Academic literature on the topic 'Epigenetic Modulations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epigenetic Modulations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Epigenetic Modulations"
Kaur, Jasmine, Abdelkader Daoud, and Scott T. Eblen. "Targeting Chromatin Remodeling for Cancer Therapy." Current Molecular Pharmacology 12, no. 3 (July 29, 2019): 215–29. http://dx.doi.org/10.2174/1874467212666190215112915.
Full textWrede, Dylan, Mika Bordak, Yeabtsega Abraham, and Masfique Mehedi. "Pulmonary Pathogen-Induced Epigenetic Modifications." Epigenomes 7, no. 3 (July 6, 2023): 13. http://dx.doi.org/10.3390/epigenomes7030013.
Full textArif, K. M. Taufiqul, Esther K. Elliott, Larisa M. Haupt, and Lyn R. Griffiths. "Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets." Cancers 12, no. 10 (October 11, 2020): 2922. http://dx.doi.org/10.3390/cancers12102922.
Full textWikumpriya, Gunasekara Chathura, Madhuranga Walawedurage Srinith Prabhatha, Jiye Lee, and Chan-Hee Kim. "Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture." Genes 14, no. 9 (August 25, 2023): 1682. http://dx.doi.org/10.3390/genes14091682.
Full textHmood, Qammar Shaker. "Harnessing CRISPR-Cas for Targeted Epigenetic Manipulations: a physiological study of Gene Regulation." European Journal of Medical Genetics and Clinical Biology 1, no. 5 (May 10, 2024): 115–29. http://dx.doi.org/10.61796/jmgcb.v1i5.453.
Full textWong, Belinda Shu Ee, Qidong Hu, and Gyeong Hun Baeg. "Epigenetic modulations in nanoparticle-mediated toxicity." Food and Chemical Toxicology 109 (November 2017): 746–52. http://dx.doi.org/10.1016/j.fct.2017.07.006.
Full textStanzione, Rosita, Maria Cotugno, Franca Bianchi, Simona Marchitti, Maurizio Forte, Massimo Volpe, and Speranza Rubattu. "Pathogenesis of Ischemic Stroke: Role of Epigenetic Mechanisms." Genes 11, no. 1 (January 13, 2020): 89. http://dx.doi.org/10.3390/genes11010089.
Full textSalinas, Irving, Niharika Sinha, and Aritro Sen. "Androgen-induced epigenetic modulations in the ovary." Journal of Endocrinology 249, no. 3 (June 2021): R53—R64. http://dx.doi.org/10.1530/joe-20-0578.
Full textHoffman, Jessie B., Michael C. Petriello, and Bernhard Hennig. "Impact of nutrition on pollutant toxicity: an update with new insights into epigenetic regulation." Reviews on Environmental Health 32, no. 1-2 (March 1, 2017): 65–72. http://dx.doi.org/10.1515/reveh-2016-0041.
Full textPan, Desi, and Xianping Lu. "New therapeutic avenue of epigenetic modulations in cancer." Translational Breast Cancer Research 1 (April 2020): 2. http://dx.doi.org/10.21037/tbcr.2020.03.03.
Full textDissertations / Theses on the topic "Epigenetic Modulations"
Kerbaj, Coline. "Investigating the role of OGT and c-Myc in modulating EZH2 functions in hepatocellular carcinoma." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10358.
Full textHepatocellular carcinoma (HCC), the most common form of liver cancer and leading cause of death, is a heterogeneous disease with no unique driver mutation. Up to 50% of HCCs harbor alterations in epigenetic machineries that represent promising therapeutic targets. During my PhD, I focused on the histone methyltransferase (HMT) EZH2 that is upregulated in HCC and related to therapy resistance. EZH2 is the catalytic subunit of the PRC2 complex responsible for H3K27me3, a repressive epigenetic mark (canonical function). In cancer, EZH2/PRC2 represses the expression of tumor suppressor genes but EZH2 can also activate oncogenes and cell cycle genes in a mostly PRC2-independent manner (non-canonical function). EZH2 HMT inhibitors have demonstrated low efficacy in solid tumors suggesting that HMT independent functions of EZH2 are key in these cancers. EZH2 can be regulated by post-translational modifications, including O-GlcNAcylation by O-GlcNAc transferase (OGT) whose expression is increased in HCC. Our data show that EZH2 and OGT are co-recruited to defined gene promoters in HCC and predominantly promote gene expression. To decipher the molecular mechanisms underlying EZH2/OGT-mediated gene activation in HCC, we assessed the roles of PRC2 and c-Myc that plays an important role in HCC and can be modulated by OGT. We showed that EZH2 and c-Myc are O-GlcNAcylated by OGT in human hepatoma cells and that EZH2 O-GlcNAcylation plays a role in EZH2 target promoter recruitment. Our data also indicate that c-Myc plays an important role in EZH2/OGT-mediated gene regulation. Interestingly, our results suggest that part of the non-canonical functions of EZH2 in human hepatoma cells may be PRC2 dependent. Collectively, our data uncover that OGT and c-Myc promote non-canonical functions of EZH2 in transformed liver cells and provide important insights for epigenetic strategies as potential future anti-HCC therapies. A better understanding of the regulatory networks controlling gene expression in HCC will open perspectives for the design of novel therapeutic strategies for HCC
Lones, John. "Hormonal modulation of developmental plasticity in an epigenetic robot." Thesis, University of Hertfordshire, 2017. http://hdl.handle.net/2299/17859.
Full textPhipps, Sharla Marion Ostein. "Genetic and epigenetic modulation of telomerase activity in development and disease." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/phipps.pdf.
Full textAdditional advisors: Vithal K. Ghanta, J. Michael Ruppert, Theresa V. Strong, R. Douglas Watson. Description based on contents viewed Oct. 3, 2008; title from PDF t.p. Includes bibliographical references.
Wright, Stephanie D. "Epigenetic modulation of the UL97 gene product in CMV-associated central nervous system tumors." Connect to resource, 2005. http://hdl.handle.net/1811/438.
Full textTitle from first page of PDF file. Document formattted into pages: contains 51 p.; also includes graphics. Includes bibliographical references (p. 29-33). Available online via Ohio State University's Knowledge Bank.
Azoulay, Nelson. "Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder: examining child vs. adult trauma." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104876.
Full textLe TSPT est un syndrome dévastateur qui touche entre 7 et 12% de gens qui vivent un événement traumatique. Les personnes qui souffrent du syndrome ont un axe HPA dysfonctionnel avec moins de cortisol salivaire et une augmentation de sensitivité des récepteurs glucocorticoïdes. Il y a récemment eu des études épigénétiques qui ont montré une association entre les traumas et les effets sur l'axe HPA chez des patients abusés qui ont commis un suicide. De plus, les résultats indiquent qu'un trauma durant l'enfance est un facteur significatif pour la méthylation d'ADN dans la région promoteur 1F de l'hippocampe. Cette thèse présente le possible rôle modulateur de l'épigénétique des récepteurs glucocorticoïdes chez les personnes touchées du TSPT tout en examinant les effets du temps du trauma. Les résultats montrent que les individus qui souffrent du TSPT ont moins de cortisol salivaire le matin, une augmentation des récepteurs glucocorticoïdes et une augmentation de niveaux de méthylation totale dans la région promoteur 1C du sang. Il semblerait aussi qu'un trauma vécu durant l'âge adulte soit plus significatif pour l'axe HPA, alors qu'un trauma durant l'enfance semblerait prendre le dessus pour les modifications épigénétiques. Ces résultats montrent que 1) les personnes souffrant du TSPT ont une activité HPA atténuée, 2) l'épigénétique joue un rôle différent chez les TSPT comparés aux patients abusés qui ont commis un suicide et 3) le temps du trauma a des effets significatifs pour l'axe HPA et les modifications épigénétiques.
Krzystyniak, Joanna. "Epigenetic modulation of intestinal homeostasis and tumorigenesis by Brm SWI/SNF chromatin remodelling factor." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/73083/.
Full textZha, Lisha [Verfasser], and Susanne [Akademischer Betreuer] Engelmann. "Epigenetic modulation of Doxcycline controlled transgene expression in cells and mice / Lisha Zha ; Betreuer: Susanne Engelmann." Braunschweig : Technische Universität Braunschweig, 2015. http://d-nb.info/1175819328/34.
Full textPikulkaew, Surachai. "ROLE OF LIPOSOLUBLE HORMONES AND MATERNAL mRNAs IN THE EPIGENETIC LONG-TERM MODULATION OF ZEBRAFISH DEVELOPMENT." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3422368.
Full textPARTE I: Analisi dell’espressione degli mRNA materni e zigotici per recettori di ormoni steroidei durante lo sviluppo nel pesce zebrato (Danio rerio). Ho analizzato mediante qRT-PCR e/o RT-PCR la presenza ed il grado di degradazione degli mRNA materni codificanti per nove recettori di ormoni steroidei, e la loro possibile sostituzione da parte dei trascritti embrionali corrispondenti, sia negli ovociti ovulati che in embrioni di pesce zebrato raccolti a 0, 1, 2, 4, 8, 12, 24 e 48 ore dopo la fecondazione (hpf). Gli mRNA studiati sono quelli codificanti i recettori nucleari per il progesterone (Pr), gli androgeni (Ar), gli estrogeni (Erα, Erβ1 ed Erβ2), i glucocorticoidi (Gr), i mineralcorticoidi (Mr) ed i recettori di membrana α e β per i progestinici (mPrα e mPrβ). L’mRNA codificante la proteina Gr costituisce il trascritto materno maggiormente presente negli ovociti e nei primi stadi di sviluppo embrionale, seguito dagli mRNA codificanti i recettori Erβ2 ed Ar. Tutti questi trascritti diminuiscono durante le prime 8 ore di sviluppo, e vengono poi sostituiti dai rispettivi messaggeri embrionali. I livelli dei trascritti per erβ1 e mr sono bassi prima delle 8 hpf, ed aumentano costantemente, dopo l’inizio della trascrizione embrionale, passando dalle 24 alle 48 hpf. L’mRNA codificante il recettore Pr è stato rilevato soltanto negli ovociti ovulati e nei campioni corrispondenti a 24 e 48 hpf. A questi stadi di sviluppo c’è anche un leggero aumento dell’mRNA codificante la proteina Erα. I trascritti per i recettori mPrα e mPrβ sono presenti negli ovociti ovulati e persistono, a basse concentrazioni, fino alle 4 hpf. Non è stata evidenziata la presenza di trascritti embrionali codificanti per questi due geni. E’ interessante il possibile coinvolgimento degli mRNA codificanti Gr e i recettori degli ormoni sessuali nella programmazione dello sviluppo embrionale precoce del pesce zebrato, dal momento che sono presenti principalmente negli stadi di sviluppo in cui la replicazione genica predomina sulla trascrizione. PARTE II: Inattivazione genica del recettore dei glucocorticoidi di pesce zebrato mediante morfolino Il recettore dei glucocorticoidi (Gr) è coinvolto in numerosi processi fisiologici, tra cui la crescita, l’osmoregolazione e la riproduzione in molte specie di vertebrati. In questo studio, ho analizzato la funzione del Gr durante l’embriogenesi di pesce zebrato utilizzando la tecnologia degli oligonucleotidi antisenso morfolino per inibire la traduzione dell’mRNA codificante Gr. Ho osservato che i morfanti di Gr presentano occhi e testa di dimensioni ridotte, corpo corto, edema pericardico, riduzione della pigmentazione, mancata insufflazione della vescica natatoria, coda incurvata e comportamento natatorio anormale. L’efficacia dell’inattivazione genica del Gr sono stati verificati mediante Western blotting ed utilizzando un sistema di trascrizione e traduzione in vitro, che hanno dimostrato una riduzione della traduzione del Gr negli embrioni morfanti. Analisi di microarray hanno messo in evidenza che questa proteina funziona prevalentemente come repressore della trascrizione genica. I geni caspase-8, igf2α e centaurina-1α risultati sovraespressi mediante microarray dopo trattamento con morfolino, sono stati analizzati mediante RT-PCR semiquantitativa durante tutto il corso dello sviluppo embrionale. Inoltre, esperimenti di ibridazione in situ in toto indicano che, mentre in generale il modello di espressione dei marcatori utilizzati non cambia nei morfanti, tre marcatori coinvolti nel processo di neurogenesi, e cioè egr2b, emx1 e six3.1, sono risultati sovraespressi. In conclusione, i risultati ottenuti dall’inattivazione genica del gr di pesce zebrato rivelano la necessità dei trascritti di origine materna in molteplici processi di sviluppo, quali neurogenesi e formazione di intestino ed organi accessori. Si dovrà comunque analizzare più in dettaglio la transizione funzionale dai trascritti materni a quelli zigotici e stabilire se essi influenzino componenti distinti dei meccanismi a livello genomico.
Górniak, Joanna Paulina. "Age-related epigenetic changes at base excision repair genes and their modulation by dietary restriction in mice." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2932.
Full textHeddleston, John Michael. "The Role of Hypoxia in Modulating Glioma Cell Tumorigenic Potential." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1310043767.
Full textBooks on the topic "Epigenetic Modulations"
Jacob, Esther Margarete. Modulation des microRNA-Profils in Hepatomzellen und primären humanen Hepatozyten durch epigenetisch aktive Therapeutika. [S.l: s.n.], 2013.
Find full textOdyssey of Humanity's Diseases Volume 1: Epigenetic and Ecogenetic Modulations from Ancestry Through Inheritance, Environment, Culture, and Behavior. Tellwell Talent, 2020.
Find full textThe Odyssey of Humanity's Diseases Volume 3: Epigenetic and Ecogenetic Modulations from Ancestry through Inheritance, Environment, Culture, and Behavior. Tellwell Talent, 2020.
Find full textThe Odyssey of Humanity's Diseases Volume 2: Epigenetic and Ecogenetic Modulations from Ancestry through Inheritance, Environment, Culture, and Behavior. Tellwell Talent, 2020.
Find full textThe Odyssey of Humanity's Diseases Volume 3: Epigenetic and Ecogenetic Modulations from Ancestry through Inheritance, Environment, Culture, and Behavior. Tellwell Talent, 2020.
Find full textThe Odyssey of Humanity's Diseases Volume 1: Epigenetic and Ecogenetic Modulations from Ancestry through Inheritance, Environment, Culture, and Behavior. Tellwell Talent, 2020.
Find full textThe Odyssey of Humanity's Diseases Volume 2: Epigenetic and Ecogenetic Modulations from Ancestry through Inheritance, Environment, Culture, and Behavior. Tellwell Talent, 2020.
Find full textIssa, Jean-Pierre J. Epigenetic Modulation and Hematologic Malignancies (Contemporary Hematology). Humana Press, 2008.
Find full textGenetic and Epigenetic Modulation of Cell Functions by Physical Exercise. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03928-481-8.
Full textLusardi, Theresa A., and Detlev Boison. Ketogenic Diet, Adenosine, Epigenetics, and Antiepileptogenesis. Edited by Detlev Boison. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0023.
Full textBook chapters on the topic "Epigenetic Modulations"
Zhao, Yuanji, and Sanchita Bhatnagar. "Epigenetic Modulations by Microbiome in Breast Cancer." In Advances in Experimental Medicine and Biology, 55–69. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66686-5_4.
Full textKerbel, Robert S., Robert G. Liteplo, and Phil Frost. "Implications of Therapy-Induced Genetic/Epigenetic Modulations of Tumor Progression and Tumor Cell Heterogeneity for the Treatment of Cancer." In Cancer Biology and Therapeutics, 95–104. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9564-6_6.
Full textRoss, Ivan A. "Epigenetic Modulation by Isothiocyanates." In Plant-Based Therapeutics, Volume 2, 315–41. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63681-3_7.
Full textMontanari, Micaela, Antonio Giordano, Marcella Cintorino, and Marcella Macaluso. "Epigenetic Modulation of Cell Cycle: An Overview." In Cancer Epigenetics, 1–14. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118005743.ch1.
Full textMancino, Mario, Claudia Esposito, Raffaella Pasquale, Immacolata Vocca, and Francesca Pentimalli. "Epigenetic Modulation in Cell Development and Differentiation." In Cancer Epigenetics, 45–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118005743.ch4.
Full textGoto, Sataro, Kyojiro Kawakami, Hisashi Naito, Shizuo Katamoto, and Zsolt Radak. "Epigenetic Modulation of Gene Expression by Exercise." In Healthy Ageing and Longevity, 85–100. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14830-4_5.
Full textLippi, Giuseppe, Elisa Danese, and Fabian Sanchis-Gomar. "Stress, Exercise, and Epigenetic Modulation of Cancer." In Energy Balance and Cancer, 147–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41610-6_6.
Full textRoy, Madhumita, and Amitava Datta. "Phytochemicals in ROS Mediated Epigenetic Modulation of Cancer." In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, 1–18. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-4501-6_108-1.
Full textRoy, Madhumita, and Amitava Datta. "Phytochemicals in ROS-Mediated Epigenetic Modulation of Cancer." In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, 1583–600. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-9411-3_108.
Full textBrand, Marjorie, and F. J. Dilworth. "Modulation of Developmentally Regulated Gene Expression Programs through Targeting of Polycomb and Trithorax Group Proteins." In Toxicology and Epigenetics, 511–38. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118349045.ch26.
Full textConference papers on the topic "Epigenetic Modulations"
Cabello, Jade Carolina, Marcella Victoria Ras, Katelyn Thy Nhung Tran, and Athit Voytas. "An Investigation on the Intricacies of Epigenetic Modulations in the Pathogenesis of Human Papillomavirus-Associated Cervical Cancer: A Comprehensive Meta-Narrative Synthesis." In 2024 Research Methods Poster Session School of Health Professions. The University of Texas MD Anderson Cancer Center, 2024. http://dx.doi.org/10.52519/00121.
Full textLones, John, and Lola Canamero. "Epigenetic adaptation through hormone modulation in autonomous robots." In 2013 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL). IEEE, 2013. http://dx.doi.org/10.1109/devlrn.2013.6652561.
Full textSantos, Jephesson Alex Alex dos, Carolina Nunes Santo, and Luiza Cherobini Pereira. "Abstract 2445: Epigenetic modulation of tumor cell tolerance to chemotherapy." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2445.
Full textLuo, N., VM Estrada, ME Sanders, and JM Balko. "Abstract P1-04-02: Improving immunotherapy response by epigenetic modulation." In Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p1-04-02.
Full textAzad, Nilofer S. "Abstract I13: Modulating the immune response with epigenetic agents." In Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; September 6-9, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.panca19-i13.
Full textSun, Y., B. H. Y. Yeung-Luk, S. E. Wenzel, and W. W. Y. Tang. "Epigenetic Modulation of Airway Smooth Muscle Cell Function Via Glutamate Metabolism." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a2349.
Full textJha, Akhilesh, Inmaculada Rioja, Rab Prinjha, and Clare Bryant. "Epigenetic modulation of TLR-driven inflammatory responses in airway epithelial cells." In ERS Lung Science Conference 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/23120541.lsc-2022.30.
Full textLones, John, Matthew Lewis, and Lola Canamero. "Hormonal modulation of interaction between autonomous agents." In 2014 Joint IEEE International Conferences on Development and Learning and Epigenetic Robotics (ICDL-Epirob). IEEE, 2014. http://dx.doi.org/10.1109/devlrn.2014.6983015.
Full textYang, Shujie, Xue Xiao, Yuping Zhang, Xiangbing Meng, and Kimberly K. Leslie. "Abstract 4711: Epigenetic modulation restores expression of functional progesterone receptor in endometrial cancer cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4711.
Full textLai, Ssu-Chuan, Te-Sheng Chang, Yu-Ting Su, Yu-Chih Wu, Yung-Che Kuo, Pei-Chi Lan, and Yen-Hua Huang. "Abstract 5223: IL-6 regulates the OCT4 expression by epigenetic modulation in hepatocellular carcinoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5223.
Full textReports on the topic "Epigenetic Modulations"
Liao, Jianhua, Jingting Liu, Baoqing Liu, Chunyan Meng, and Peiwen Yuan. Effect of OIP5-AS1 on clinicopathological characteristics and prognosis of cancer patients: a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2022. http://dx.doi.org/10.37766/inplasy2022.10.0118.
Full textYu, Mei, Pengyu Wang, Binbin Li, Qiaoling Ruan, Jingzi ZhangBao, Lei Wu, Xiaoshuang Zhang, Zhaolin Liu, and Fang Huang. NRSF Negatively Regulates Microglial Pro-Inflammatory Activation. Progress in Neurobiology, May 2024. http://dx.doi.org/10.60124/j.pneuro.2024.20.02.
Full textYahav, Shlomo, John Brake, and Noam Meiri. Development of Strategic Pre-Natal Cycling Thermal Treatments to Improve Livability and Productivity of Heavy Broilers. United States Department of Agriculture, December 2013. http://dx.doi.org/10.32747/2013.7593395.bard.
Full text