Academic literature on the topic 'Équation de diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équation de diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Équation de diffusion"
Bessenasse, M., A. Kettab, A. Paquier, G. Galeas, and P. Ramez. "Simulation numérique de la sédimentation dans les retenues de barrages : cas de la retenue de Zardezas, Algérie." Revue des sciences de l'eau 16, no. 1 (April 12, 2005): 103–22. http://dx.doi.org/10.7202/705500ar.
Full textLacombe, Gilles. "Analyse d’une équation de vitesse de diffusion." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 5 (September 1999): 383–86. http://dx.doi.org/10.1016/s0764-4442(00)88610-3.
Full textNayagum, Dharumarajen, Gerhard Schäfer, and Robert Mose. "Approximation par les éléments finis mixtes d'une équation de diffusion non linéaire modélisant un écoulement diphasique en milieu poreux." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, no. 2 (February 2001): 87–90. http://dx.doi.org/10.1016/s1620-7742(00)01299-x.
Full textBérenger, Yao Konan, Assue Yao Jean-Aimé, and Tuo Kolotioloma Honoré. "Diffusion des TIC dans l’Enseignement Secondaire General du District de Yamoussoukro (Cote d’Ivoire): Etat des Lieux et Defis a Relever." European Scientific Journal, ESJ 20, no. 5 (February 29, 2024): 46. http://dx.doi.org/10.19044/esj.2024.v20n5p46.
Full textNinet, Alain. "Amplitude de diffusion pour les équations de l'élasticité." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 4 (August 2000): 305–8. http://dx.doi.org/10.1016/s0764-4442(00)01648-7.
Full textGinibre, Jean. "Théorie de la diffusion pour des équations semi linéaires." Journées équations aux dérivées partielles, no. 2 (1985): 1–72. http://dx.doi.org/10.5802/jedp.304.
Full textSart, Caroline, Abdellatif Ouahsine, Mohamed Louaked, and Pierre-Antoine Bois. "Résolution des équations de dispersion–diffusion en présence de forts gradients." Comptes Rendus Mécanique 330, no. 3 (January 2002): 159–65. http://dx.doi.org/10.1016/s1631-0721(02)01434-1.
Full textBerestycki, Henri, François Hamel, and Lionel Roques. "Équations de réaction–diffusion et modèles d'invasions biologiques dans les milieux périodiques." Comptes Rendus Mathematique 339, no. 8 (October 2004): 549–54. http://dx.doi.org/10.1016/j.crma.2004.07.025.
Full textCabré, Xavier, and Jean-Michel Roquejoffre. "Propagation de fronts dans les équations de Fisher–KPP avec diffusion fractionnaire." Comptes Rendus Mathematique 347, no. 23-24 (December 2009): 1361–66. http://dx.doi.org/10.1016/j.crma.2009.10.012.
Full textPetitot, Jean. "Modèles morphodynamiques de segmentation spatiale." Cahiers de géographie du Québec 42, no. 117 (April 12, 2005): 335–47. http://dx.doi.org/10.7202/022761ar.
Full textDissertations / Theses on the topic "Équation de diffusion"
Schmitt, Didier. "Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse." Nancy 1, 1995. http://www.theses.fr/1995NAN10283.
Full textHayek, Mohamed. "Identification de paramètres par approche inverse pour une équation de diffusion." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13060.
Full textNumerous processes modeled by partial differential equations, particularly the spatially-distributed ones, need parameters that are a priori unknown. Most of these parameters cannot be measured directly due to prohibitive costs or because the relevant scale of measure is unknown or incompatible with the addressed problem. In this general framework, inverse approaches become a key step to clever modeling. This work revisits the inverse problem and atavistic difficulties associated with spatially distributed models. From both theoretical and numerical standpoints, a major difficulty is to define the parameter space in which a solution is sought. This definition, also referred to as parameterization if commonly handled by means of sub-areas of the modeled domain over which the parameter is constant in each zone but different between zones. Then two possibilities arise : in the first-one, the geometry of the sub-areas is predefined, in the second-one, the zoning is an unknown of the inverse problem. The second way has been explored in this work and an algorithm has been developed using "refining indicators" to design the geometry as well as the parameter value in each zone. A new form of indicator is also developed to reduce computation costs
Attouchi, Amal. "Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132022/document.
Full textThis thesis is devoted to the study of qualitative properties of solutions of an evolution equation of Hamilton-Jacobi type with a p-Laplacian diffusion. It is mainly concerned with the study of the effect of the non-linear diffusion on the gradient blow-up phenomenon. The main issues we are studying are: local existence and uniqueness, regularity, spatial profile of gradient blow-up and localization of the singularities. We provide examples where the gradient blow-up set is reduced to a single point. In Chapter 4, a viscosity solution approachis used to extend the blowing-up solutions beyond the singularities and an ergodic problem is also analyzed in order to study their long time behavior. In the penultimate chapter, we address the question of boundedness of global solutions to the one-dimensional problem. In the last chapter we prove a local in space, gradient estimate and we use it to obtain a Liouville-type theorem
Laamri, El Haj. "Existence globale pour des systèmes de réaction-diffusion dans L**(1)." Nancy 1, 1988. http://www.theses.fr/1988NAN10164.
Full textStoimenov, Stoimen. "Analyse des symétries d'espace-temps dans les systèmes vieillissants." Nancy 1, 2006. http://www.theses.fr/2006NAN10106.
Full textThe slow dynamics observed in ferromagnetic systems rapidly quenched from a disordered initial state into its low-temperature ordered phase is characterized by the breaking of time-translation invariance and by dynamical scaling. Since the dynamical exponent generically has the value z=2 in this situation, the natural candidates for extended dynamical scale-transformation are the elements of the Schrödinger group Sch(d). A reformulation in terms of stochastic field-theory shows that the symmetries of the system, described by a stochastic Langevin equation, can be obtained from the consideration of the deterministic part of that equation, which is a non-linear partial differential equation. It follows that the form of the response functions can be derived from the hypothesis of their covariant transformation under local scale-transformations. The explicit construction of non-linear diffusion equations which are invariant under the Lie algebra schd of the Schrödinger group or else is subalgebra aged which is obtained when time-translations are excluded, requires the introduction of a new dimensionful variable, related to a physical coupling constant g. Constructing new representations of the sch1 and age1 containing g, new non-linear equations with real-valued solutions are obtained, which are Schrödinger- and not only Galilei-invariant. The resulting expression for the response function is derived. Applications to Bose-Einstein condensation and the slow kinetics of strongly interacting particle systems are discussed. A different route uses the embedding of sch1 as an (almost) parabolic subalgebra of the conformal algebra (conf3)C by considering the `mass' not as a constant, but as an additional variable. Invariant equations are classified and are compared to the coarse-grained equations for the time-dependent order-parameter in phase-ordering kinetics. Finally alt1, an other parabolic subalgebra, is studied as abstract Lie algebra. Its representation are discussed, as well as Appel system realization on coherent states
Allali, Karam. "Analyse et simulation numérique des problèmes de réaction-diffusion avec hydrodynamique." Lyon 1, 2000. http://www.theses.fr/2000LYO10118.
Full textMartzel, Nicolas. "Diffusion de particules classiques en interaction : équation de Fokker-Planck en champ moyen." Paris 6, 2003. http://www.theses.fr/2003PA066553.
Full textPausader, Benoît. "Problèmes bien posés et diffusion pour des équations non linéaires dispersives d'ordre quatre." Cergy-Pontoise, 2008. http://www.theses.fr/2008CERG0361.
Full textChasseigne, Emmanuel. "Contribution à la théorie des traces pour des équations paraboliques quasi-linéaires." Tours, 2000. http://www.theses.fr/2000TOUR4041.
Full textSabouri, Dodaran Amir Abbas. "Transition isolant-métal du Rb4C60 : équation d'état et structure électronique." Paris 6, 2003. http://www.theses.fr/2003PA066297.
Full textBooks on the topic "Équation de diffusion"
Ikeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.
Find full textA, Fasano, Primicerio M, and Centro internazionale matematico estivo, eds. Nonlinear diffusion problems: Lectures given at the 2nd 1985 session of the Centro internazionale matematico estivo (C.I.M.E.) held at Montecatini Terme, Italy, June 10-June 18, 1985. Berlin: Springer-Verlag, 1986.
Find full textPatterns and waves: The theory and applications of reaction-diffusion equations. Oxford: Clarendon Press, 1991.
Find full textLayer-adapted meshes for reaction-convection-diffusion problems. Heidelberg: Springer, 2010.
Find full text1953-, Kenig Carlos E., ed. Degenerate diffusions: Initial value problems and local regularity theory. Zürich: European Mathematical Society, 2007.
Find full textMario, Bertero, and Pike E. R. 1929-, eds. Inverse problems in scattering and imaging: Proceedings of a NATO Advanced Research Workshop held at Cape Cod, USA, 14-19 April 1991. Bristol: A. Hilger, 1992.
Find full textK, Hale Jack, and Chow Shui-Nee, eds. Dynamics of infinite dimensional systems. Berlin: Springer-Verlag, 1987.
Find full textEnvironmental fate and transport analysis with compartment modeling. Boca Raton, FL: Taylor & Francis, 2012.
Find full textLapeyre, Bernard, Etienne Pardoux, and Rémi Sentis. Méthodes de Monte-Carlo pour les équations de transport et de diffusion (Mathématiques et Applications). Springer, 1997.
Find full textBook chapters on the topic "Équation de diffusion"
"5 Équation de la diffusion." In Exercices de neutronique, 31–33. EDP Sciences, 2004. http://dx.doi.org/10.1051/978-2-7598-0161-9.c008.
Full text"5 Équation de la diffusion." In Exercices de neutronique, 172–78. EDP Sciences, 2004. http://dx.doi.org/10.1051/978-2-7598-0161-9.c041.
Full text