatin modifiers regulate cell-cycle progression locally by controlling the expression of individual genes and globally by controlling chromatin condensation and chromosome segregation. The cell cycle, on the other hand, ensures a
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Xuefeng, and Tae Hyun. "The role of epigenetic modifications in plant responses to stress." Botanica Serbica 45, no. 1 (2021): 3–12. http://dx.doi.org/10.2298/botserb2101003l.

Full text
Abstract:
Epigenetics is the study of hereditary changes in gene expression under the premise that the nucleotide sequence is not changed. Such hereditary changes mainly involve DNA methylation, histone modification, and chromatin remodeling. These covalent modifications play indispensable roles in regulating gene expression; DNA replication, recombination, and repair; and cell differentiation. Epigenetic modifications can be partially inherited by daughter cells during mitosis and meiosis and influenced by external factors, such as environmental stresses and supply deficits. In this review, we summariz
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Epigenetic chromatin modifications"

1

Larson, Jessica. "Hidden Markov Models Predict Epigenetic Chromatin Domains." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10105.

Full text
Abstract:
Epigenetics is an important layer of transcriptional control necessary for cell-type specific gene regulation. We developed computational methods to analyze the combinatorial effect and large-scale organizations of genome-wide distributions of epigenetic marks. Throughout this dissertation, we show that regions containing multiple genes with similar epigenetic patterns are found throughout the genome, suggesting the presence of several chromatin domains. In Chapter 1, we develop a hidden Markov model (HMM) for detecting the types and locations of epigenetic domains from multiple histone modi
APA, Harvard, Vancouver, ISO, and other styles
2

SIDDIQUI, HASAN. "RB-MEDIATED REGULATION OF TRANSCRIPTION AND EPIGENETIC MODIFICATIONS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148053497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barthes, Pauline. "Modifications de la chromatine associées à l'initiation de la recombinaison méiotique, chez la souris." Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON1T007.

Full text
Abstract:
La méiose est une étape de la différenciation germinale qui permet la formation des gamètes. Elle est composée de deux divisions successives. La ségrégation des chromosomes homologues à la première division nécessite des connexions entre homologues, mises en place par des événements de crossing-over (CO). Les CO augmentent également la diversité génétique, et leur fréquence et leur distribution sont étroitement régulées. Ils sont générés par un mécanisme de formation et réparation de cassures double brins de l'ADN (CDBs), catalysées par la protéine SPO11 et préférentiellement localisées dans d
APA, Harvard, Vancouver, ISO, and other styles
4

Pekowska, Aleksandra. "Epigenetic landscape of normal and malignant lympho-hematopoiesis : interplays between chromatin signature and tissue specific gene expression." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22011.

Full text
Abstract:
La régulation transcriptionelle fine assurée par les Eléments Cis Régulateurs (ECR, eg. promoteurs et «enhancers») et les facteurs protéiques associés, est à la base de la mise en place et le maintien de l'identité tissulaire. Les modifications de la chromatine corrèlent avec l’activité d’ECRs et constituent l’épigénome de la cellule. Au cours de ma thèse, je me suis intéressée aux transitions des modifications des histones (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2) accompagnant le développement précoce de la cellule T. Pour cela, j’ai utilisé un modèle murin reproduisant une étape cruc
APA, Harvard, Vancouver, ISO, and other styles
5

Villa, Raffaella. "Role of epigenetic modifications in acute promyelocytic leukemia." Doctoral thesis, Universitat Pompeu Fabra, 2007. http://hdl.handle.net/10803/7144.

Full text
Abstract:
Mi trabajo ha estado enfocado en la implicación de los diferentes mecanismos epigenéticos de PML-RARa en la inducción de la leucemia promielocítica aguda (APL).<br/>En particular yo estudié el rol de MBD1, un miembro de la conservada familia de proteinas capaces de unirse al DNA metilado, demostrando que desempeña un papel importante en la progresión de la leucemia. De hecho, mostré que MBD1 es recruida por PML-RARa a sus promotores diana a través de los mecanismos mediados por HDAC3, participando por tanto en la represión transcripcional. Además, investigué hasta donde la metilación de la H3K
APA, Harvard, Vancouver, ISO, and other styles
6

Brazel, Ailbhe Jane. "A genetic and epigenetic editing approach to characterise the nature and function of bivalent histone modifications." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29603.

Full text
Abstract:
In eukaryotes, DNA is wrapped around a group of proteins termed histones that are required to precisely control gene expression during development. The amino acids of both the globular domains and unstructured tails of these histones can be modified by chemical moieties, such as methylation, acetylation and ubiquitination. The ‘histone code’ hypothesis proposes that specific combinations of these and other histone modifications contain transcriptional information, which guides the cell machinery to activate or repress gene expression in individual cell types. Chromatin immunoprecipitation (ChI
APA, Harvard, Vancouver, ISO, and other styles
7

Reis, Kadri 1985. "Epigenetic inheritance and DNA replication in Caenorhabditis elegans." Doctoral thesis, Universitat Pompeu Fabra, 2016. http://hdl.handle.net/10803/456671.

Full text
Abstract:
Una gran proporción del genoma de la mayoría de eucariotas superiores está formado por secuencias repetitivas de DNA que contienen señales de represión de la transcripción. Para entender mejor cómo funciona la herencia de una generación a otra de esta cromatina reprimida, llevamos a cabo un screening genómico de RNA de interferencia usando Caernorhabditis elegans con el objetivo de identificar los genes responsables de la represión cuantitativa de una secuencia integrada en el genoma de células somáticas formada por múltiples copias de un transgén. Así encontramos que la inhibición de muchos
APA, Harvard, Vancouver, ISO, and other styles
8

Rodriguez, Granados Natalia. "Towards the understanding of the epigenetic and transcriptional regulation of sex expression in Cucumis melo." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS082.

Full text
Abstract:
Chez les plantes, le terme « déterminisme sexuel » désigne le processus développemental par lequel les fleurs mâles et femelles se trouvent séparées sur la même plante (monoécie) ou sur des individus différents (dioécie). La famille des Cucurbitaceae compte une grande diversité de systèmes de reproduction. Dans ce processus, fortement sous le contrôle de phytohormones, l’éthylène joue un rôle majeur. Il est probable que des modes de reproduction tels que la monoéciereposent sur l’établissement de programmes d’expression génique différents, grâce à une régulation épigénétique des gènes de déter
APA, Harvard, Vancouver, ISO, and other styles
9

Perriaud, Laury. "Étude systémique des cibles génomiques de la methyl-CpG binding domain protein 2 (MBD2), un répresseur transcriptionnel dépendant de la méthylation de l'ADN : évolution de la distribution de MBD2 dans un modèle syngénique de progression tumorale mammaire." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00833153.

Full text
Abstract:
Les protéines à " Methyl-CpG-binding domain " (MBD) jouent un rôle important dans l'interprétationde la méthylation de l'ADN conduisant à la répression transcriptionnelle via le recrutement decomplexes remodelant la chromatine. Dans les cancers, MBD2 jouerait un rôle essentiel dans la perted'expression des gènes hyperméthylés. Ainsi, MBD2 serait une cible potentielle pour rétablir, enpartie au moins, leur expression. Caractériser, à l'échelle du génome, la distribution de MBD2 et sesconséquences sur la répression transcriptionnelle au cours de la cancérogenèse est donc une étapeincontournable.
APA, Harvard, Vancouver, ISO, and other styles
10

Chatterjee, Nilanjana. "SWI/SNF COMPLEXES COORDINATE WITH HISTONE MODIFICATIONS TO REGULATE CHROMATIN REMODELING." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/433.

Full text
Abstract:
SWI/SNF, the founding member of ATP dependent chromatin remodelers and its paralog RSC in yeast perform similar yet distinct functions inside the cell. In vitro these complexes use ATP dependent DNA translocation to either mobilize or disassemble nucleosomes. However, how these complexes interact with nucleosomes and the mechanism by which chromatin remodeling is achieved is not fully understood. Further, it is not understood how they perform disparate roles in vivo despite their similar biochemical activities. To understand the fundamental differences between these complexes the substrate sp
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Epigenetic chromatin modifications"

1

Gay, Steffen, and Michel Neidhart. Epigenetics. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0039.

Full text
Abstract:
In higher eukaryotic organisms epigenetic modifications are crucial for proper chromatin folding and thereby proper regulation of gene expression. Epigenetics include DNA methylation, histone modifications, and microRNAs. First described in tumors, the involvement of aberrant epigenetic modifications has been reported also in other diseases, i.e. metabolic, psychiatric, inflammatory, and autoimmune. Deregulation of epigenetic mechanisms occurred in patients with rheumatoid arthritis, systemic lupus erythematosus, and scleroderma. Many questions remain: e.g. what is the cause of these epigeneti
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Jin, Pei Han, Wei Li, and Ching-Pin Chang. Epigenetics and post-transcriptional regulation of cardiovascular development. Edited by José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, et al. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0032.

Full text
Abstract:
Cardiac organogenesis requires the control of gene expression at distinct developmental windows in order to organize morphogenetic steps in the correct sequence for heart development. This is facilitated by concerted regulation at three levels: chromatin, transcription, and post-transcriptional modifications. Epigenetic regulation at the chromatin level changes the chromatin scaffold of DNA to regulate accessibility of the DNA sequence to transcription factors for genetic activation or repression. At the genome, long non-coding RNAs work with epigenetic factors to alter the chromatin scaffold
APA, Harvard, Vancouver, ISO, and other styles
3

Lucchesi, John C. Epigenetics, Nuclear Organization & Gene Function. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831204.001.0001.

Full text
Abstract:
Epigenetics is the study of heritable changes in gene function that do not involve changes in the DNA sequence. Epigenetic changes, consisting principally of DNA methylation, histone modifications and non-coding RNAs, maintain and modulate the initial impact of regulatory factors that recognize and associate with particular genomic sequences. This book’s primary goal is to establish a framework that can be used to understand the basis of epigenetic regulation and to appreciate both its derivation from genetics and its interdependence with genetic mechanisms. A further aim is to highlight the r
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Epigenetic chromatin modifications"

1

Paro, Renato, Ueli Grossniklaus, Raffaella Santoro, and Anton Wutz. "Biology of Chromatin." In Introduction to Epigenetics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_1.

Full text
Abstract:
AbstractThis chapter provides an introduction to chromatin. We will examine the organization of the genome into a nucleosomal structure. DNA is wrapped around a globular complex of 8 core histone proteins, two of each histone H2A, H2B, H3, and H4. This nucleosomal arrangement is the context in which information can be established along the sequence of the DNA for regulating different aspects of the chromosome, including transcription, DNA replication and repair processes, recombination, kinetochore function, and telomere function. Posttranslational modifications of histone proteins and modifications of DNA bases underlie chromatin-based epigenetic regulation. Enzymes that catalyze histone modifications are considered writers. Conceptually, erasers remove these modifications, and readers are proteins binding these modifications and can target specific functions. On a larger scale, the 3-dimensional (3D) organization of chromatin in the nucleus also contributes to gene regulation. Whereas chromosomes are condensed during mitosis and segregated during cell division, they occupy discrete volumes called chromosome territories during interphase. Looping or folding of DNA can bring regulatory elements including enhancers close to gene promoters. Recent techniques facilitate understanding of 3D contacts at high resolution. Lastly, chromatin is dynamic and changes in histone occupancy, histone modifications, and accessibility of DNA contribute to epigenetic regulation.
APA, Harvard, Vancouver, ISO, and other styles
2

Begcy, Kevin, and Thomas Dresselhaus. "Analysis of Epigenetic Modifications During Vegetative and Reproductive Development in Cereals Using Chromatin Immunoprecipitation (ChIP)." In Methods in Molecular Biology. Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9865-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hake, Sandra B. "Chromatin Modifications." In Nutrition in Epigenetics. Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9780470959824.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paro, Renato, Ueli Grossniklaus, Raffaella Santoro, and Anton Wutz. "Dosage Compensation Systems." In Introduction to Epigenetics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_4.

Full text
Abstract:
AbstractThis chapter provides an introduction to chromosome-wide dosage compensation systems. We will examine the evolution of dosage compensation, which is thought to be driven by the appearance of differentiated sex chromosomes. In a subset of species with X chromosomal sex determination or XY sex chromosome systems, expression of X-linked genes is regulated by chromosome-wide modifications that equalize gene expression differences between males and females. The molecular mechanisms of X chromosome-wide dosage compensation have been studied in flies, worms, and mammals. Each of these species uses a distinct dosage compensation strategy with a different molecular mechanism. In the wormCaenorhabditis elegans, gene expression on the two X chromosomes of hermaphrodites is reduced to a level that approximates a single X chromosome in males. The fruit flyDrosophila melanogasterachieves dosage compensation by increased transcription of the single X chromosome in males to a level that is similar to the two X chromosomes in females. Lastly, in mammals, one of the two X chromosomes in female cells is transcriptionally inactive and a single X chromosome is transcribed in both sexes. Studies of dosage compensation systems provide insights into how epigenetic regulation controls gene expression and chromatin organization differentially within a cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Desvoyes, Bénédicte, Zaida Vergara, Joana Sequeira-Mendes, Sofia Madeira, and Crisanto Gutierrez. "A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis." In Methods in Molecular Biology. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7318-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paro, Renato, Ueli Grossniklaus, Raffaella Santoro, and Anton Wutz. "Cellular Memory." In Introduction to Epigenetics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_3.

Full text
Abstract:
AbstractThe identity of cells in an organism is largely defined by their specific transcriptional profile. During cell division, these profiles need to be faithfully inherited to the daughter cells to ensure the maintenance of cell structure and function in a cell lineage. Here, you will learn how two groups of chromatin regulators, the Polycomb group (PcG) and the Trithorax group (TrxG), act in an antagonistic manner to maintain differential gene expression states. Members of the PcG cooperate in large multiprotein complexes to modify histones with repressive marks, resulting in condensed chromatin domains. Conversely, the TrxG proteins counteract the repressed domains by opening nucleosomal structures and establishing activating histone modifications. PcG and TrxG proteins are evolutionary highly conserved and control diverse processes, such as the identity of stem cells in mammalian development to the process of vernalization in plants.
APA, Harvard, Vancouver, ISO, and other styles
7

Erbacher, Annika, and Patrice Decker. "Chromatin Modifications, Oxidative Stress and Nucleosome Autoantibodies." In The Epigenetics of Autoimmune Diseases. John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470743553.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

You, Wanhui, Stéphane Pien, and Ueli Grossniklaus. "Chromatin Immunoprecipitation Protocol for Histone Modifications and Protein-DNA Binding Analyses in Arabidopsis." In Plant Epigenetics. Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7708-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pien, Stéphane, and Ueli Grossniklaus. "Chromatin Immunoprecipitation Protocol for Histone Modifications and Protein–DNA Binding Analyses in Arabidopsis." In Plant Epigenetics. Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-646-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

George, Charlotte L., and Becky L. Conway-Campbell. "Dynamic Regulation of Chromatin Modification and Transcription by GR and the Steroid Receptors." In Epigenetics and Neuroendocrinology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24493-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Epigenetic chromatin modifications"

1

Cai, Changmeng, Housheng Hansen He, Myles Brown, and Steven P. Balk. "Abstract A46: LSD1 globally mediates epigenetic modifications on androgen receptor-dependent enhancers." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takahashi, T., K. Omondi Okeyo, M. Washizu, J. Ueda, and H. Oana. "Direct Observation of Epigenetic Modifications along Intact Chromatin Fibers of Individual Chromosomes Isolated from Single Cells in a Microfluidic Channel." In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.h-5-04l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wellen, Kathryn. "Abstract IA08: Metabolic compartmentalization in the regulation of chromatin modification." In Abstracts: AACR Special Virtual Conference on Epigenetics and Metabolism; October 15-16, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.epimetab20-ia08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Emran, Abdullah Al, Dinoop Ravindran Menon, Peter Soyer, et al. "Abstract B34: Global histone modifications define early stress induced drug tolerance in cancer." In Abstracts: AACR Special Conference: Chromatin and Epigenetics in Cancer; September 24-27, 2015; Atlanta, GA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.chromepi15-b34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sundar, Isaac Kirubakaran, Jae-woong Hwang, Hongwei Yao, and Irfan Rahman. "Profiling Of Epigenetic Chromatin Modification Genes And Susceptibility To Chronic Lung Disease By Cigarette Smoke." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a3480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaneda, Atsushi, Teruyuki Sato, Shingo Tsuji, et al. "Abstract A32: Aberrant gene repression with H3K27me3 modification in human small cell lung cancer." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Venkatesan, Thiagarajan, Umamaheswari Natarajan, and Appu Rathinavelu. "Abstract 4681: Effect of SAHA on epigenetic chromatin modification enzymes in LNCaP and MCF-7 cells." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Galligan, J. J., K. L. Rose, W. N. Beavers, C. D. Aluise, S. C. Shuck, and L. J. Marnett. "Abstract A12: Alkylation of histones by 4-oxo-2-nonenal as a novel modification linked to oxidative stress." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Larson, Jon D., Troy A. McEachron, Chunxu Qu, et al. "Abstract A15: Variant histone H3 mutations associate with histone modification, DNA methylation, and gene expression changes in pediatric high-grade gliomas." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mateen, Samiha, Komal Raina, Chapla Agarwal, and Rajesh Agarwal. "Abstract 3796: Inhibition of epigenetic chromatin-modification enzymes: histone deacetylases and DNA methyltransferases by silibinin in human NSCLC H1299 cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!