Journal articles on the topic 'Epigenomic regulators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Epigenomic regulators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Al-Janabi, Ismail. "Therapeutic Targeting of the Regulators of Cancer Epigenomes." Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ) 5 (July 1, 2023): 1–13. http://dx.doi.org/10.54133/ajms.v5i.128.
Full textPaul, Aswathy Mary, Madhavan Radhakrishna Pillai, and Rakesh Kumar. "Prognostic Significance of Dysregulated Epigenomic and Chromatin Modifiers in Cervical Cancer." Cells 10, no. 10 (2021): 2665. http://dx.doi.org/10.3390/cells10102665.
Full textSchmitz, Ulf, Jaynish S. Shah, Bijay P. Dhungel, et al. "Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients." Cancers 12, no. 12 (2020): 3738. http://dx.doi.org/10.3390/cancers12123738.
Full textTseng, Yen-Tzu, Hung-Fu Liao, Chih-Yun Yu, Chu-Fan Mo, and Shau-Ping Lin. "Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells." REPRODUCTION 150, no. 3 (2015): R77—R91. http://dx.doi.org/10.1530/rep-14-0679.
Full textZhou, Huaijun. "97 Dissection of Evolution of Cis-Regulatory Elements and Its Application on Genetic Control of Complex Traits in Farm Animals." Journal of Animal Science 101, Supplement_3 (2023): 51–52. http://dx.doi.org/10.1093/jas/skad281.063.
Full textDeng, Xian, Xianwei Song, Liya Wei, Chunyan Liu, and Xiaofeng Cao. "Epigenetic regulation and epigenomic landscape in rice." National Science Review 3, no. 3 (2016): 309–27. http://dx.doi.org/10.1093/nsr/nww042.
Full textRada-Iglesias, Alvaro, Ruchi Bajpai, Sara Prescott, Samantha A. Brugmann, Tomek Swigut, and Joanna Wysocka. "Epigenomic Annotation of Enhancers Predicts Transcriptional Regulators of Human Neural Crest." Cell Stem Cell 11, no. 5 (2012): 633–48. http://dx.doi.org/10.1016/j.stem.2012.07.006.
Full textSmetanina, Mariya A., Valeria A. Korolenya, Alexander E. Kel, et al. "Epigenome-Wide Changes in the Cell Layers of the Vein Wall When Exposing the Venous Endothelium to Oscillatory Shear Stress." Epigenomes 7, no. 1 (2023): 8. http://dx.doi.org/10.3390/epigenomes7010008.
Full textBoix, Carles A., Benjamin T. James, Yongjin P. Park, Wouter Meuleman, and Manolis Kellis. "Regulatory genomic circuitry of human disease loci by integrative epigenomics." Nature 590, no. 7845 (2021): 300–307. http://dx.doi.org/10.1038/s41586-020-03145-z.
Full textWilliams, Ruth M., Guneş Taylor, Irving T. C. Ling, et al. "Chromatin remodeller Chd7 is developmentally regulated in the neural crest by tissue-specific transcription factors." PLOS Biology 22, no. 10 (2024): e3002786. http://dx.doi.org/10.1371/journal.pbio.3002786.
Full textKumar, Suresh, Pallavi ., Ashok K. Singh, and Trilochan Mohapatra. "Recent advances in epigenomic techniques: Analysis of DNA base modifications." Indian Journal of Genetics and Plant Breeding (The) 84, no. 02 (2024): 143–55. http://dx.doi.org/10.31742/isgpb.84.2.1.
Full textkong, ranran, Ayushi S. Patel, Takashi Sato, et al. "Abstract 5709: Transcriptional circuitry of NKX2-1 and SOX1 defines a previously unrecognized lineage subtype of small cell lung cancer." Cancer Research 82, no. 12_Supplement (2022): 5709. http://dx.doi.org/10.1158/1538-7445.am2022-5709.
Full textLu, Jia, Xiaoyi Cao, and Sheng Zhong. "EpiAlignment: alignment with both DNA sequence and epigenomic data." Nucleic Acids Research 47, W1 (2019): W11—W19. http://dx.doi.org/10.1093/nar/gkz426.
Full textBond, Danielle R., Kumar Uddipto, Anoop K. Enjeti, and Heather J. Lee. "Single-cell epigenomics in cancer: charting a course to clinical impact." Epigenomics 12, no. 13 (2020): 1139–51. http://dx.doi.org/10.2217/epi-2020-0046.
Full textGolimbet, V. E., A. K. Golov, and N. V. Kondratyev. "Post-GWAS era in genetics of schizophrenia." V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY, no. 4-1 (December 9, 2019): 6–7. http://dx.doi.org/10.31363/2313-7053-2019-4-1-6-7.
Full textBrunmeir, Reinhard, Jingyi Wu, Xu Peng, et al. "Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis." PLOS Genetics 12, no. 12 (2016): e1006474. http://dx.doi.org/10.1371/journal.pgen.1006474.
Full textBinder, Moritz, Alexandre Gaspar Maia, Ryan M. Carr, et al. "Epigenomic Determinants of Transcriptional Activity in ASXL1-Mutant Chronic Myelomonocytic Leukemia." Blood 134, Supplement_1 (2019): 2987. http://dx.doi.org/10.1182/blood-2019-123191.
Full textCescon, DW. "Abstract ES13-3: Novel epigenomic targets in TNBC." Cancer Research 82, no. 4_Supplement (2022): ES13–3—ES13–3. http://dx.doi.org/10.1158/1538-7445.sabcs21-es13-3.
Full textBlank-Giwojna, Alena, Anna Postepska-Igielska, and Ingrid Grummt. "lncRNA KHPS1 Activates a Poised Enhancer by Triplex-Dependent Recruitment of Epigenomic Regulators." Cell Reports 26, no. 11 (2019): 2904–15. http://dx.doi.org/10.1016/j.celrep.2019.02.059.
Full textYildirim, Ferah, Christopher W. Ng, Vincent Kappes, et al. "Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington’s disease." Proceedings of the National Academy of Sciences 116, no. 49 (2019): 24840–51. http://dx.doi.org/10.1073/pnas.1908113116.
Full textWattacheril, Julia J., Srilakshmi Raj, David A. Knowles, and John M. Greally. "Using epigenomics to understand cellular responses to environmental influences in diseases." PLOS Genetics 19, no. 1 (2023): e1010567. http://dx.doi.org/10.1371/journal.pgen.1010567.
Full textRovira, Meritxell, Goutham Atla, Miguel Angel Maestro, et al. "REST is a major negative regulator of endocrine differentiation during pancreas organogenesis." Genes & Development 35, no. 17-18 (2021): 1229–42. http://dx.doi.org/10.1101/gad.348501.121.
Full textZibetti, Cristina. "Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives." Cells 11, no. 5 (2022): 806. http://dx.doi.org/10.3390/cells11050806.
Full textTorres-Campana, Daniela, Béatrice Horard, Sandrine Denaud, Gérard Benoit, Benjamin Loppin, and Guillermo A. Orsi. "Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain." PLOS Genetics 18, no. 1 (2022): e1009615. http://dx.doi.org/10.1371/journal.pgen.1009615.
Full textMalta, Tathiane, Thais Sabedot, Indrani Datta, et al. "OTEH-10. Evolutionary trajectory of epigenomic of gliomas." Neuro-Oncology Advances 3, Supplement_2 (2021): ii12. http://dx.doi.org/10.1093/noajnl/vdab070.049.
Full textDuraisingh, Manoj T., and Kristen M. Skillman. "Epigenetic Variation and Regulation in Malaria Parasites." Annual Review of Microbiology 72, no. 1 (2018): 355–75. http://dx.doi.org/10.1146/annurev-micro-090817-062722.
Full textWu, Tuoqi, Ziang Zhu, Safuwra Wizzard, and Chen Yao. "Joint single-cell transcriptomic and epigenomic analysis reveals key regulators of CAR T cell stemness and antitumor immunity." Journal of Immunology 212, no. 1_Supplement (2024): 1425_4772. http://dx.doi.org/10.4049/jimmunol.212.supp.1425.4772.
Full textTan, Jiaxing, Yali Ding, Bing He, et al. "Abstract 2727: Histone deacetylase (HDAC1) and IKAROS are critical regulators of histone methylation and epigenomic landscape in T-cell acute lymphoblastic leukemia." Cancer Research 85, no. 8_Supplement_1 (2025): 2727. https://doi.org/10.1158/1538-7445.am2025-2727.
Full textLi, Cong-Jun, and Robert W. Li. "Bioinformatic Dissecting of TP53 Regulation Pathway Underlying Butyrate-induced Histone Modification in Epigenetic Regulation." Genetics & Epigenetics 6 (January 2014): GEG.S14176. http://dx.doi.org/10.4137/geg.s14176.
Full textWan, Chunhua, Sylvia Mahara, Claire Sun та ін. "Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer". Science Advances 7, № 21 (2021): eabf2567. http://dx.doi.org/10.1126/sciadv.abf2567.
Full textZhang, Kai, Mengchi Wang, Ying Zhao, and Wei Wang. "Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development." Science Advances 5, no. 3 (2019): eaav3262. http://dx.doi.org/10.1126/sciadv.aav3262.
Full textSun, Qian-Hui, Zi-Yu Kuang, Guang-Hui Zhu, Bao-Yi Ni, and Jie Li. "Multifaceted role of microRNAs in gastric cancer stem cells: Mechanisms and potential biomarkers." World Journal of Gastrointestinal Oncology 16, no. 2 (2024): 300–313. http://dx.doi.org/10.4251/wjgo.v16.i2.300.
Full textAyyamperumal, Parichitran, Hemant Chandru Naik, Amlan Jyoti Naskar, Lakshmi Sowjanya Bammidi, and Srimonta Gayen. "Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming." Life Science Alliance 7, no. 4 (2024): e202302337. http://dx.doi.org/10.26508/lsa.202302337.
Full textNam, Chehyun. "Abstract 4461: Unveiling the links between methionine metabolism and epigenomic reprogramming in upper aerodigestive squamous cell carcinoma." Cancer Research 84, no. 6_Supplement (2024): 4461. http://dx.doi.org/10.1158/1538-7445.am2024-4461.
Full textBolitho, Annabelle, and Hongbing Liu. "Epigenetic Regulation in Wilms Tumor." Biomedicines 13, no. 7 (2025): 1678. https://doi.org/10.3390/biomedicines13071678.
Full textKurowska, Aleksandra, Azari Bantan, Raghad Shuwaikan, et al. "Mapping Disease Transitions from Premalignant, Asymptomatic to Advanced Myeloma through Integrative Epigenomic and Transcriptional Analyses." Blood 144, Supplement 1 (2024): 1889. https://doi.org/10.1182/blood-2024-209833.
Full textMcKinsey, Timothy A., Thomas M. Vondriska, and Yibin Wang. "Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture." F1000Research 7 (October 29, 2018): 1713. http://dx.doi.org/10.12688/f1000research.15797.1.
Full textSiu, Celia, Sam Wiseman, Sitanshu Gakkhar, et al. "Characterization of the human thyroid epigenome." Journal of Endocrinology 235, no. 2 (2017): 153–65. http://dx.doi.org/10.1530/joe-17-0145.
Full textSobocińska, Joanna, Sara Molenda, Marta Machnik, and Urszula Oleksiewicz. "KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview." International Journal of Molecular Sciences 22, no. 4 (2021): 2212. http://dx.doi.org/10.3390/ijms22042212.
Full textYi, Mei, Yixin Tan, Li Wang, et al. "TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development." Cellular and Molecular Life Sciences 77, no. 21 (2020): 4325–46. http://dx.doi.org/10.1007/s00018-020-03539-2.
Full textEl Zarif, Talal, Karl Semaan, Marc Eid, et al. "Epigenomic profiling nominates master transcription factors (TFs) driving sarcomatoid differentiation (SD) of renal cell carcinoma (RCC)." Oncologist 28, Supplement_1 (2023): S8. http://dx.doi.org/10.1093/oncolo/oyad216.012.
Full textVolpato, Viola. "Integration of functional genomics data to uncover cell type-specific pathways affected in Parkinson's disease." Biochemical Society Transactions 49, no. 5 (2021): 2091–100. http://dx.doi.org/10.1042/bst20210128.
Full textYamagishi, Makoto. "The role of epigenetics in T-cell lymphoma." International Journal of Hematology, October 14, 2022. http://dx.doi.org/10.1007/s12185-022-03470-1.
Full textBell, Christopher G. "Epigenomic insights into common human disease pathology." Cellular and Molecular Life Sciences 81, no. 1 (2024). http://dx.doi.org/10.1007/s00018-024-05206-2.
Full textHenaff, Carole Le, Nicola Partridge, Frederic Jehan, and Valerie Geoffroy. "Identification of epigenomic regulators of osteoblast function." Bone Abstracts, April 21, 2016. http://dx.doi.org/10.1530/boneabs.5.p249.
Full textSikora, Matthew Joseph, and Joseph Sottnik. "Estrogen Receptor co-opts Mediator of DNA Damage Checkpoint 1 (MDC1) to Drive Epigenomic Remodeling and Transcriptional Regulation in ILC Cells." Endocrinology 166, Supplement_1 (2025). https://doi.org/10.1210/endocr/bqaf043.007.
Full textLee, Ji-Eun, Hannah Schmidt, Binbin Lai, and Kai Ge. "Transcriptional and Epigenomic Regulation of Adipogenesis." Molecular and Cellular Biology 39, no. 11 (2019). http://dx.doi.org/10.1128/mcb.00601-18.
Full textPandey, Saurabh Prakash, Ruben M. Benstein, Yanwei Wang, and Markus Schmid. "Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges." Journal of Experimental Botany, May 29, 2021. http://dx.doi.org/10.1093/jxb/erab248.
Full textAbdulla, Amith Z., Cédric Vaillant, and Daniel Jost. "Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory." Nucleic Acids Research, August 26, 2022. http://dx.doi.org/10.1093/nar/gkac702.
Full textZhao, Yanding, Yadong Dong, Wei Hong, Chongming Jiang, Kevin Yao, and Chao Cheng. "Computational modeling of chromatin accessibility identified important epigenomic regulators." BMC Genomics 23, no. 1 (2022). http://dx.doi.org/10.1186/s12864-021-08234-5.
Full text